1
|
Bernal-Castro C, Espinosa-Poveda E, Gutiérrez-Cortés C, Díaz-Moreno C. Vegetable substrates as an alternative for the inclusion of lactic acid bacteria with probiotic potential in food matrices. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:833-846. [PMID: 38487286 PMCID: PMC10933215 DOI: 10.1007/s13197-023-05779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 03/17/2024]
Abstract
Vegetable substrates are food matrices with micronutrients, antioxidants, and fiber content with a high potential for bioprocesses development. In addition, they have been recognized as essential sources of a wide range of phytochemicals that, individually or in combination, can act as bioactive compounds with potential benefits to health due to their antioxidant and antimicrobial activity and recently due to their status as prebiotics in the balance of the human intestinal microbiota. This systematic review explores the benefits of lactic fermentation of plant matrices such as fruits, vegetables, legumes, and cereals by bacteria with probiotic potential, guaranteeing cell viability (106-107 CFU/mL) and generating bioactive metabolic products for modulation of the gut microbiome.
Collapse
Affiliation(s)
- Camila Bernal-Castro
- Facultad de Ciencias, Doctorado en Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Elpidia Espinosa-Poveda
- Departamento de Nutrición Humana, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carolina Gutiérrez-Cortés
- Universidad Nacional Abierta y a Distancia (UNAD), Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Bogotá, Colombia
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Consuelo Díaz-Moreno
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Tian Y, Li X, Wang X, Pei ST, Pan HX, Cheng YQ, Li YC, Cao WT, Petersen JDD, Zhang P. Alkaline sphingomyelinase deficiency impairs intestinal mucosal barrier integrity and reduces antioxidant capacity in dextran sulfate sodium-induced colitis. World J Gastroenterol 2024; 30:1405-1419. [PMID: 38596488 PMCID: PMC11000083 DOI: 10.3748/wjg.v30.i10.1405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology. Alkaline sphingomyelinase (alk-SMase) is specifically expressed by intestinal epithelial cells, and has been reported to play an anti-inflammatory role. However, the underlying mechanism is still unclear. AIM To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium (DSS)-induced colitis. METHODS Mice were administered 3% DSS drinking water, and disease activity index was determined to evaluate the status of colitis. Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran, and bacterial translocation was evaluated by measuring serum lipopolysaccharide. Intestinal epithelial cell ultrastructure was observed by electron microscopy. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA, respectively. Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels. RESULTS Compared to wild-type (WT) mice, inflammation and intestinal permeability in alk-SMase knockout (KO) mice were more severe beginning 4 d after DSS induction. The mRNA and protein levels of intestinal barrier proteins, including zonula occludens-1, occludin, claudin-3, claudin-5, claudin-8, mucin 2, and secretory immunoglobulin A, were significantly reduced on 4 d after DSS treatment. Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells. Furthermore, by day 4, mitochondria appeared swollen and degenerated. Additionally, compared to WT mice, serum malondialdehyde levels in KO mice were higher, and the antioxidant capacity was significantly lower. The expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment. mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased. Finally, colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone, which is an Nrf2 activator. CONCLUSION Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Ye Tian
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Xin Li
- Medical Laboratory Science and Technology College, Harbin Medical University - Daqing Campus, Daqing 163000, Heilongjiang Province, China
| | - Xu Wang
- Department of Laboratory Diagnosis, Qiqihar Tuberculosis Control Center, Qiqihar 161000, Heilongjiang Province, China
| | - Si-Ting Pei
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Hong-Xin Pan
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Yu-Qi Cheng
- Medical Laboratory Science and Technology College, Harbin Medical University - Daqing Campus, Daqing 163000, Heilongjiang Province, China
| | - Yi-Chen Li
- Medical Laboratory Science and Technology College, Harbin Medical University - Daqing Campus, Daqing 163000, Heilongjiang Province, China
| | - Wen-Ting Cao
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Jin-Dong Ding Petersen
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
- Department of Public Health, University of Copenhagen, Copenhagen 1353, Denmark
- Department of Public Health, University of Southern Denmark, Odense 5000, Denmark
| | - Ping Zhang
- International School of Public Health and One Health, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
3
|
Mavrommatis A, Tsiplakou E, Zerva A, Pantiora PD, Georgakis ND, Tsintzou GP, Madesis P, Labrou NE. Microalgae as a Sustainable Source of Antioxidants in Animal Nutrition, Health and Livestock Development. Antioxidants (Basel) 2023; 12:1882. [PMID: 37891962 PMCID: PMC10604252 DOI: 10.3390/antiox12101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a renewable and sustainable source of bioactive compounds, such as essential amino acids, polyunsaturated fatty acids, and antioxidant compounds, that have been documented to have beneficial effects on nutrition and health. Among these natural products, the demand for natural antioxidants, as an alternative to synthetic antioxidants, has increased. The antioxidant activity of microalgae significantly varies between species and depends on growth conditions. In the last decade, microalgae have been explored in livestock animals as feed additives with the aim of improving both animals' health and performance as well as product quality and the environmental impact of livestock. These findings are highly dependent on the composition of microalgae strain and their amount in the diet. The use of carbohydrate-active enzymes can increase nutrient bioavailability as a consequence of recalcitrant microalgae cell wall degradation, making it a promising strategy for monogastric nutrition for improving livestock productivity. The use of microalgae as an alternative to conventional feedstuffs is becoming increasingly important due to food-feed competition, land degradation, water deprivation, and climate change. However, the cost-effective production and use of microalgae is a major challenge in the near future, and their cultivation technology should be improved by reducing production costs, thus increasing profitability.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 75 Iera Odos Str., GR-11855 Athens, Greece
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 75 Iera Odos Str., GR-11855 Athens, Greece
| | - Anastasia Zerva
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Str., GR-11855 Athens, Greece
| | - Panagiota D Pantiora
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Str., GR-11855 Athens, Greece
| | - Nikolaos D Georgakis
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Str., GR-11855 Athens, Greece
| | - Georgia P Tsintzou
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, GR-38221 Volos, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, GR-38221 Volos, Greece
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, P.O. Box 361, Thermi, GR-57001 Thessaloniki, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Str., GR-11855 Athens, Greece
| |
Collapse
|
4
|
A Systematic Review and Meta-Analysis on the Role of Nutraceuticals in the Management of Neuropathic Pain in In Vivo Studies. Antioxidants (Basel) 2022; 11:antiox11122361. [PMID: 36552569 PMCID: PMC9774415 DOI: 10.3390/antiox11122361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The control of neuropathic pain is a leading challenge in modern medicine. Traditional medicine has, for a long time, used natural compounds such as nutraceuticals for this purpose, and extensive evidence has supported their role in controlling oxidative stress and persistent pain-related inflammation. Nutraceuticals are natural products belonging to the food sector whose consumption could be related to physiological benefits. Indeed, they are used to improve health, prevent chronic diseases, and delay the aging process. Here, we report a systematic review and meta-analysis to provide a more comprehensive report on the use of nutraceuticals in neuropathic pain, including evaluating confounding factors. A search of the literature has been conducted on principal databases (PubMed, MEDLINE, EMBASE, and Web of Science) following the PRISMA statement, and we retrieved 484 articles, 12 of which were selected for the meta-analysis. The results showed that administration of natural drugs in animals with neuropathic pain led to a significant reduction in thermal hyperalgesia, measured in both the injured paw (SMD: 1.79; 95% CI: 1.41 to 2.17; p < 0.0001) and in the two paws (SMD: −1.74; 95% CI: −3.36 to −0.11; p = 0.036), as well as a reduction in mechanical allodynia and hyperalgesia (SMD: 1.95, 95% CI: 1.08 to 2.82; p < 0.001) when compared to controls. The results of the review indicate that nutraceutical compounds could be clinically relevant for managing persistent neuropathic pain.
Collapse
|
5
|
Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:biom12040542. [PMID: 35454131 PMCID: PMC9030615 DOI: 10.3390/biom12040542] [Citation(s) in RCA: 274] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Collapse
|
6
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
7
|
Yao ZD, Cao YN, Peng LX, Yan ZY, Zhao G. Coarse Cereals and Legume Grains Exert Beneficial Effects through Their Interaction with Gut Microbiota: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:861-877. [PMID: 33264009 DOI: 10.1021/acs.jafc.0c05691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coarse cereals and legume grains (CCLGs) are rich in specific macro- and functional elements that are considered important dietary components for maintaining human health. Therefore, determining the precise nutritional mechanism involved in exerting the health benefits of CCLGs can help understand dietary nutrition in a better manner. Evidence suggests that gut microbiota play a crucial role in the function of CCLGs via their complicated interplay with CCLGs. First, CCLGs modulate gut microbiota and function. Second, gut microbiota convert CCLGs into compounds that perform different functions. Third, gut microbiota mediate interactions among different CCLG components. Therefore, using gut microbiota to expound the nutritional mechanism of CCLGs is important for future studies. A precise and rapid gut microbiota research model is required to screen and evaluate the quality of CCLGs. The outcomes of such research may promote the rapid discovery, classification, and evaluation of CCLG resources, thereby opening a new opportunity to guide nutrition-based development of CCLG products.
Collapse
Affiliation(s)
- Zhen-Dong Yao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Zhu-Yun Yan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| |
Collapse
|