1
|
Gao D, Zhao Y, Liu J, Chu R, Wang J, Bian W, Liu X, Lu W, He J. Bupivacaine multivesicular liposomes/meloxicam nanocrystals in a thermosensitive gel adapted to the "microenvironment" for long-term analgesia. Eur J Pharm Biopharm 2025; 207:114630. [PMID: 39800191 DOI: 10.1016/j.ejpb.2025.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/14/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Current analgesics on the market exhibit a short duration of action and induce the production of inflammatory factors in tissues damaged by surgical procedures. Inflammatory factor production can create acidic environments, limiting drug delivery. In this study, we developed a novel injectable formulation comprising bupivacaine multivesicular liposomes of high osmotic pressure (H-MVL) and meloxicam nanocrystals (MLX) in a thermosensitive gel (H-MVL/MLX@GEL) adapted to the microenvironment for long-term postoperative analgesia. To achieve formulation stability, H-MVL were prepared by regulating the osmotic pressure of the gel system. Moreover, the inclusion of MLX serves to not only attenuate local inflammatory factors, regulating the acidic microenvironment, but also to prolong the duration of action of meloxicam (MEL). The increased absorption of bupivacaine (BUP) and the prolongation of the half-life of BUP release in H-MVL/MLX@GEL were demonstrated through pharmacokinetic experiments. Sciatic nerve block models and hot plate analgesia tests demonstrated that H-MVL/MLX@GEL effectively alleviated pain for at least five days. The immunohistochemical results showed that the addition of MLX reduced the production of the local inflammatory factors interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), thereby improving the analgesic effect by regulating the local acidic environment and alleviating local irritation.
Collapse
Affiliation(s)
- Dongxu Gao
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China
| | - Yuan Zhao
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China
| | - Junfeng Liu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China; School of Pharmacy, Fudan University, Shanghai 201203 PR China
| | - Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China
| | - Junji Wang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China
| | - Wei Bian
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China
| | - Xuejie Liu
- China Pharmaceutical University, Nanjing 211100 PR. China
| | - Weigen Lu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203 PR China.
| |
Collapse
|
2
|
Qureshi S, Alavi SE, Mohammed Y. Microsponges: Development, Characterization, and Key Physicochemical Properties. Assay Drug Dev Technol 2024; 22:229-245. [PMID: 38661260 DOI: 10.1089/adt.2023.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Microsponges are promising drug delivery carriers with versatile characteristics and controlled release properties for the delivery of a wide range of drugs. The microsponges will provide an optimized therapeutic effect, when delivered at the site of action without rupturing, then releasing the cargo at the predetermined time and area. The ability of the microsponges to effectively deliver the drug in a controlled manner depends on the material composition. This comprehensive review entails knowledge on the design parameters of an optimized microsponge drug delivery system and the controlled release properties of microsponges that reduces the side effects of drugs. Furthermore, the review delves into the fabrication techniques of microsponges, the mechanism of drug release from the microsponges, and the regulatory requirements of the U.S. Food and Drug Administration (FDA) for the successful marketing of microsponge formulation. The review also examines the patented formulations of microsponges. The prospects of these sophisticated drug delivery systems for improved clinical outcomes are highlighted.
Collapse
Affiliation(s)
- Sundus Qureshi
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Yousuf Mohammed
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
4
|
Raeisi A, Farjadian F. Commercial hydrogel product for drug delivery based on route of administration. Front Chem 2024; 12:1336717. [PMID: 38476651 PMCID: PMC10927762 DOI: 10.3389/fchem.2024.1336717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Hydrogels are hydrophilic, three-dimensional, cross-linked polymers that absorb significant amounts of biological fluids or water. Hydrogels possess several favorable properties, including flexibility, stimulus-responsiveness, versatility, and structural composition. They can be categorized according to their sources, synthesis route, response to stimulus, and application. Controlling the cross-link density matrix and the hydrogels' attraction to water while they're swelling makes it easy to change their porous structure, which makes them ideal for drug delivery. Hydrogel in drug delivery can be achieved by various routes involving injectable, oral, buccal, vaginal, ocular, and transdermal administration routes. The hydrogel market is expected to grow from its 2019 valuation of USD 22.1 billion to USD 31.4 billion by 2027. Commercial hydrogels are helpful for various drug delivery applications, such as transdermal patches with controlled release characteristics, stimuli-responsive hydrogels for oral administration, and localized delivery via parenteral means. Here, we are mainly focused on the commercial hydrogel products used for drug delivery based on the described route of administration.
Collapse
Affiliation(s)
- Amin Raeisi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Lisboa ES, Serafim C, Santana W, Dos Santos VLS, de Albuquerque-Junior RLC, Chaud MV, Cardoso JC, Jain S, Severino P, Souto EB. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs. J Control Release 2024; 365:617-639. [PMID: 38043727 DOI: 10.1016/j.jconrel.2023.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.
Collapse
Affiliation(s)
- Erika S Lisboa
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Carine Serafim
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Wanessa Santana
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Victoria L S Dos Santos
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Ricardo L C de Albuquerque-Junior
- Post-Graduate Program in Dentistry, Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil; Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology of UNISO (LaBNUS), University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Juliana C Cardoso
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Sona Jain
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Patrícia Severino
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Garshasbi HR, Soleymani S, Naghib SM, Mozafari MR. Multi-stimuli-responsive Hydrogels for Therapeutic Systems: An Overview on Emerging Materials, Devices, and Drugs. Curr Pharm Des 2024; 30:2027-2046. [PMID: 38877860 DOI: 10.2174/0113816128304924240527113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024]
Abstract
The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
7
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
8
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Rodríguez-Lagunas MJ, Souto EB, Clares-Naveros B, Gálvez-Martín P. Development and characterization of a poloxamer hydrogel composed of human mesenchymal stromal cells (hMSCs) for reepithelization of skin injuries. Int J Pharm 2023; 647:123535. [PMID: 37865132 DOI: 10.1016/j.ijpharm.2023.123535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Wound healing is a natural physiological reaction to tissue injury. Hydrogels show attractive advantages in wound healing not only due to their biodegradability, biocompatibility and permeability but also because provide an excellent environment for cell migration and proliferation. The main objective of the present study was the design and characterization of a hydrogel loaded with human mesenchymal stromal cells (hMSCs) for use in would healing of superficial skin injures. Poloxamer 407® was used as biocompatible biomaterial to embed hMSCs. The developed hydrogel containing 20 % (w/w) of polymer resulted in the best formulation with respect to physical, mechanical, morphological and biological properties. Its high swelling capacity confirmed the hydrogel's capacity to absorb wounds' exudate. LIVE/DEAD® assay confirm that hMSCs remained viable for at least 48 h when loaded into the hydrogels. Adding increasing concentrations of hMSCs-loaded hydrogel to the epithelium did not affect keratinocytes' viability and healing capacity and all wound area was closed in less than one day. Our study opens opportunities to exploit poloxamer hydrogels as cell carriers for the treatment of skin superficial wound.
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100 Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100 Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - María J Rodríguez-Lagunas
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B Souto
- UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; R&D Human and Animal Health, Bioibérica S.A.U., 08029 Barcelona, Spain
| |
Collapse
|
9
|
Khaliq NU, Lee J, Kim S, Sung D, Kim H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023; 15:2102. [PMID: 37631316 PMCID: PMC10458801 DOI: 10.3390/pharmaceutics15082102] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pluronics are amphiphilic triblock copolymers composed of two hydrophilic poly (ethylene oxide) (PEO) chains linked via a central hydrophobic polypropylene oxide (PPO). Owing to their low molecular weight polymer and greater number of PEO segments, Pluronics induce micelle formation and gelation at critical micelle concentrations and temperatures. Pluronics F-68 and F-127 are the only United States (U.S.) FDA-approved classes of Pluronics and have been extensively used as materials for living bodies. Owing to the fascinating characteristics of Pluronics, many studies have suggested their role in biomedical applications, such as drug delivery systems, tissue regeneration scaffolders, and biosurfactants. As a result, various studies have been performed using Pluronics as a tool in nanomedicine and targeted delivery systems. This review sought to describe the delivery of therapeutic cargos using Pluronic F-68 and F-127-based cancer nanomedicines and their composites for combination therapy.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| |
Collapse
|
10
|
Garshasbi HR, Naghib SM. Smart Stimuli-responsive Alginate Nanogels for Drug Delivery Systems and Cancer Therapy: A Review. Curr Pharm Des 2023; 29:3546-3562. [PMID: 38115614 DOI: 10.2174/0113816128283806231211073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| |
Collapse
|
11
|
de Castro KC, Coco JC, Dos Santos ÉM, Ataide JA, Martinez RM, do Nascimento MHM, Prata J, da Fonte PRML, Severino P, Mazzola PG, Baby AR, Souto EB, de Araujo DR, Lopes AM. Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview. J Control Release 2023; 353:802-822. [PMID: 36521691 DOI: 10.1016/j.jconrel.2022.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
This paper provides a review of the literature on the use of Pluronic® triblock copolymers for drug encapsulation over the last 10 years. A special focus is given to the progress of drug delivery systems (e.g., micelles, liposomes, micro/nanoemulsions, hydrogels and nanogels, and polymersomes and niosomes); the beneficial aspects of Pluronic® triblock copolymers as biological response modifiers and as pharmaceutical additives, adjuvants, and stabilizers, are also discussed. The advantages and limitations encountered in developing site-specific targeting approaches based on Pluronic-based nanostructures in cancer treatment are highlighted, in addition to innovative examples for improving tumor cytotoxicity while reducing side effects.
Collapse
Affiliation(s)
| | - Julia Cedran Coco
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - João Prata
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro Ricardo Martins Lopes da Fonte
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| | - Patrícia Severino
- Nanomedicine and Nanotechnology Laboratory (LNMed), Institute of Technology and Research (ITP) and Tiradentes University, Aracaju, Brazil
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eliana Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | | | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
12
|
Cutaneous/Mucocutaneous Leishmaniasis Treatment for Wound Healing: Classical versus New Treatment Approaches. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (ML) show clinical spectra that can range from a localized lesion (with a spontaneous healing process) to cases that progress to a generalized systemic disease with a risk of death. The treatment of leishmaniasis is complex since most of the available drugs show high toxicity. The development of an effective topical drug formulation for CL and ML treatment offers advantages as it will improve patient’s compliance to the therapy given the possibility for self-administration, as well as overcoming the first pass metabolism and the high costs of currently available alternatives. The most common dosage forms include solid formulations, such as membranes and semi-solid formulations (e.g., ointments, creams, gels, and pastes). Topical treatment has been used as a new route of administration for conventional drugs against leishmaniasis and its combinations, as well as to exploit new substances. In this review, we discuss the advantages and limitations of using topical drug delivery for the treatment of these two forms of leishmaniasis and the relevance of combining this approach with other pharmaceutical dosage forms. Emphasis will also be given to the use of nanomaterials for site-specific delivery.
Collapse
|
13
|
Hydrophilic Scaffolds Containing Extracts of Stryphnodendron adstringens and Abarema cochliacarpa for Wound Healing: In Vivo Proofs of Concept. Pharmaceutics 2022; 14:pharmaceutics14102150. [PMID: 36297589 PMCID: PMC9612092 DOI: 10.3390/pharmaceutics14102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
The present work aimed to evaluate the healing effect of hydrophilic polymeric resorbable biomembrane scaffolds containing plant extracts obtained from two different species, both popularly known as Stryphnodendron adstringens or Barbatimão. The hydrogel-based scaffolds were characterized and submitted to biological tests using Wistar rats to evaluate their healing capacity. The wound retraction index and the evaluation of the inflammatory process and tissue collagenization were recorded. The extracts showed antioxidant activity with IC50 between 10 and 20 µg/mL (DPPH assay) and 4–6 mmol Trolox/g (FRAP assay). The extract of Stryphnodendron adstringens (SA) presented gallocatechin, epigallocatechin, and O-methylpigalocatechin, while the extract of Abarema cochliacarpa (AC) presented catechin, dimers of procyanidins, di-O-hydroxide, O-deoxyhexosi-hexoside, and epicatechin. The membranes containing SA extract (GELSA) were more rigid, with a more intense color, but less thick, with a more compact structure and few pores. The membranes containing AC extract (GELAC) presented a mechanical profile like the gelatin membrane (GEL), with greater permeability to water vapor. The GELAC and GELSA membranes showed similar thermal degradation profiles. The wounds treated with the membranes containing the extracts obtained high levels of retraction of the wounds with values around 60% and 80% in three and seven days, respectively. These data indicate that the compounds of both species have promising biological activities in the repair process, showing that the extracts accelerated the healing process due to the lower intensity of the inflammatory reaction and the presence of compounds such as catechin and epigallocatechin.
Collapse
|
14
|
Plant Polysaccharides in Engineered Pharmaceutical Gels. Bioengineering (Basel) 2022; 9:bioengineering9080376. [PMID: 36004901 PMCID: PMC9405058 DOI: 10.3390/bioengineering9080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogels are a great ally in the pharmaceutical and biomedical areas. They have a three-dimensional polymeric structure that allows the swelling of aqueous fluids, acting as an absorbent, or encapsulating bioactive agents for controlled drug release. Interestingly, plants are a source of biogels, specifically polysaccharides, composed of sugar monomers. The crosslinking of these polymeric chains forms an architecture similar to the extracellular matrix, enhancing the biocompatibility of such materials. Moreover, the rich hydroxyl monomers promote a hydrophilic behavior for these plant-derived polysaccharide gels, enabling their biodegradability and antimicrobial effects. From an economic point of view, such biogels help the circular economy, as a green material can be obtained with a low cost of production. As regards the bio aspect, it is astonishingly attractive since the raw materials (polysaccharides from plants-cellulose, hemicelluloses, lignin, inulin, pectin, starch, guar, and cashew gums, etc.) might be produced sustainably. Such properties make viable the applications of these biogels in contact with the human body, especially incorporating drugs for controlled release. In this context, this review describes some sources of plant-derived polysaccharide gels, their biological function, main methods for extraction, remarkable applications, and properties in the health field.
Collapse
|
15
|
Novel Hydrogels for Topical Applications: An Updated Comprehensive Review Based on Source. Gels 2022; 8:gels8030174. [PMID: 35323287 PMCID: PMC8948742 DOI: 10.3390/gels8030174] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Active pharmaceutical ingredients (API) or drugs are normally not delivered as pure chemical substances (for the prevention or the treatment of any diseases). APIs are still generally administered in prepared formulations, also known as dosage forms. Topical administration is widely used to deliver therapeutic agents locally because it is convenient and cost-effective. Since earlier civilizations, several types of topical semi-solid dosage forms have been commonly used in healthcare society to treat various skin diseases. A topical drug delivery system is designed primarily to treat local diseases by applying therapeutic agents to surface level parts of the body such as the skin, eyes, nose, and vaginal cavity. Nowadays, novel semi-solids can be used safely in pediatrics, geriatrics, and pregnant women without the possibility of causing any allergy reactions. The novel hydrogels are being used in a wide range of applications. At first, numerous hydrogel research studies were carried out by simply adding various APIs in pure form or dissolved in various solvents to the prepared hydrogel base. However, numerous research articles on novel hydrogels have been published in the last five to ten years. It is expected that novel hydrogels will be capable of controlling the APIs release pattern. Novel hydrogels are made up of novel formulations such as nanoparticles, nanoemulsions, microemulsions, liposomes, self-nano emulsifying drug delivery systems, cubosomes, and so on. This review focus on some novel formulations incorporated in the hydrogel prepared with natural and synthetic polymers.
Collapse
|