1
|
Geng Q, Zou L, Liu H, Guo M, Li F, Liu X, Qin H, Wang X, Tan Z. Influence of humic acid on the bioaccumulation, elimination, and toxicity of PFOS and TBBPA co-exposure in Mytilus unguiculatus Valenciennes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171358. [PMID: 38438024 DOI: 10.1016/j.scitotenv.2024.171358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and Perfluorooctane sulfonate (PFOS) are emerging contaminants which coexist in marine environments, posing significant risks to ecosystems and human health. The behavior of these contaminants in the presence of dissolved organic matter (DOM), specifically the co-contamination of TBBPA and PFOS, is not well understood. The bioaccumulation, distribution, elimination, and toxic effects of TBBPA and PFOS on thick-shell mussels (Mytilus unguiculatus V.), with the absence and presence of humic acid (HA), a typical DOM, were studied. The results showed that the uptake of TBBPA decreased and the uptake of PFOS increased when exposed to 1 mg/L HA. However, at higher concentrations of HA (5 and 25 mg/L), the opposite effect was observed. Combined exposure to HA, TBBPA, and PFOS resulted in oxidative stress in the digestive gland, with the severity of stress dependent on exposure time and HA dose. Histological analysis revealed a positive correlation between HA concentration and tissue damage caused by TBBPA and PFOS. This study provides insights into the influence of HA on the bioaccumulation-elimination patterns and toxicity of TBBPA and PFOS in marine bivalves, offering valuable data for ecological and health risk assessments of combined pollutants in aquatic environments rich in DOM.
Collapse
Affiliation(s)
- Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Zou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hong Liu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangxiang Liu
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Hanlin Qin
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xu Wang
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China; Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Jiang J, He B, Wei Y, Cui J, Zhang Q, Liu X, Liu D, Wang P, Zhou Z. The toxic effects of combined exposure of chlorpyrifos and p, p'-DDE to zebrafish (Danio rerio) and tissue bioaccumulation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106194. [PMID: 35623197 DOI: 10.1016/j.aquatox.2022.106194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticides are widely used and frequently detected in the environment. The evaluation on the toxic effects of the co-exposure of two or more pesticides or related metabolites could reflect the real situation of the exposing risks. In this study, zebrafish was used as a model to investigate the potential toxic interactions of chlorpyrifos and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) on the survival rate, oxidative stress response and neurotoxicity, as well as their bioaccumulation and distribution in tissues. Co-exposure of chlorpyrifos and p,p'-DDE resulted in significant additive acute toxic effects on adult zebrafish with model deviation ratio (MDR) = 1.64. Both 7-day short-term at 1% LC50 and 35-day long-term at 0.5% LC50 co-exposure of chlorpyrifos with p,p'-DDE (50 and 100 µg/L) significantly reduced the survival rate of zebrafish colony to 75 and 82.5%. Co-exposure of chlorpyrifos and p,p'-DDE contributed to increased activity of antioxidant enzyme CAT, SOD and GST and excessive MDA generation, and decreased activity of CarE, CYP450 and AChE, compared with either single exposure of them. In co-exposure, the bioaccumulation of chlorpyrifos and p,p'-DDE was significantly different from the single exposure group. Overall, this study unraveled the potential toxic interaction of chlorpyrifos and p,p'-DDE on zebrafish and provided reference for environmental risk assessment of pesticide mixture.
Collapse
Affiliation(s)
- Jiangong Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Bingying He
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yimu Wei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Jingna Cui
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Qiang Zhang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Xueke Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
3
|
Zhang S, Zhu J, Li H, Li F, Zhu B, Li T, Fang S, Qin S. Associations of CYP2C19 and F2R genetic polymorphisms with platelet reactivity in Chinese ischemic stroke patients receiving clopidogrel therapy. Pharmacogenet Genomics 2022; 32:138-143. [PMID: 34954768 DOI: 10.1097/fpc.0000000000000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Genetic variation has been considered a major contributor to the high variability in the response to dual antiplatelet therapy in patients with acute ischemic stroke or transient ischemic attack. Recently, incidences of ischemic stroke are increasing rapidly in China. We aimed to evaluate the influence of potential determinants on the response of antiplatelet therapy and adverse events in Chinese ischemic stroke patients receiving clopidogrel-aspirin treatment. METHODS Based on the clopidogrel drug response pathway and the coagulation and anticoagulation function, we systematically selected 34 genetic polymorphisms in 12 candidate genes. Three hundred and eight patients were divided into 2 groups according to their degree of inhibition of platelet aggregation. Multivariate analysis was then performed to assess the influence of demographic, clinical and genetic factors on platelet reactivity in Chinese ischemic stroke patients. RESULTS We found that polymorphisms in CYP2C19 and F2R genes were still significantly associated with platelet reactivity in Chinese ischemic stroke patients (P = 0.037 and 0.015). The newly identified rs168753 in F2R gene may influence the efficacy to clopidogrel-aspirin therapy for ischemic stroke patients. We also found that ischemic stroke patients with low level of inhibition of platelet aggregation had higher risk of recurrent ischemic events (P = 0.001). CONCLUSIONS Together, these results emphasized the necessity of genotype-directed antiplatelet therapy and facilitated to minimize adverse ischemic events.
Collapse
Affiliation(s)
- Suli Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
| | - Jinhang Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai
| | | | - Bin Zhu
- Shanghai Baio Technology Co., Ltd., Shanghai
| | - Tao Li
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing
| | - Shuxin Fang
- Shandong Provincial Third Hospital, Shandong and
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci 2021; 22:ijms222312808. [PMID: 34884615 PMCID: PMC8657965 DOI: 10.3390/ijms222312808] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/07/2023] Open
Abstract
Human cytochrome P450 (CYP) enzymes, as membrane-bound hemoproteins, play important roles in the detoxification of drugs, cellular metabolism, and homeostasis. In humans, almost 80% of oxidative metabolism and approximately 50% of the overall elimination of common clinical drugs can be attributed to one or more of the various CYPs, from the CYP families 1–3. In addition to the basic metabolic effects for elimination, CYPs are also capable of affecting drug responses by influencing drug action, safety, bioavailability, and drug resistance through metabolism, in both metabolic organs and local sites of action. Structures of CYPs have recently provided new insights into both understanding the mechanisms of drug metabolism and exploiting CYPs as drug targets. Genetic polymorphisms and epigenetic changes in CYP genes and environmental factors may be responsible for interethnic and interindividual variations in the therapeutic efficacy of drugs. In this review, we summarize and highlight the structural knowledge about CYPs and the major CYPs in drug metabolism. Additionally, genetic and epigenetic factors, as well as several intrinsic and extrinsic factors that contribute to interindividual variation in drug response are also reviewed, to reveal the multifarious and important roles of CYP-mediated metabolism and elimination in drug therapy.
Collapse
|
5
|
The role of DMPK science in improving pharmaceutical research and development efficiency. Drug Discov Today 2021; 27:705-729. [PMID: 34774767 DOI: 10.1016/j.drudis.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The successful regulatory authority approval rate of drug candidates in the drug development pipeline is crucial for determining pharmaceutical research and development (R&D) efficiency. Regulatory authorities include the US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceutical and Food Safety Bureau Japan (PFSB), among others. Optimal drug metabolism and pharmacokinetics (DMPK) properties influence the progression of a drug candidate from the preclinical to the clinical phase. In this review, we provide a comprehensive assessment of essential concepts, methods, improvements, and challenges in DMPK science and its significance in drug development. This information provides insights into the association of DMPK science with pharmaceutical R&D efficiency.
Collapse
|
6
|
Sr KJ. Dynamics of Drug in Biological System. Curr Drug Metab 2019; 20:1084. [PMID: 32116183 DOI: 10.2174/138920022014200129122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kaid Johar Sr
- Department of Zoology, Biomedical Technology and Human Genetics University School of Sciences Gujarat University Ahmedabad 380009, India
| |
Collapse
|