1
|
Simonaro CM, Yasuda M, Schuchman EH. Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders. J Inherit Metab Dis 2025; 48:e12813. [PMID: 39569490 DOI: 10.1002/jimd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
Collapse
Affiliation(s)
- Calogera M Simonaro
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Makiko Yasuda
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Sheth J, Nair A, Sheth F, Ajagekar M, Dhondekar T, Panigrahi I, Bavdekar A, Nampoothiri S, Datar C, Gandhi A, Muranjan M, Kaur A, Desai M, Mistri M, Patel C, Naik P, Shah M, Godbole K, Kapoor S, Gupta N, Bijarnia-Mahay S, Kadam S, Solanki D, Desai S, Iyer A, Patel K, Patel H, Shah RC, Mehta S, Shah R, Bhavsar R, Shah J, Pandya M, Patel B, Shah S, Shah H, Shah S, Bajaj S, Shah S, Thaker N, Kalane U, Kamate M, Kn VR, Tayade N, Jagadeesan S, Jain D, Chandarana M, Singh J, Mehta S, Suresh B, Sheth H. Burden of rare genetic disorders in India: twenty-two years' experience of a tertiary centre. Orphanet J Rare Dis 2024; 19:295. [PMID: 39138584 PMCID: PMC11323464 DOI: 10.1186/s13023-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Rare disorders comprise of ~ 7500 different conditions affecting multiple systems. Diagnosis of rare diseases is complex due to dearth of specialized medical professionals, testing labs and limited therapeutic options. There is scarcity of data on the prevalence of rare diseases in different populations. India being home to a large population comprising of 4600 population groups, of which several thousand are endogamous, is likely to have a high burden of rare diseases. The present study provides a retrospective overview of a cohort of patients with rare genetic diseases identified at a tertiary genetic test centre in India. RESULTS Overall, 3294 patients with 305 rare diseases were identified in the present study cohort. These were categorized into 14 disease groups based on the major organ/ organ system affected. Highest number of rare diseases (D = 149/305, 48.9%) were identified in the neuromuscular and neurodevelopmental (NMND) group followed by inborn errors of metabolism (IEM) (D = 47/305; 15.4%). Majority patients in the present cohort (N = 1992, 61%) were diagnosed under IEM group, of which Gaucher disease constituted maximum cases (N = 224, 11.2%). Under the NMND group, Duchenne muscular dystrophy (N = 291/885, 32.9%), trinucleotide repeat expansion disorders (N = 242/885; 27.3%) and spinal muscular atrophy (N = 141/885, 15.9%) were the most common. Majority cases of β-thalassemia (N = 120/149, 80.5%) and cystic fibrosis (N = 74/75, 98.7%) under the haematological and pulmonary groups were observed, respectively. Founder variants were identified for Tay-Sachs disease and mucopolysaccharidosis IVA diseases. Recurrent variants for Gaucher disease (GBA:c.1448T > C), β-thalassemia (HBB:c.92.+5G > C), non-syndromic hearing loss (GJB2:c.71G > A), albinism (TYR:c.832 C > T), congenital adrenal hyperplasia (CYP21A2:c.29-13 C > G) and progressive pseudo rheumatoid dysplasia (CCN6:c.298T > A) were observed in the present study. CONCLUSION The present retrospective study of rare disease patients diagnosed at a tertiary genetic test centre provides first insight into the distribution of rare genetic diseases across the country. This information will likely aid in drafting future health policies, including newborn screening programs, development of target specific panel for affordable diagnosis of rare diseases and eventually build a platform for devising novel treatment strategies for rare diseases.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| | - Aadhira Nair
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Frenny Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Manali Ajagekar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | - Inusha Panigrahi
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | | | | | - Chaitanya Datar
- Bharati Hospital and Research Centre, Dhankawadi, Pune, India
| | | | - Mamta Muranjan
- Department of Pediatrics, KEM Hospital, Parel, Mumbai, India
| | - Anupriya Kaur
- Postgraduate Institute of Medical Education and Research, PGIMER, Chandigarh, India
| | - Manisha Desai
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mehul Mistri
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Chitra Patel
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Premal Naik
- Rainbow Super speciality Hospital, Ahmedabad, India
| | | | - Koumudi Godbole
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | - Seema Kapoor
- Division of Genetics & Metabolism Department of Pediatrics, Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sandeep Kadam
- Department of Pediatrics, K.E.M Hospital, Pune, India
| | | | - Soham Desai
- Shree Krishna Hospital, Karamsad, Anand, India
| | | | - Ketan Patel
- Himalaya Arcade, Homeopathy Clinic, Vastrapur, Ahmedabad, India
| | - Harsh Patel
- Zydus Hospital & Healthcare Research Pvt Ltd, Ahmedabad, India
| | - Raju C Shah
- Ankur Neonatal Hospital, Ashram Road, Ahmedabad, India
| | | | | | - Riddhi Bhavsar
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Jhanvi Shah
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | - Mili Pandya
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India
| | | | | | - Heli Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shalin Shah
- Ansa Clinic, S. G. Highway, Ahmedabad, India
| | - Shruti Bajaj
- The Purple Gene Clinic, Simplex Khushaangan, SV Road, Malad West, Mumbai, India
| | | | | | - Umesh Kalane
- Deenanath Mangeshkar Hospital & Research Centre, Pune, India
| | | | - Vykunta Raju Kn
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Naresh Tayade
- Department of Paediatrics, Dr. Panjabrao Deshmukh Memorial Medical College, Amravati, India
| | - Sujatha Jagadeesan
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Deepika Jain
- Shishu Child Development and Early Intervention Centre, Ahmedabad, India
| | - Mitesh Chandarana
- Medisquare Superspeciality Hospital and Research Institute, Ahmedabad, India
| | - Jitendra Singh
- Neurology Clinic, Shivranjini Cross Road, Satellite, Ahmedabad, India
| | | | - Beena Suresh
- Department of Clinical Genetics & Genetic Counselling, Mediscan Systems, Chennai, India
| | - Harsh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Ahmedabad, India.
| |
Collapse
|
3
|
Sheth H, Nair A, Bhavsar R, Kamate M, Gowda VK, Bavdekar A, Kadam S, Nampoothiri S, Panigrahi I, Kaur A, Shah S, Mehta S, Jagadeesan S, Suresh I, Kapoor S, Bajaj S, Devi RR, Prajapati A, Godbole K, Patel H, Luhar Z, Shah RC, Iyer A, Bijarnia S, Puri R, Muranjan M, Shah A, Magar S, Gupta N, Tayade N, Gandhi A, Sowani A, Kale S, Jalan A, Solanki D, Dalal A, Mane S, Prabha CR, Sheth F, Joshi CG, Joshi M, Sheth J. Development, validation and application of single molecule molecular inversion probe based novel integrated genetic screening method for 29 common lysosomal storage disorders in India. Hum Genomics 2024; 18:46. [PMID: 38730490 PMCID: PMC11088154 DOI: 10.1186/s40246-024-00613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Current clinical diagnosis pathway for lysosomal storage disorders (LSDs) involves sequential biochemical enzymatic tests followed by DNA sequencing, which is iterative, has low diagnostic yield and is costly due to overlapping clinical presentations. Here, we describe a novel low-cost and high-throughput sequencing assay using single-molecule molecular inversion probes (smMIPs) to screen for causative single nucleotide variants (SNVs) and copy number variants (CNVs) in genes associated with 29 common LSDs in India. RESULTS 903 smMIPs were designed to target exon and exon-intron boundaries of targeted genes (n = 23; 53.7 kb of the human genome) and were equimolarly pooled to create a sequencing library. After extensive validation in a cohort of 50 patients, we screened 300 patients with either biochemical diagnosis (n = 187) or clinical suspicion (n = 113) of LSDs. A diagnostic yield of 83.4% was observed in patients with prior biochemical diagnosis of LSD. Furthermore, diagnostic yield of 73.9% (n = 54/73) was observed in patients with high clinical suspicion of LSD in contrast with 2.4% (n = 1/40) in patients with low clinical suspicion of LSD. In addition to detecting SNVs, the assay could detect single and multi-exon copy number variants with high confidence. Critically, Niemann-Pick disease type C and neuronal ceroid lipofuscinosis-6 diseases for which biochemical testing is unavailable, could be diagnosed using our assay. Lastly, we observed a non-inferior performance of the assay in DNA extracted from dried blood spots in comparison with whole blood. CONCLUSION We developed a flexible and scalable assay to reliably detect genetic causes of 29 common LSDs in India. The assay consolidates the detection of multiple variant types in multiple sample types while having improved diagnostic yield at same or lower cost compared to current clinical paradigm.
Collapse
Affiliation(s)
- Harsh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Jodhpur Village Road, Satellite, Ahmedabad, India, 380015.
| | - Aadhira Nair
- FRIGE Institute of Human Genetics, FRIGE House, Jodhpur Village Road, Satellite, Ahmedabad, India, 380015
| | - Riddhi Bhavsar
- FRIGE Institute of Human Genetics, FRIGE House, Jodhpur Village Road, Satellite, Ahmedabad, India, 380015
| | - Mahesh Kamate
- KLES Prabhakar Kore Hospital, Belgaum, Karnataka, India
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | | | - Sandeep Kadam
- Department of Pediatrics, K.E.M Hospital, Pune, India
| | | | - Inusha Panigrahi
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anupriya Kaur
- Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Siddharth Shah
- Royal Institute of Child Neurosciences, Vastrapur, Ahmedabad, India
| | - Sanjeev Mehta
- Royal Institute of Child Neurosciences, Vastrapur, Ahmedabad, India
| | - Sujatha Jagadeesan
- Department of Clinical Genetics and Genetic Counselling, Mediscan Systems, Chennai, India
| | - Indrani Suresh
- Department of Clinical Genetics and Genetic Counselling, Mediscan Systems, Chennai, India
| | - Seema Kapoor
- Division of Genetics and Metabolism Department of Pediatrics, Lok Nayak Hospital and Maulana Azad Medical College, New Delhi, India
| | - Shruti Bajaj
- The Purple Gene Clinic, Simplex Khushaangan, SV Road, Malad West, Mumbai, India
| | | | | | - Koumudi Godbole
- Deenanath Mangeshkar Hospital &Amp; Research Centre, Pune, India
| | - Harsh Patel
- Zydus Hospital & Healthcare Research Pvt Ltd, Ahmedabad, India
| | | | - Raju C Shah
- Ankur Institute of Child Health, Ahmedabad, India
| | | | - Sunita Bijarnia
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Mamta Muranjan
- Department of Paediatrics, KEM Hospital, Parel, Mumbai, India
| | - Ami Shah
- BJ Wadia Hospital for Children, Parel, Mumbai, India
| | | | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Naresh Tayade
- Department of Pediatrics, Dr. Panjabrao Deshmukh Memorial Medical College, Amravati, India
| | | | - Ajit Sowani
- Zydus Hospital & Healthcare Research Pvt Ltd, Ahmedabad, India
| | - Shrutikaa Kale
- FRIGE Institute of Human Genetics, FRIGE House, Jodhpur Village Road, Satellite, Ahmedabad, India, 380015
| | | | - Dhaval Solanki
- Mantra Child Neurology and Epilepsy Hospital, Bhavnagar, India
| | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, Yale Center for Genome Analysis, West Haven, CT, USA
| | - C Ratna Prabha
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, India
| | - Frenny Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Jodhpur Village Road, Satellite, Ahmedabad, India, 380015
| | | | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Jayesh Sheth
- FRIGE Institute of Human Genetics, FRIGE House, Jodhpur Village Road, Satellite, Ahmedabad, India, 380015.
| |
Collapse
|
4
|
Tsap MI, Yatsenko AS, Hegermann J, Beckmann B, Tsikas D, Shcherbata HR. Unraveling the link between neuropathy target esterase NTE/SWS, lysosomal storage diseases, inflammation, abnormal fatty acid metabolism, and leaky brain barrier. eLife 2024; 13:e98020. [PMID: 38660940 PMCID: PMC11090517 DOI: 10.7554/elife.98020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
5
|
Hołyst R, Bubak G, Kalwarczyk T, Kwapiszewska K, Michalski J, Pilz M. Living Cell as a Self-Synchronized Chemical Reactor. J Phys Chem Lett 2024; 15:3559-3570. [PMID: 38526849 PMCID: PMC11000238 DOI: 10.1021/acs.jpclett.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Thermal fluctuations power all processes inside living cells. Therefore, these processes are inherently random. However, myriad multistep chemical reactions act in concerto inside a cell, finally leading to this chemical reactor's self-replication. We speculate that an underlying mechanism in nature must exist that allows all of these reactions to synchronize at multiple time and length scales, overcoming in this way the random nature of any single process in a cell. This Perspective discusses what type of research is needed to understand this undiscovered synchronization law.
Collapse
Affiliation(s)
- Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grzegorz Bubak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Tomasz Kalwarczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jarosław Michalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Pilz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Sheth J, Nair A, Bhavsar R, Godbole K, Datar C, Nampoothiri S, Panigrahi I, Shah H, Bajaj S, Tayade N, Bhardwaj N, Sheth H. Lysosomal storage disorders identified in adult population from India: Experience of a tertiary genetic centre and review of literature. JIMD Rep 2024; 65:85-101. [PMID: 38444573 PMCID: PMC10910243 DOI: 10.1002/jmd2.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 03/07/2024] Open
Abstract
Lysosomal storage disorders (LSDs) in adults have milder phenotype and variable age at presentation. Several studies have described the phenotype, genotype and treatment outcomes for adult-onset LSDs like Gaucher, Fabry, Pompe disease and others. We describe the first systematic study on the occurrence of LSDs in an adult population from India. It describes, the key clinical signs seen in these patients and those from literature review that can aid in early detection. Of 2102 biochemically diagnosed LSDs cases, 32 adult patients were identified with LSDs. Based on the clinical suspicion, screening test and enzyme study was carried out. Twenty-two patients were subjected to a genetic study to identify the causative variant in a respective gene. Of the 32 adult patients, we observed a maximum percentage of 37.5% (n = 12) cases with Gaucher disease, followed by 13% (n = 4) with Fabry disease. We found 10% of cases with MPS IVA and MPS I, and 9% cases with Pompe. Single case of adult mucolipidosis III and two cases each of Type 1 Sialidosis, Niemann-Pick disease B and metachromatic leukodystrophy were identified. We observed two common variants p.Leu483Pro and p.Ala487Thr in the GBA1 gene in 23% of Indian patients with adult Gaucher disease. No common variants were observed in other aforementioned LSDs. Study identified 50% of Fabry patients and 4% of Gaucher patients diagnosed at our centre to be adults. The prevalence of adult Pompe patients was low (3.4%) as compared to 80% reported in the Caucasian population. Adult LSDs such as, MPS III, GM1/GM2 gangliosidosis and Krabbe disease were not identified in our cohort.
Collapse
Affiliation(s)
- Jayesh Sheth
- Department of Molecular and Biochemical GeneticsFRIGE's Institute of Human GeneticsAhmedabadIndia
| | - Aadhira Nair
- Department of Molecular and Biochemical GeneticsFRIGE's Institute of Human GeneticsAhmedabadIndia
| | - Riddhi Bhavsar
- Department of Molecular and Biochemical GeneticsFRIGE's Institute of Human GeneticsAhmedabadIndia
| | - Koumudi Godbole
- Department of Clinical GeneticsDeenanath Mangeshkar Hospital & Research CentrePuneIndia
| | - Chaitanya Datar
- Department of Clincial GeneticsBharati Hospital and Research CentrePuneIndia
| | | | - Inusha Panigrahi
- Department of PediatricsPostgraduate Institute of Medical Education and Research, PGIMERChandigarhIndia
| | - Heli Shah
- Department of PediatricsSmt. NHL Municipal Medical CollegeAhmedabadIndia
| | | | - Naresh Tayade
- Department of PediatricsDr. Panjabrao Deshmukh Memorial Medical CollegeAmravatiIndia
| | | | - Harsh Sheth
- Department of Molecular and Biochemical GeneticsFRIGE's Institute of Human GeneticsAhmedabadIndia
| |
Collapse
|
7
|
Hirachan R, Horman A, Burke D, Heales S. Evaluation, in a highly specialised enzyme laboratory, of a digital microfluidics platform for rapid assessment of lysosomal enzyme activity in dried blood spots. JIMD Rep 2024; 65:124-131. [PMID: 38444576 PMCID: PMC10910220 DOI: 10.1002/jmd2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Lysosomal storage disorders (LSDs) are predominantly enzyme deficiencies leading to substrate accumulation, causing progressive damage to multiple organs. To date, a crucial part of diagnosing LSDs is measuring enzymatic activity in leucocytes, plasma, or dried blood spots (DBS). Here, we present results from a proof-of-principle study, evaluating an innovative digital microfluidics (DMF) platform, referred to as SEEKER®, that can measure the activity of the following four lysosomal enzymes from DBS: α-L-iduronidase (IDUA) for mucopolysaccharidosis I (MPS I), acid α-glucosidase (GAA) for Pompe disease, β-glucosidase (GBA) for Gaucher disease, and α-galactosidase A (GLA) for Fabry disease. Over 900 DBS were analysed from newborns, children, and adults. DMF successfully detected known patients with MPS I, Pompe disease, and Gaucher disease, and known males with Fabry disease. This is the first demonstration of this multiplexed DMF platform for identification of patients with LSDs in a specialised diagnostic enzyme laboratory environment. We conclude that this DMF platform is relatively simple, high-throughput, and could be readily accommodated into a specialised laboratory as a first-tier test for MPS I, Pompe disease, and Gaucher disease for all patients, and Fabry disease for male patients only.
Collapse
Affiliation(s)
- Rohit Hirachan
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Alistair Horman
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Derek Burke
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Simon Heales
- Chemical PathologyCamelia Botnar Laboratories, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Neurometabolic UnitNational Hospital for Neurology and NeurosurgeryLondonUK
| |
Collapse
|
8
|
Cocostîrc V, Paștiu AI, Pusta DL. An Overview of Canine Inherited Neurological Disorders with Known Causal Variants. Animals (Basel) 2023; 13:3568. [PMID: 38003185 PMCID: PMC10668755 DOI: 10.3390/ani13223568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hereditary neurological conditions documented in dogs encompass congenital, neonatal, and late-onset disorders, along with both progressive and non-progressive forms. In order to identify the causal variant of a disease, the main two approaches are genome-wide investigations and candidate gene investigation. Online Mendelian Inheritance in Animals currently lists 418 Mendelian disorders specific to dogs, of which 355 have their likely causal genetic variant identified. This review aims to summarize the current knowledge on the canine nervous system phenes and their genetic causal variant. It has been noted that the majority of these diseases have an autosomal recessive pattern of inheritance. Additionally, the dog breeds that are more prone to develop such diseases are the Golden Retriever, in which six inherited neurological disorders with a known causal variant have been documented, and the Belgian Shepherd, in which five such disorders have been documented. DNA tests can play a vital role in effectively managing and ultimately eradicating inherited diseases.
Collapse
Affiliation(s)
- Vlad Cocostîrc
- Department of Genetics and Hereditary Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.I.P.); (D.L.P.)
| | | | | |
Collapse
|
9
|
Ducatez F, Pilon C, Ferey J, Marret S, Bekri S, Tebani A. Evaluation of dried-blood spots and a hematocrit-independent procedure in lysosomal diseases screening using multiplexed tandem mass spectrometry assays. Clin Chim Acta 2023; 542:117278. [PMID: 36871662 DOI: 10.1016/j.cca.2023.117278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Dried blood spots (DBS) are widely used as a non-invasive sampling method, especially in newborn screening (NBS). Despite its numerous advantages, conventional DBS might be limited by the hematocrit effect when analyzing a punch, depending on its position in the blood spot. This effect could be avoided using hematocrit-independent sampling devices such as the hemaPEN®. This device collects blood through integrated microcapillaries, and a fixed blood volume is deposited on a pre-punched paper disc. NBS programs are increasingly poised to include lysosomal disorders, given the availability of treatments that improve clinical outcomes if detected early. In this study, the effect of hematocrit and punch position in the DBS on the assay of 6 lysosomal enzymes was evaluated on 3 mm discs pre-punched in hemaPEN® devices compared to 3 mm punches from the PerkinElmer 226 DBS. METHODS The enzyme activities were measured by multiplexed tandem mass spectrometry coupled to ultra-high performance liquid chromatography. Three hematocrit levels (23%, 35%, and 50%) and punching positions (center, intermediary, and border) were tested. Three replicates have been performed for each condition. A multivariate approach has been used along with a univariate method to assess the effect of the experimental design on each enzyme activity. RESULTS Hematocrit, punch position, and whole blood sampling method do not affect the assessment of enzyme activity using the NeoLSD® assay. CONCLUSION The results obtained from conventional DBS and the volumetric device HemaPEN® are comparable. These results underline the reliability of DBS for this test.
Collapse
Affiliation(s)
- Franklin Ducatez
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France; Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000 Rouen, France
| | - Carine Pilon
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Justine Ferey
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Stéphane Marret
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Neonatal Pediatrics, Intensive Care, and Neuropediatrics, 76000 Rouen, France
| | - Soumeya Bekri
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France
| | - Abdellah Tebani
- Normandie Univ, UNIROUEN, INSERM U1245, CHU Rouen, Department of Metabolic Biochemistry, 76000 Rouen, France.
| |
Collapse
|
10
|
Sheth J, Nair A, Jee B. Lysosomal storage disorders: from biology to the clinic with reference to India. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 9:100108. [PMID: 37383036 PMCID: PMC10305895 DOI: 10.1016/j.lansea.2022.100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 06/30/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of seventy different metabolic storage diseases due to accumulation of substrate mainly in the form of carbohydrate, lipids, proteins, and cellular debris. They occur due to variant in different genes that regulate lysosomal enzymes synthesis, transport, and secretion. In recent years, due to an increased availability of various therapies to treat these disorders, and increased diagnostic tools, there has been an escalated awareness of LSDs. Due to heterogeneous population and various social reasons, India is likely to have a high frequency of LSDs. Therefore, to understand the burden of various LSDs, its molecular spectrum, and understanding the phenotype-genotype correlation, Indian Council of Medical Research (ICMR) and Department of Health Research (DHR), Government of India had set up a task force in the year 2015. It has resulted in identifying common LSDs, and founder variant for some of the storage disorders and molecular spectrum of various LSDs across the country. This review describes in detail the spectrum of LSDs, its molecular epidemiology and prevention in context to Indian population.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad 380015, India
| | - Aadhira Nair
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad 380015, India
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, 2nd Floor, IRCS Building, Red Cross Road, New Delhi 110001, India
| |
Collapse
|
11
|
Approach to lysosomal diseases. Med Clin (Barc) 2022; 158:547-549. [PMID: 35241282 DOI: 10.1016/j.medcli.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022]
|
12
|
Ferroptosis and Its Modulation by Autophagy in Light of the Pathogenesis of Lysosomal Storage Diseases. Cells 2021; 10:cells10020365. [PMID: 33578654 PMCID: PMC7916399 DOI: 10.3390/cells10020365] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is one of the recently described types of cell death which is dependent on many factors, including the accumulation of iron and lipid peroxidation. Its induction requires various signaling pathways. Recent discovery of ferroptosis induction pathways stimulated by autophagy, so called autophagy-dependent ferroptosis, put our attention on the role of ferroptosis in lysosomal storage diseases (LSD). Lysosome dysfunction, observed in these diseases, may influence ferroptosis efficiency, with as yet unknown consequences for the function of cells, tissues, and organisms, due to the effects of ferroptosis on physiological and pathological metabolic processes. Modulation of levels of ferrous ions and enhanced oxidative stress, which are primary markers of ferroptosis, are often described as processes associated with the pathology of LSD. Inhibition of autophagy flux and resultant accumulation of autophagosomes in neuronopathic LSD may induce autophagy-dependent ferroptosis, indicating a considerable contribution of this process in neurodegeneration. In this review article, we describe molecular mechanisms of ferroptosis in light of LSD, underlining the modulation of levels of ferroptosis markers in these diseases. Furthermore, we propose a hypothesis about the possible involvement of autophagy-dependent ferroptosis in these disorders.
Collapse
|