1
|
Saito T, Ichimura Y, Oda M, Saitoh H. Preferential meropenem absorption activated by 1α,25-dihydroxyvitamin D 3 and shared with foscarnet, a phosphate transporter substrate, in the rat ileum. Drug Metab Pharmacokinet 2024; 55:100997. [PMID: 38367298 DOI: 10.1016/j.dmpk.2024.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Meropenem (MEPM) is used for the treatment of serious infectious diseases solely as. INJECTABLE: Therefore, the development of an oral formulation would expand its clinical utility. To this end, an exact understanding of the absorption characteristics of MEPM is essential. In this study, MEPM absorption in the rat small intestine was investigated using an in situ loop technique and an in vitro diffusion chamber method. The disappearance ratios of MEPM (0.1 mM) were in the order of ileum > duodenum > jejunum. The extensive MEPM disappearance in the ileum was significantly reduced in the presence of foscarnet, a Na+-dependent phosphate transporter (NaPi-T) substrate, whereas glycylsarcosine, thiamine, taurocholic acid, and biapenem had no effects. The mucosal-to-serosal (M-to-S) permeation of MEPM across the rat ileal segments was very small under normal experimental conditions. However, on addition of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) to the experimental medium, the M-to-S permeation of MEPM markedly increased, showing a more than 7-fold greater apparent permeation coefficient. The present results suggest that MEPM is preferentially absorbed in the rat ileum, sharing with foscarnet, and that 1,25(OH)2D3 potentially activates the absorption of MEPM there. A likely candidate for involvement in MEPM absorption was NaPi-T or a related transporter.
Collapse
Affiliation(s)
- Toshihide Saito
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan
| | - Yuichi Ichimura
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan
| | - Masako Oda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroshi Saitoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
2
|
Hunt JP, Dubinsky S, McKnite AM, Cheung KWK, van Groen BD, Giacomini KM, de Wildt SN, Edginton AN, Watt KM. Maximum likelihood estimation of renal transporter ontogeny profiles for pediatric PBPK modeling. CPT Pharmacometrics Syst Pharmacol 2024; 13:576-588. [PMID: 38156758 PMCID: PMC11015082 DOI: 10.1002/psp4.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Optimal treatment of infants with many renally cleared drugs must account for maturational differences in renal transporter (RT) activity. Pediatric physiologically-based pharmacokinetic (PBPK) models may incorporate RT activity, but this requires ontogeny profiles for RT activity in children, especially neonates, to predict drug disposition. Therefore, RT expression measurements from human kidney postmortem cortical tissue samples were normalized to represent a fraction of mature RT activity. Using these data, maximum likelihood estimated the distributions of RT activity across the pediatric age spectrum, including preterm and term neonates. PBPK models of four RT substrates (acyclovir, ciprofloxacin, furosemide, and meropenem) were evaluated with and without ontogeny profiles using average fold error (AFE), absolute average fold error (AAFE), and proportion of observations within the 5-95% prediction interval. Novel maximum likelihood profiles estimated ontogeny distributions for the following RT: OAT1, OAT3, OCT2, P-gp, URAT1, BCRP, MATE1, MRP2, MRP4, and MATE-2 K. Profiles for OAT3, P-gp, and MATE1 improved infant furosemide and neonate meropenem PBPK model AFE from 0.08 to 0.70 and 0.53 to 1.34 and model AAFE from 12.08 to 1.44 and 2.09 to 1.36, respectively, and improved the percent of data within the 5-95% prediction interval from 48% to 98% for neonatal ciprofloxacin simulations, respectively. Even after accounting for other critical population-specific maturational differences, novel RT ontogeny profiles substantially improved neonatal PBPK model performance, providing validated estimates of maturational differences in RT activity for optimal dosing in children.
Collapse
Affiliation(s)
| | | | | | | | - Bianca D. van Groen
- Roche Pharma and Early Development (pRED), Roche Innovation Center BaselBaselSwitzerland
| | | | - Saskia N. de Wildt
- Erasmus MCRotterdamThe Netherlands
- Radboud UniversityNijmegenThe Netherlands
| | | | | |
Collapse
|
3
|
Shafiee A, Chanda S. In Vitro Evaluation of Drug-Drug Interaction Potential of Epetraborole, a Novel Bacterial Leucyl-tRNA Synthetase Inhibitor. Pharmaceuticals (Basel) 2024; 17:120. [PMID: 38256953 PMCID: PMC10818931 DOI: 10.3390/ph17010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Epetraborole (EBO) is a boron-containing inhibitor of bacterial leucyl-tRNA synthetase, with potent activity against nontuberculous mycobacteria (NTM) and Gram-negative bacteria, including Burkholderia pseudomallei. EBO is being developed for the treatment of NTM lung disease and melioidosis, administered in combination with other therapeutic agents in both diseases. Therefore, EBO and its major circulating metabolite M3 were evaluated in comprehensive drug-drug interaction (DDI) in vitro studies. The CYP inhibitory and substrate potential of EBO and M3 were assessed using hepatic microsomes. Stably transfected cells that expressed individual efflux or uptake transporters were used to determine whether EBO or M3 were substrates or inhibitors for these receptors. Stability studies indicated that EBO is a poor substrate for major CYP enzymes. Neither EBO nor M3 was a potent reversible or time-dependent inhibitor of major CYP enzymes. EBO was not an inducer of CYP1A2 mRNA, while it was a weak inducer of CYP2B6 and CYP3A4. EBO was a substrate only for OCT2. At clinically relevant concentrations, neither EBO nor M3 inhibited major human efflux or uptake transporters. Based on these data, at clinically relevant concentrations of EBO and M3, there is a low risk of victim or perpetrator DDI.
Collapse
Affiliation(s)
- Afshin Shafiee
- AN2 Therapeutics Inc., 1800 El Camino Real, Suite D, Menlo Park, CA 94027, USA
| | | |
Collapse
|
4
|
Nau R, Seele J, Eiffert H. New Antibiotics for the Treatment of Nosocomial Central Nervous System Infections. Antibiotics (Basel) 2024; 13:58. [PMID: 38247617 PMCID: PMC10812395 DOI: 10.3390/antibiotics13010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Nosocomial central nervous system (CNS) infections with carbapenem- and colistin-resistant Gram-negative and vancomycin-resistant Gram-positive bacteria are an increasing therapeutic challenge. Here, we review pharmacokinetic and pharmacodynamic data and clinical experiences with new antibiotics administered intravenously for the treatment of CNS infections by multi-resistant bacteria. Cefiderocol, a new siderophore extended-spectrum cephalosporin, pharmacokinetically behaves similar to established cephalosporins and at high doses will probably be a valuable addition in our therapeutic armamentarium for CNS infections. The new glycopeptides dalbavancin, telavancin, and oritavancin are highly bound to plasma proteins. Although effective in animal models of meningitis, it is unlikely that they reach effective cerebrospinal fluid (CSF) concentrations after intravenous administration alone. The β-lactam/β-lactamase inhibitor combinations have the principal problem that both compounds must achieve adequate CSF concentrations. In the commercially available combinations, the dose of the β-lactamase inhibitor tends to be too low to achieve adequate CSF concentrations. The oxazolidinone tedizolid has a broader spectrum but a less suitable pharmacokinetic profile than linezolid. The halogenated tetracycline eravacycline does not reach CSF concentrations sufficient to treat colistin-resistant Gram-negative bacteria with usual intravenous dosing. Generally, treatment of CNS infections should be intravenous, whenever possible, to avoid adverse effects of intraventricular therapy (IVT). An additional IVT can overcome the limited penetration of many new antibiotics into CSF. It should be considered for patients in which the CNS infection responds poorly to systemic antimicrobial therapy alone.
Collapse
Affiliation(s)
- Roland Nau
- Department of Neuropathology, University Medicine Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Department of Geriatrics, Protestant Hospital Göttingen-Weende, 37075 Göttingen, Germany
| | - Jana Seele
- Department of Neuropathology, University Medicine Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Department of Geriatrics, Protestant Hospital Göttingen-Weende, 37075 Göttingen, Germany
| | - Helmut Eiffert
- Department of Neuropathology, University Medicine Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
- Amedes MVZ for Laboratory Medicine, Medical Microbiology and Infectiology, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Dong J, Liu J, Liu Y, Yao J, Lu Y, Jiao Z, Li W. Physiologically based pharmacokinetic modeling to predict OAT3-mediated drug-drug interactions of meropenem in varying stages of chronic kidney disease. Eur J Pharm Sci 2023; 183:106395. [PMID: 36716979 DOI: 10.1016/j.ejps.2023.106395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/31/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Affiliation(s)
- Jing Dong
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China
| | - Jinyao Liu
- Ningxia Medical University, 1160 Shengli Street, Ningxia, Yinchuan 750004, PR China
| | - Yanhui Liu
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China
| | - Jiachen Yao
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China
| | - Yan Lu
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, 241 West Huaihai Road, Shanghai 200030, PR China.
| | - Wenyan Li
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, The Second Military Medical University, 219 Miaopu Road, Shanghai 200135, PR China.
| |
Collapse
|
6
|
Liu C, Cojutti PG, Giannella M, Roberto M, Casadei B, Cristiano G, Papayannidis C, Vianelli N, Zinzani PL, Viale P, Bonifazi F, Pea F. Does Cytokine-Release Syndrome Induced by CAR T-Cell Treatment Have an Impact on the Pharmacokinetics of Meropenem and Piperacillin/Tazobactam in Patients with Hematological Malignancies? Findings from an Observational Case-Control Study. Pharmaceutics 2023; 15:pharmaceutics15031022. [PMID: 36986882 PMCID: PMC10059857 DOI: 10.3390/pharmaceutics15031022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising approach for some relapse/refractory hematological B-cell malignancies; however, in most patients, cytokine release syndrome (CRS) may occur. CRS is associated with acute kidney injury (AKI) that may affect the pharmacokinetics of some beta-lactams. The aim of this study was to assess whether the pharmacokinetics of meropenem and piperacillin may be affected by CAR T-cell treatment. The study included CAR T-cell treated patients (cases) and oncohematological patients (controls), who were administered 24-h continuous infusion (CI) meropenem or piperacillin/tazobactam, optimized by therapeutic drug monitoring, over a 2-year period. Patient data were retrospectively retrieved and matched on a 1:2 ratio. Beta-lactam clearance (CL) was calculated as CL = daily dose/infusion rate. A total of 38 cases (of whom 14 and 24 were treated with meropenem and piperacillin/tazobactam, respectively) was matched with 76 controls. CRS occurred in 85.7% (12/14) and 95.8% (23/24) of patients treated with meropenem and piperacillin/tazobactam, respectively. CRS-induced AKI was observed in only 1 patient. CL did not differ between cases and controls for both meropenem (11.1 vs. 11.7 L/h, p = 0.835) and piperacillin (14.0 vs. 10.4 L/h, p = 0.074). Our findings suggest that 24-h CI meropenem and piperacillin dosages should not be reduced a priori in CAR T-cell patients experiencing CRS.
Collapse
Affiliation(s)
- Chun Liu
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Pier Giorgio Cojutti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Marcello Roberto
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Beatrice Casadei
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Gianluca Cristiano
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Cristina Papayannidis
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Nicola Vianelli
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Bonifazi
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
7
|
Troisi C, Cojutti PG, Rinaldi M, Laici C, Siniscalchi A, Viale P, Pea F. Measuring Creatinine Clearance Is the Most Accurate Way for Calculating the Proper Continuous Infusion Meropenem Dose for Empirical Treatment of Severe Gram-Negative Infections among Critically Ill Patients. Pharmaceutics 2023; 15:pharmaceutics15020551. [PMID: 36839872 PMCID: PMC9967919 DOI: 10.3390/pharmaceutics15020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Assessment of glomerular filtration rate (GFR) is necessary for dose adjustments of beta-lactam that are excreted by the kidneys, such as meropenem. The aim of this study was to compare the daily dose of 24 h-continuous infusion (CI) meropenem when GFR was calculated by means of measured creatinine clearance (mCLCR) or estimated by the CKDEPI (eGFRCKDEPI), Cockcroft-Gault (eGFRCG), and MDRD (eGFRMDRD) equations. Adult critically ill patients who underwent therapeutic drug monitoring (TDM) for the assessment of 24 h-CI meropenem steady state concentration (Css) and for whom a 24 h-urine collection was performed were retrospectively enrolled. Meropenem clearance (CLM) was regressed against mCLCR, and meropenem daily dose was calculated based on the equation infusion rate = daily dose/CLM. eGFRCKDEPI, eGFRCG, and eGFRCKDEPI were regressed against mCLCR in order to estimate CLM. Forty-six patients who provided 133 meropenem Css were included. eGFRCKDEPI overestimated mCLCR up to 90 mL/min, then mCLCR was underestimated. eGFRCG and eGFRMDRD overestimated mCLCR across the entire range of GFR. In critically ill patients, dose adjustments of 24 h-CI meropenem should be based on mCLCR. Equations for estimation of GFR may lead to gross under/overestimates of meropenem dosages. TDM may be highly beneficial, especially for critically ill patients with augmented renal clearance.
Collapse
Affiliation(s)
- Carla Troisi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
| | - Pier Giorgio Cojutti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence:
| | - Matteo Rinaldi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Cristiana Laici
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Antonio Siniscalchi
- Division of Anesthesiology, Department of Anesthesia and Intensive Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
8
|
Miano TA, Hennessy S, Yang W, Dunn TG, Weisman AR, Oniyide O, Agyekum RS, Turner AP, Ittner CAG, Anderson BJ, Wilson FP, Townsend R, Reilly JP, Giannini HM, Cosgriff CV, Jones TK, Meyer NJ, Shashaty MGS. Association of vancomycin plus piperacillin-tazobactam with early changes in creatinine versus cystatin C in critically ill adults: a prospective cohort study. Intensive Care Med 2022; 48:1144-1155. [PMID: 35833959 PMCID: PMC9463324 DOI: 10.1007/s00134-022-06811-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/28/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Although dozens of studies have associated vancomycin + piperacillin-tazobactam with increased acute kidney injury (AKI) risk, it is unclear whether the association represents true injury or a pseudotoxicity characterized by isolated effects on creatinine secretion. We tested this hypothesis by contrasting changes in creatinine concentration after antibiotic initiation with changes in cystatin C concentration, a kidney biomarker unaffected by tubular secretion. METHODS We included patients enrolled in the Molecular Epidemiology of SepsiS in the ICU (MESSI) prospective cohort who were treated for ≥ 48 h with vancomycin + piperacillin-tazobactam or vancomycin + cefepime. Kidney function biomarkers [creatinine, cystatin C, and blood urea nitrogen (BUN)] were measured before antibiotic treatment and at day two after initiation. Creatinine-defined AKI and dialysis were examined through day-14, and mortality through day-30. Inverse probability of treatment weighting was used to adjust for confounding. Multiple imputation was used to impute missing baseline covariates. RESULTS The study included 739 patients (vancomycin + piperacillin-tazobactam n = 297, vancomycin + cefepime n = 442), of whom 192 had cystatin C measurements. Vancomycin + piperacillin-tazobactam was associated with a higher percentage increase of creatinine at day-two 8.04% (95% CI 1.21, 15.34) and higher incidence of creatinine-defined AKI: rate ratio (RR) 1.34 (95% CI 1.01, 1.78). In contrast, vancomycin + piperacillin-tazobactam was not associated with change in alternative biomarkers: cystatin C: - 5.63% (95% CI - 18.19, 8.86); BUN: - 4.51% (95% CI - 12.83, 4.59); or clinical outcomes: dialysis: RR 0.63 (95% CI 0.31, 1.29); mortality: RR 1.05 (95%CI 0.79, 1.41). CONCLUSIONS Vancomycin + piperacillin-tazobactam was associated with creatinine-defined AKI, but not changes in alternative kidney biomarkers, dialysis, or mortality, supporting the hypothesis that vancomycin + piperacillin-tazobactam effects on creatinine represent pseudotoxicity.
Collapse
Affiliation(s)
- Todd A Miano
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, 423 Guardian Drive, 809 Blockley Hall, Philadelphia, PA, 19104, USA.
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Sean Hennessy
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, 423 Guardian Drive, 809 Blockley Hall, Philadelphia, PA, 19104, USA
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Yang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, 423 Guardian Drive, 809 Blockley Hall, Philadelphia, PA, 19104, USA
- Center for Pharmacoepidemiology Research and Training, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas G Dunn
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ariel R Weisman
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Oluwatosin Oniyide
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Roseline S Agyekum
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra P Turner
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline A G Ittner
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian J Anderson
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - F Perry Wilson
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Raymond Townsend
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - John P Reilly
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Heather M Giannini
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher V Cosgriff
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tiffanie K Jones
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael G S Shashaty
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|