1
|
Chen X, Li B, Ji S, Wu D, Cui B, Ren X, Zhou B, Li B, Liang H. Small molecules interfacial assembly regulate the crystallization transition process for nobiletin stabilization. Food Chem 2023; 426:136519. [PMID: 37329798 DOI: 10.1016/j.foodchem.2023.136519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Many bioactive nutraceuticals naturally occurring in food materials possess beneficial biological activities, while their use as functional supplements is subjected to hydrophobicity and crystallinity. Currently, inhibiting crystallization for such nutrients is of immense scientific interest. Here, we exploited diverse structural polyphenols as potential inhibitors for restraining Nobiletin crystallization. Specifically, the crystallization transition process could be influenced by the polyphenol gallol density, Nobiletin supersaturation (1, 1.5, 2, 2.5 mM), temperature (4, 10, 15, 25 and 37 ℃), and pH (3.5, 4, 4.5, 5), important factors for regulating the binding attachment and interactions. The optimized samples could be guided by NT100 lied in 4 ℃ at pH 4. Besides, the main assembly driving force was hydrogen-bonding cooperated with π-π stacking and electrostatic interaction, leading to a Nobiletin/TA combination ratio of ∼ 3:1. Our findings proposed an innovative synergistic strategy for inhibiting crystallization and broaden potential applications of polyphenol-based materials in advanced biological fields.
Collapse
Affiliation(s)
- Xiaojuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bojia Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sicheng Ji
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bing Cui
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Xingling Ren
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering and Technology Research Center of Hubei Province, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| |
Collapse
|
2
|
Wang X, Wang Y, Yu J, Qiu Q, Liao R, Zhang S, Luo C. Reduction-Hypersensitive Podophyllotoxin Prodrug Self-Assembled Nanoparticles for Cancer Treatment. Pharmaceutics 2023; 15:784. [PMID: 36986645 PMCID: PMC10058384 DOI: 10.3390/pharmaceutics15030784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Podophyllotoxin (PPT) has shown strong antitumor effects on various types of cancers. However, the non-specific toxicity and poor solubility severely limits its clinical transformation. In order to overcome the adverse properties of PPT and explore its clinical potential, three novel PTT-fluorene methanol prodrugs linked by different lengths of disulfide bonds were designed and synthesized. Interestingly, the lengths of the disulfide bond affected the drug release, cytotoxicity, pharmacokinetic characteristics, in vivo biodistribution and antitumor efficacy of prodrug NPs. To be more specific, all three PPT prodrugs could self-assemble into uniform nanoparticles (NPs) with high drug loading (>40%) via the one-step nano precipitation method, which not only avoids the use of surfactants and cosurfactants, but also reduces the systemic toxicity of PPT and increases the tolerated dose. Among the three prodrug NPs, FAP NPs containing α-disulfide bond showed the most sensitive tumor-specific response and fastest drug release rate, thus demonstrating the strongest in vitro cytotoxicity. In addition, three prodrug NPs showed prolonged blood circulation and higher tumor accumulation. Finally, FAP NPs demonstrated the strongest in vivo antitumor activity. Our work will advance the pace of podophyllotoxin towards clinical cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics 2022; 14:pharmaceutics14102003. [PMID: 36297439 PMCID: PMC9607342 DOI: 10.3390/pharmaceutics14102003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Almost half of orally administered active pharmaceutical ingredients (APIs) have low solubility, which affects their bioavailability. In the last two decades, several alternatives have been proposed to modify the crystalline structure of APIs to improve their solubility; these strategies consist of inducing supramolecular structural changes in the active pharmaceutical ingredients, such as the amorphization and preparation of co-crystals or polymorphs. Since many APIs are thermosensitive, non-thermal emerging alternative techniques, such as mechanical activation by milling, have become increasingly common as a preparation method for drug formulations. This review summarizes the recent research in preparing pharmaceutical formulations (co-amorphous, co-crystals, and polymorphs) through ball milling to enhance the physicochemical properties of active pharmaceutical ingredients. This report includes detailed experimental milling conditions (instrumentation, temperature, time, solvent, etc.), as well as solubility, bioavailability, structural, and thermal stability data. The results and description of characterization techniques to determine the structural modifications resulting from transforming a pure crystalline API into a co-crystal, polymorph, or co-amorphous system are presented. Additionally, the characterization methodologies and results of intermolecular interactions induced by mechanical activation are discussed to explain the properties of the pharmaceutical formulations obtained after the ball milling process.
Collapse
|
4
|
Lv H, Wang Y, Yang X, Ling G, Zhang P. Application of curcumin nanoformulations in Alzheimer's disease: prevention, diagnosis and treatment. Nutr Neurosci 2022:1-16. [PMID: 35694842 DOI: 10.1080/1028415x.2022.2084550] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objectives: Alzheimer's disease (AD) is a serious neurodegenerative disease. Although many therapeutic strategies have been studied, their clinical applications are immature. Moreover, these methods can only alleviate symptoms rather than cure it, posing a challenge to brain health in older adults worldwide. Curcumin (CUR) is a very promising natural compound for nerve protection and treatment. It can prevent and treat AD, and on the other hand, its fluorescence properties can be used in the diagnosis of AD. However, CUR is characterized by very low water solubility, fluid instability, rapid metabolism, low bioavailability and difficulty in penetrating the biological barriers, which limit its application. Nanocarriers are a potential material to improve the biocompatibility of CUR and its ability to cross biological barriers. Therefore, delivering CUR by nanocarriers is an effective method to achieve better efficacy. Methods: In this review, the preventive, therapeutic and diagnostic effects of CUR nanoformulations on AD, as well as various patents, clinical trials and experimental research progress in this field are discussed. The aim is to provide detailed reference and practical suggestions for future research. Results: CUR has a variety of pharmacological activities in the prevention and treatment of AD, and its nanoformulation can effectively improve solubility, bioavailability and the ability to penetrate the blood-brain barrier. Significant benefits have been observed in the current study. Discussion: CUR formulations have a good prospect in the prevention, diagnosis and treatment of AD, but the safety and principle of its administration need more detailed study in the future.
Collapse
Affiliation(s)
- Hongqian Lv
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xiaotong Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|