1
|
Nascimento MDL, do Nascimento SB, Lima EDSP, de Oliveira FM, Dos Santos RR, Cesar IDC, de Castro WV. Evaluation of the Effects of Extracts Containing Valeriana officinalis and Piper methysticum on the Activities of Cytochrome P450 3A and P-Glycoprotein. PLANTA MEDICA 2024; 90:792-800. [PMID: 39013429 DOI: 10.1055/a-2360-4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This work investigated interactions ascribed to the administration of phytomedicines containing Valeriana officinalis and Piper methysticum with conventional drugs. The phytomedicines were characterized by HPLC and administered per os to male Wistar rats, either concomitantly or not with the CYP3A substrate midazolam. To distinguish between the presystemic or systemic effect, midazolam was given orally and intravenously. The effects on the P-gp substrate fexofenadine uptake by Caco-2 cells were examined. The valerenic acid content was 1.6 ± 0.1 mg per tablet, whereas kavain was 13.7 ± 0.3 mg/capsule. Valerian and kava-kava extracts increased the maximum plasma concentration (Cmax) of midazolam 2- and 4-fold compared to the control, respectively. The area under the plasma concentrations versus time curve (AUC(0-∞)) was enhanced from 994.3 ± 152.3 ng.h/mL (control) to 3041 ± 398 ng.h/mL (valerian) and 4139 ± 373 ng.h/mL (kava-kava). The half-life of midazolam was not affected. These changes were attributed to the inhibition of midazolam metabolism by the enteric CYP3A since the i. v. pharmacokinetic of midazolam remained unchanged. The kava-kava extract augmented the uptake of fexofenadine by 3.5-fold compared to the control. Although Valeriana increased the uptake of fexofenadine, it was not statistically significant to that of the control (12.5 ± 3.7 ng/mg protein vs. 5.4 ± 0.3 ng/mg protein, respectively). Therefore, phytomedicines containing V. officinalis or P. methysticum inhibited the intestinal metabolism of midazolam in rats. Conversely, the P-gp-mediated transport of fexofenadine was preferably affected by kava-kava.
Collapse
Affiliation(s)
- Mariana de Lima Nascimento
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | - Sara Batista do Nascimento
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | | | - Flávio Martins de Oliveira
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| | | | | | - Whocely Victor de Castro
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Chanadour, Divinópolis-MG, Brazil
| |
Collapse
|
2
|
Danilevicz CK, Pizzolato LS, Bianchi SE, Meirelles G, Bassani VL, Siqueira IR. Pharmacological evaluation of a traditional Brazilian medicinal plant, Monteverdia ilicifolia. Part I - Preclinical safety study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117806. [PMID: 38278373 DOI: 10.1016/j.jep.2024.117806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Monteverdia ilicifolia (Maytenus ilicifolia, Celastraceae), known as "espinheira-santa", has been widely used in Brazil to manage mainly gastrointestinal diseases. This species has been listed in the Brazilian Pharmacopeia and in the National List of Essential Medicines (RENAME). Considering that clinical studies about M. ilicifolia are rare, our group has been performing a broader project designed to evaluate the efficacy of M. ilicifolia capsules in a clinical trial, for this reason, approaches to provide safety to those patients are relevant. AIM OF THE STUDY We aimed to investigate the potential pharmacokinetic interaction and hepatotoxicity and intestinal toxicity of an aqueous extract of M. ilicifolia and its main phytocompounds, catequin, epicatequin, and quercetin. METHODS AND MATERIALS Slices of liver and intestine of Wistar rats were incubated with different concentrations of M. ilicifolia extract or isolated compounds (catechin, epicatechin and quercetin). Commercial kits were used to evaluate enzyme activities of CYP2D6 and CYP3A4 isoforms, as well as cell viability (MTT) assay and intracellular enzymes leakage, specifically lactate dehydrogenase (LDH), alkaline phosphatase (AP), aspartate aminotransferase (AST), alanine aminotransferase (ALT) were studied. RESULTS Incubation with M. ilicifolia extract, catechin, epicatechin and quercetin did not affect significantly any evaluated parameter in intestines. The intracellular enzymes leakages, CYP2D6, LDH and AST, were increased with M. ilicifolia extract and quercetin in liver slices. CONCLUSIONS Our in vitro findings highlighted, for the first time, the potential hepatotoxicity induced by an aqueous extract of M. ilicifolia, consequently this species and its products should be avoided in liver diseases, supporting that studies of safety must be performed including in the context of traditional medicinal plants.
Collapse
Affiliation(s)
- Chris Krebs Danilevicz
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Lolita Schneider Pizzolato
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Sara Elis Bianchi
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gabriela Meirelles
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Valquiria Linck Bassani
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Veiga-Matos J, Morales AI, Prieto M, Remião F, Silva R. Study Models of Drug-Drug Interactions Involving P-Glycoprotein: The Potential Benefit of P-Glycoprotein Modulation at the Kidney and Intestinal Levels. Molecules 2023; 28:7532. [PMID: 38005253 PMCID: PMC10673607 DOI: 10.3390/molecules28227532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
P-glycoprotein (P-gp) is a crucial membrane transporter situated on the cell's apical surface, being responsible for eliminating xenobiotics and endobiotics. P-gp modulators are compounds that can directly or indirectly affect this protein, leading to changes in its expression and function. These modulators can act as inhibitors, inducers, or activators, potentially causing drug-drug interactions (DDIs). This comprehensive review explores diverse models and techniques used to assess drug-induced P-gp modulation. We cover several approaches, including in silico, in vitro, ex vivo, and in vivo methods, with their respective strengths and limitations. Additionally, we explore the therapeutic implications of DDIs involving P-gp, with a special focus on the renal and intestinal elimination of P-gp substrates. This involves enhancing the removal of toxic substances from proximal tubular epithelial cells into the urine or increasing the transport of compounds from enterocytes into the intestinal lumen, thereby facilitating their excretion in the feces. A better understanding of these interactions, and of the distinct techniques applied for their study, will be of utmost importance for optimizing drug therapy, consequently minimizing drug-induced adverse and toxic effects.
Collapse
Affiliation(s)
- Jéssica Veiga-Matos
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Ana I. Morales
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Marta Prieto
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Attar A, Altikatoglu Yapaoz M. The analysis of methylxanthine fractions obtained from Camellia sinensis cultivated in Turkey and effects on the in vitro inhibition of CYP2D6 enzyme. Biotechnol Appl Biochem 2023; 70:22-27. [PMID: 35196743 DOI: 10.1002/bab.2325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
Tea is a worldwide consumed herbal beverage and it was aimed in this study to reveal the major fractions of green and black tea in order to enlighten the in vitro inhibition potency on the well-known drug metabolizing enzyme CYP2D6 activity. Methylxanthine fractions were extracted from green and black tea and a yield of 0.265 g (1.06%) for 25 g of dried black tea and 0.302 g (1.2%) for 25 g of green tea was calculated. High-performance liquid chromatography analysis represented that the major components of the methylxanthine fractions were caffeine, theobromine, and theophylline. Methylxanthine content of black tea was 368.25 ± 4.6 μg/ml caffeine, 89.30 ± 2.3 μg/ml theobromine, and 3.40 ± 0.5 μg/ml theophylline, whereas that of green tea was 176.50 ± 3.7 μg/ml caffeine, 53.85 ± 1.4 μg/ml theobromine, and 2.06 ± 0.7 μg/ml theophylline. The results of concentration-dependent inhibition studies were 76% green tea, 75% black tea, and 55% caffeine at concentration of 10 mg/ml. The inhibition rates of green and black tea on CYP2D6 activity were 76% and 75%, respectively, where that of quinidine, the well-known inhibitor of CYP2D6, was 82%. Our results indicate that green and black tea is very likely to modify the CYP2D6 enzyme activity.
Collapse
Affiliation(s)
- Azade Attar
- Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Melda Altikatoglu Yapaoz
- Faculty of Science and Letters, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
5
|
Mazzari ALDA, Lacerda MG, Milton FA, Mulin Montechiari Machado JA, Sinoti SBP, Toullec AS, Rodrigues PM, Neves FDAR, Simeoni LA, Silveira D, Prieto JM. In vitro effects of European and Latin-American medicinal plants in CYP3A4 gene expression, glutathione levels, and P-glycoprotein activity. Front Pharmacol 2022; 13:826395. [PMID: 36278236 PMCID: PMC9579425 DOI: 10.3389/fphar.2022.826395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Many medicinal plants species from European -such as Artemisia absinthium, Equisetum arvense, Lamium album, Malva sylvestris, Morus nigra, Passiflora incarnata, Frangula purshiana, and Salix alba- as well as Latin American traditions -such as Libidibia ferrea, Bidens pilosa, Casearia sylvestris, Costus spicatus, Monteverdia ilicifolia, Persea americana, Schinus terebinthifolia, Solidago chilensis, Syzygium cumini, Handroanthus impetiginosus, and Vernonanthura phosphorica- are shortlisted by the Brazilian National Health System for future clinical use. However, they lack many data on their action upon some key ADME targets. In this study, we assess non-toxic concentrations (up to100 μg/ml) of their infusions for in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). We further investigated the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of Gamma-glutamyl transferase (GGT) in HepG2 cells. Our results demonstrate L. ferrea, C. sylvestris, M. ilicifolia, P. americana, S. terebinthifolia, S. cumini, V. phosphorica, E. arvense, P. incarnata, F. purshiana, and S. alba can significantly increase CYP3A4 mRNA gene expression in HepG2 cells. Only F. purshiana shown to do so likely via hPXR activation. P-gp activity was affected by L. ferrea, F. purshiana, S. terebinthifolia, and S. cumini. Total intracellular glutathione levels were significantly depleted by exposure to all extracts except S. alba and S. cumini This was accompanied by a lower GGT activity in the case of C. spicatus, P. americana, S. alba, and S. terebinthifolia, whilst L. ferrea, P. incarnata and F. purshiana increased it. Surprisingly, S. cumini aqueous extract drastically decreased GGT activity (−48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines causes in vitro disturbances to key drug metabolism mechanisms. We recommend active pharmacovigilance for Libidibia ferrea (Mart.) L. P. Queiroz, Frangula purshiana Cooper, Schinus terebinthifolia Raddi, and Salix alba L. which were able to alter all targets in our preclinical study.
Collapse
Affiliation(s)
| | | | - Flora Aparecida Milton
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | - Francisco de Assis Rocha Neves
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | | | - Dâmaris Silveira
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| | - Jose Maria Prieto
- School of Pharmacy, University College London, London, United Kingdom
- Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, Brazil
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- *Correspondence: Francisco de Assis Rocha Neves, ; Dâmaris Silveira, ; Jose Maria Prieto,
| |
Collapse
|
6
|
Chen J, Liu J, Huang Y, Li R, Ma C, Zhang B, Wu F, Yu W, Zuo X, Liang Y, Wang Q. Insights into oral bioavailability enhancement of therapeutic herbal constituents by cytochrome P450 3A inhibition. Drug Metab Rev 2021; 53:491-507. [PMID: 33905669 DOI: 10.1080/03602532.2021.1917598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herbal plants typically have complex compositions and diverse mechanisms. Among them, bioactive constituents with relatively high exposure in vivo are likely to exhibit therapeutic efficacy. On the other hand, their bioavailability may be influenced by the synergistic effects of different bioactive components. Cytochrome P450 3A (CYP3A) is one of the most abundant CYP enzymes, responsible for the metabolism of 50% of approved drugs. In recent years, many therapeutic herbal constituents have been identified as CYP3A substrates. It is more evident that CYP3A inhibition derived from the herbal formula plays a critical role in improving the oral bioavailability of therapeutic constituents. CYP3A inhibition may be the mechanism of the synergism of herbal formula. In this review, we explored the multiplicity of CYP3A, summarized herbal monomers with CYP3A inhibitory effects, and evaluated herb-mediated CYP3A inhibition, thereby providing new insights into the mechanisms of CYP3A inhibition-mediated oral herb bioavailability.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyue Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fanchang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqian Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Zuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
do Nascimento SB, de Lima Nascimento M, Duarte-Almeida JM, de Oliveira FM, do Carmo Vieira M, Siqueira JM, de Andrade FP, da Costa César I, de Castro WV. Validation of a HPLC method for quantification of midazolam in rat plasma: Application during a Maytenus ilicifolia-drug interaction study. Biomed Chromatogr 2021; 35:e4999. [PMID: 33460183 DOI: 10.1002/bmc.4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 11/06/2022]
Abstract
Midazolam (MDZ) is routinely employed as a marker compound of cytochrome P450 3A (CYP3A) activity. Despite the many HPLC-UV methods described to quantify MDZ in plasma, all of them use acetonitrile (ACN) or a mixture of methanol-isopropanol as organic solvent of the mobile phase. Since the ACN shortage in 2008, efforts have been made to replace this solvent during HPLC analysis. A simple, sensitive, accurate and repeatable HPLC-UV method (220 nm) was developed and validated to quantify MDZ in rat plasma using methanol instead. The method was applied during a herb-drug interaction study involving Maytenus ilicifolia, a Brazilian folk medicine used to treat gastric disorders. Plasma samples were alkalinized and MDZ plus alprazolam (internal standard) were extracted with diethyl ether. After solvent removal, the residue was reconstituted with methanol-water (1:1). The analyte was eluted throughout a C18 column using sodium acetate buffer (10 mm, pH 7.4)-methanol (40:60, v/v). The precision at the lower limit of quantification never exceeded 19.40%, and 13.86% at the higher levels of quality control standards, whereas the accuracy ranged from -19.81 to 14.33%. The analytical curve was linear from 50 to 2,000 ng/ml. The activity of the hepatic CYP3A enzymes was not affected by the extract.
Collapse
Affiliation(s)
- Sara Batista do Nascimento
- Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.,Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Maria do Carmo Vieira
- Federal University of Grande Dourados R. João Rosa Góes, Mato Grosso, do Sul, Brazil
| | | | | | | | | |
Collapse
|