1
|
Xiao Y, Zhang Y, Xie F, Olsen RH, Shi L, Li L. Inhibition of Plasmid Conjugation in Escherichia coli by Targeting rbsB Gene Using CRISPRi System. Int J Mol Sci 2023; 24:10585. [PMID: 37445761 DOI: 10.3390/ijms241310585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic-resistant genes (ARGs) among human pathogens. The spread of ARGs can be halted or diminished by interfering with the conjugation process. In this study, we explored the possibility of using an rbsB gene as a single target to inhibit plasmid-mediated horizontal gene transfer in Escherichia coli by CRISPR interference (CRISPRi) system. Three single-guide RNAs (sgRNAs) were designed to target the rbsB gene. The transcriptional levels of the rbsB gene, the conjugation-related genes, and the conjugation efficiency in the CRISPRi strain were tested. We further explored the effect of the repressed expression of the rbsB gene on the quorum sensing (QS) system and biofilm formation. The results showed that the constructed CRISPRi system was effective in repressing the transcriptional level of the rbsB gene at a rate of 66.4%. The repressed expression of the rbsB gene resulted in the reduced conjugation rate of RP4 plasmid by 88.7%, which significantly inhibited the expression of the conjugation-related genes (trbBp, trfAp, traF and traJ) and increased the global regulator genes (korA, korB and trbA). The repressed rbsB gene expression reduced the depletion of autoinducer 2 signals (AI-2) by 12.8% and biofilm formation by a rate of 68.2%. The results of this study indicated the rbsB gene could be used as a universal target for the inhibition of conjugation. The constructed conjugative CRISPRi system has the potential to be used in ARG high-risk areas.
Collapse
Affiliation(s)
- Yawen Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Fengjun Xie
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
3
|
Hong Q, Huo S, Guo J, Li B, Sun Y, Nie B, Liang S, Yang J, Yue B. Core–Shell Nanoparticle Combined with Bacterial Targeting and Antibiotic Loading for Bacteria Tracing and Clearing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Qimin Hong
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| | - Shicheng Huo
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| | - Jingjing Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Bo Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Yanping Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Bin'en Nie
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| | - Shanhui Liang
- Department of Gynecological Oncology Fudan University Shanghai Cancer Center Fudan University Shanghai 200032 China
- Department of Oncology Shanghai Medical College Fudan University Shanghai 200032 China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
| | - Bing Yue
- Department of Bone and Joint Surgery Department of Orthopedics Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai 200127 China
| |
Collapse
|
4
|
Ye X, Chen X, He R, Meng W, Chen W, Wang F, Meng X. Enhanced anti-breast cancer efficacy of co-delivery liposomes of docetaxel and curcumin. Front Pharmacol 2022; 13:969611. [PMID: 36324685 PMCID: PMC9618653 DOI: 10.3389/fphar.2022.969611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 08/28/2023] Open
Abstract
The successful treatment of breast cancer is hampered by toxicity to normal cells, impaired drug accumulation at the tumor site, and multidrug resistance. We designed a novel multifunctional liposome, CUR-DTX-L, to co-deliver curcumin (CUR) and the chemotherapeutic drug docetaxel (DTX) for the treatment of breast cancer in order to address multidrug resistance (MDR) and the low efficacy of chemotherapy. The mean particle size, polydispersity index, zeta potential, and encapsulation efficiency of CUR-DTX-L were 208.53 ± 6.82 nm, 0.055 ± 0.001, -23.1 ± 2.1 mV, and 98.32 ± 2.37%, respectively. An in vitro release study and CCK-8 assays showed that CUR-DTX-L has better sustained release effects and antitumor efficacy than free drugs, the antitumor efficacy was verified by MCF-7 tumor-bearing mice, the CUR-DTX-L showed better antitumor efficacy than other groups, and the in vivo pharmacokinetic study indicated that the plasma concentration-time curve, mean residence time, and biological half-life time of CUR-DTX-L were significantly increased compared with free drugs, suggesting that it is a promising drug delivery system for the synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Xi Ye
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xin Chen
- Department of Pharmacy, Anhui Provincial Crops Hospital, Hefei, China
| | - Ruixi He
- Anhui University of Chinese Medicine, Hefei, China
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Wangyang Meng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Chen
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Fengling Wang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| |
Collapse
|
5
|
Krutyakov YA, Khina AG. Bacterial Resistance to Nanosilver: Molecular Mechanisms and Possible Ways to Overcome them. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Wan X, Li Q, Olsen RH, Meng H, Zhang Z, Wang J, Zheng H, Li L, Shi L. Engineering a CRISPR interference system targeting AcrAB-TolC efflux pump to prevent multidrug resistance development in Escherichia coli. J Antimicrob Chemother 2022; 77:2158-2166. [PMID: 35642356 DOI: 10.1093/jac/dkac166] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We engineered a CRISPR interference (CRISPRi) system targeting the AcrAB-TolC efflux pump to prevent MDR development in Escherichia coli. METHODS Nine specific single-guide RNAs (sgRNAs) were designed to target the components of the AcrAB-TolC efflux pump, namely AcrA, AcrB and TolC. A total of thirteen CRISPRi recombinant plasmids were constructed with single or clustered sgRNAs. The transcriptional levels of the target genes, MICs of multiple antibiotics and biofilm formation in each CRISPRi strain were tested. RESULTS The CRISPRi system expressing sgRNA clusters targeting acrB and tolC simultaneously exhibited the highest inhibitory effect on AcrAB-TolC efflux pump activity in E. coli HB101, with 78.3%, 90.0% and 65.4% inhibition rates on the transcriptional levels of acrA, acrB and tolC, respectively. The CRISPRi system resulted in ∼2-, ∼8- and 16-fold increased susceptibility to rifampicin, erythromycin and tetracycline, respectively. In addition, the constructed CRISPRi system reduced biofilm formation with inhibition rates in the range of 11.2% to 58.2%. CONCLUSIONS To the best of our knowledge, this is the first report on the construction of an inducible CRISPRi system targeting the AcrAB-TolC efflux pump to prevent MDR development in E. coli. This study provides insights for future regulation and manipulation of AcrAB-TolC activity and bacterial MDR by a CRISPRi system.
Collapse
Affiliation(s)
- Xiulin Wan
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingyang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen Yinxiang Group, Xiamen, China
| | - Junlin Wang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Hanyu Zheng
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.,State Key Laboratory of Food Safety Technology for Meat Products, Xiamen Yinxiang Group, Xiamen, China
| |
Collapse
|
7
|
Phytochemical Analysis, Antibacterial Activity and Modulating Effect of Essential Oil from Syzygium cumini (L.) Skeels. Molecules 2022; 27:molecules27103281. [PMID: 35630757 PMCID: PMC9145283 DOI: 10.3390/molecules27103281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
One of the main global problems that affect human health is the development of bacterial resistance to different drugs. As a result, the growing number of multidrug-resistant pathogens has contributed to an increase in resistant infections and represents a public health problem. The present work seeks to investigate the chemical composition and antibacterial activity of the essential oil of Syzygium cumini leaves. To identify its chemical composition, gas chromatography coupled to mass spectrometry was used. The antibacterial activity test was performed with the standard strains Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 25853 and Staphylococcus aureus ATCC 25923 and multidrug-resistant clinical isolates E. coli 06, P. aeruginosa 24 and S. aureus 10. The minimum inhibitory concentration (MIC) was determined by serial microdilution as well as the verification of the modulating effect of the antibiotic effect. In this test, the oil was used in a subinhibitory concentration. The test reading was performed after 24 h of incubation at 37 °C. The results show that the major chemical constituent is α-pinene (53.21%). The oil showed moderate activity against E. coli ATCC 25922, with the MIC of 512 µg/mL; there was no activity against the other strains. The oil potentiated the effect of antibiotics demonstrating possible synergism when associated with gentamicin, erythromycin and norfloxacin against E. coli 06 and S. aureus 10.
Collapse
|