1
|
E J, Wang L, Zeng J, Tian H, Bu X, Yang X, Zhao Z. Tunable Rh(III)-Catalyzed C(sp 2)-H Bond Functionalization of Aryl Imidates with Cyclic 1,3-Diones: Strategic Use of Directing Groups. Org Lett 2024; 26:7885-7890. [PMID: 39241179 DOI: 10.1021/acs.orglett.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
A tunable Rh(III)-catalyzed C(sp2)-H bond functionalization of aryl imidates with cyclic 1,3-diones was developed. With suitable and straightforward reaction condition adjustments, the C-H bond functionalization of diverse aryl imidates with cyclic 1,3-diones occurred smoothly and precisely at room temperature. Accompanied by different directing group transformations, a series of corresponding aryl nitriles, hydrophenanthridin-1(2H)-ones, spiro isoindoles, or hydrophenanthridine-1,6(2H,5H)-diones were synthesized in good yields to provide a rational directing group utilization strategy for the Rh(III)-catalyzed C(sp2)-H bond activation. Control experiments and primary mechanistic studies revealed that solvent effects and functional group electronic effects might influence the reaction's selectivity.
Collapse
Affiliation(s)
- Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Jing Zeng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
2
|
Tang Y, Huang M, Ding S, Liu X, Huyang X, Wang B, Guo H. Palladium-Catalyzed Enantioselective [4+2] Cycloaddition of 4-Vinylbenzodioxinones with Barbiturate-Derived Alkenes: Con-struction of Chiral Spirobarbiturate-Chromanes. Chemistry 2024; 30:e202400302. [PMID: 38380868 DOI: 10.1002/chem.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
In this paper, Pd-catalyzed [4+2] decarboxylative cycloaddition of 4-vinylbenzodioxinones with barbiturate-derived alkenes has been developed, leading to various spirobarbiturate-chromane derivatives in high yields with excellent diastereo- and enantioselectivities. The scale-up reaction and further derivation of the product were demonstrated. A plausible reaction mechanism was also proposed.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Mingxia Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Siyuan Ding
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Xinyao Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Xiaochun Huyang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| | - Bo Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R., China
| |
Collapse
|
3
|
Kamlar M, Urban M, Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. CHEM REC 2023:e202200284. [PMID: 36703545 DOI: 10.1002/tcr.202200284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last ten years, the combination of organocatalysis with transition metal (TM) catalysis has become one of the most important toolboxes used for synthesizing optically pure compounds containing chiral quaternary centers, including spiro heterocyclic molecules. The dominant method in the enantioselective synthesis of spiro heterocyclic compounds based on synergistic catalysis includes chiral aminocatalysis and NHC catalysis, as already established covalent organocatalytic strategies. Another area of organocatalysis widely combined with TM catalysis producing enantiomerically enriched spiro heterocyclic compounds is non-covalent catalysis, dominated by chiral phosphoric acids, thiourea, and squaramide derivatives. This review article aims to summarize enantioselective methods used for constructing spirocyclic heterocycles based on a combination of organocatalysis and transition metal catalysis.
Collapse
Affiliation(s)
- Martin Kamlar
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Michal Urban
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Jan Veselý
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| |
Collapse
|
4
|
Barbituric acid derivative as fluorescent pigment in water-based flexographic ink for security applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Madhvi, Utreja D, Kalia A. Efficient p-Toluenesulfonic Acid-Catalyzed Synthesis of 5-Aryl-5,10-dihydropyrimido[4,5-b]quinoline-2,4(1H,3H)-diones and Their Antimicrobial Activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022090196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Synthesis and evaluation of aryl aminomethylene substituted barbiturates and thiobarbiturates as novel α-amylase inhibitors and radical scavengers. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Acharya S, Bhaumick P, Kumar R, Choudhury LH. Iodine-Catalyzed Multicomponent Synthesis of Highly Fluorescent Pyrimidine-Linked Imidazopyridines. ACS OMEGA 2022; 7:18660-18670. [PMID: 35694517 PMCID: PMC9178772 DOI: 10.1021/acsomega.2c01332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Herein, we report a metal-free one-pot three-component reaction of aryl methyl ketones, 2-aminopyridines, and barbituric acids for the synthesis of pyrimidine-linked imidazopyridines using a catalytic amount of molecular iodine in DMSO medium. This process involves a one-pot C-H oxidation, followed by the formation of one C-C and two C-N bonds. A wide variety of aryl methyl ketones and 2-aminopyridines were found to be suitable for this methodology. The UV and fluorescence properties of the synthesized products were studied in water and DMSO media. Most of the synthesized products exhibited very good to excellent fluorescence quantum yield. Among all the products, compounds 4p and 4q showed the maximum fluorescence quantum yield (0.36) in water medium under basic conditions and compound 4c showed the maximum fluorescence quantum yield (0.75) in DMSO medium.
Collapse
Affiliation(s)
| | - Prabhas Bhaumick
- Department of Chemistry, Indian
Institute of Technology Patna, Patna 801106, India
| | - Rohit Kumar
- Department of Chemistry, Indian
Institute of Technology Patna, Patna 801106, India
| | - Lokman H. Choudhury
- Department of Chemistry, Indian
Institute of Technology Patna, Patna 801106, India
| |
Collapse
|
8
|
Matloubi Moghaddam F, Daneshfar M, Moghimi H, Daneshfar Z. Ferric metformin drug complex supported on magnetic nanofiber cellulose; An efficient access to 4-H pyrans derivatives and determination of their antimicrobial activity. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Firouz Matloubi Moghaddam
- Department of Chemistry, Laboratory of Organic Synthesis and Natural Products, Sharif University of Technology, Tehran, Iran
| | - Maryam Daneshfar
- Department of Chemistry, Laboratory of Organic Synthesis and Natural Products, Sharif University of Technology, Tehran, Iran
| | - Hamid Moghimi
- Depatment of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Daneshfar
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Hajali N, Taghva Manesh A, Seif A. Formations of bimolecular barbituric acid complexes through hydrogen bonding interactions: DFT analyses of structural and electronic features. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Formations of bimolecular barbituric acid (BA) complexes through hydrogen-bonding (HB) interactions were investigated in this work. BA has been known as a starting compound of pharmaceutical compounds developments, in which the molecular and atomic features of parent BA in homo-paring with another BA molecule were investigated here. The models were optimized to reach the stabilized structures and their properties were evaluated at the molecular and atomic scales. Density functional theory (DFT) calculations were performed to provide required information for achieving the goal of this work. Six dimer models were obtained finally according to examining all possible starting dimers configurations for involving in optimization calculations. N-H . . . O and C-H . . . O interactions were also involved in dimers formations besides participation of the X-center of parent BA in interaction. Molecular and atomic scales features were evaluated for characterizing the dimers formations. As a consequence, several configurations of BA dimers were obtained showing the importance of performing such structural analyses for developing further compounds from BA.
Collapse
Affiliation(s)
- Narjes Hajali
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taghva Manesh
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Seif
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Hajali N, Taghva Manesh A, Seif A. Investigating Functionalization Impacts on Structural Features of Barbituric Acid Derivatives: DFT Approach. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Density functional theory (DFT) calculations were performed to investigate electronic and structural properties of barbituric acid (BA) and sixtheen of its derivatives to show impacts of structural functionalization on the features of parent BA. The models were optimized and the minimum energy structures were confirmed by frequency calculations. Molecular and atomic descriptors were evaluated for the optimized models, in which the results of formation binding strength and molecular orbital features indicated significance of such functionalization processes on the observed properties. The highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) and their related parameters all indicated magnitudes of changes from one molecule to another one. Furthermore, atomic scale quadrupole coupling constants (Cq) were evaluated for the nitrogen and oxygen atoms of BA compounds showing significance of structural functionalization impacts on the atomic properties of parent BA. As a consequence, such structural analyses of BA compounds could show their characteristic features for further developments especially for their efficient pharmaceutical applications.
Collapse
Affiliation(s)
- Narjes Hajali
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taghva Manesh
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Seif
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Bis-thiobarbiturates as Promising Xanthine Oxidase Inhibitors: Synthesis and Biological Evaluation. Biomedicines 2021; 9:biomedicines9101443. [PMID: 34680559 PMCID: PMC8533253 DOI: 10.3390/biomedicines9101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Xanthine oxidase (XO) is the enzyme responsible for the conversion of endogenous purines into uric acid. Therefore, this enzyme has been associated with pathological conditions caused by hyperuricemia, such as the disease commonly known as gout. Barbiturates and their congeners thiobarbiturates represent a class of heterocyclic drugs capable of influencing neurotransmission. However, in recent years a very large group of potential pharmaceutical and medicinal applications have been related to their structure. This great diversity of biological activities is directly linked to the enormous opportunities found for chemical change off the back of these findings. With this in mind, sixteen bis-thiobarbiturates were synthesized in moderate to excellent reactional yields, and their antioxidant, anti-proliferative, and XO inhibitory activity were evaluated. In general, all bis-thiobarbiturates present a good antioxidant performance and an excellent ability to inhibit XO at a concentration of 30 µM, eight of them are superior to those observed with the reference drug allopurinol (Allo), nevertheless they were not as effective as febuxostat. The most powerful bis-thiobarbiturate within this set showed in vitro IC50 of 1.79 μM, which was about ten-fold better than Allo inhibition, together with suitable low cytotoxicity. In silico molecular properties such as drug-likeness, pharmacokinetics, and toxicity of this promising barbiturate were also analyzed and herein discussed.
Collapse
|
13
|
Kumari S, Kumar Maury S, Kumar Singh H, Kamal A, Kumar D, Singh S, Srivastava V. Visible Light Mediated, Photocatalyst‐Free Condensation of Barbituric Acid with Carbonyl Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Savita Kumari
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Suresh Kumar Maury
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Himanshu Kumar Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Arsala Kamal
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Dhirendra Kumar
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Sundaram Singh
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Vandana Srivastava
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005
- Department of Chemistry Indian Institute of Technology (BHU) Varanasi 221005 India
| |
Collapse
|
14
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|