1
|
Jiang X, Song Y, Lv C, Li Y, Feng X, Zhang H, Chen Y, Wang Q. Mushroom-derived bioactive components with definite structures in alleviating the pathogenesis of Alzheimer's disease. Front Pharmacol 2024; 15:1373660. [PMID: 38835656 PMCID: PMC11148366 DOI: 10.3389/fphar.2024.1373660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Alzheimer's disease (AD) is a complicated neurodegenerative condition with two forms: familial and sporadic. The familial presentation is marked by autosomal dominance, typically occurring early in individuals under 65 years of age, while the sporadic presentation is late-onset, occurring in individuals over the age of 65. The majority of AD cases are characterized by late-onset and sporadic. Despite extensive research conducted over several decades, there is a scarcity of effective therapies and strategies. Considering the lack of a cure for AD, it is essential to explore alternative natural substances with higher efficacy and fewer side effects for AD treatment. Bioactive compounds derived from mushrooms have demonstrated significant potential in AD prevention and treatment by different mechanisms such as targeting amyloid formation, tau, cholinesterase dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, neurotrophic factors, ER stress, excitotoxicity, and mitochondrial dysfunction. These compounds have garnered considerable interest from the academic community owing to their advantages of multi-channel, multi-target, high safety and low toxicity. This review focuses on the various mechanisms involved in the development and progression of AD, presents the regulatory effects of bioactive components with definite structure from mushroom on AD in recent years, highlights the possible intervention pathways of mushroom bioactive components targeting different mechanisms, and discusses the clinical studies, limitations, and future perspectives of mushroom bioactive components in AD prevention and treatment.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Song
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
- Koch Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Changshun Lv
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yinghui Li
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiangru Feng
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hao Zhang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yujuan Chen
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
2
|
Alenazi AM, Alkhathami KM. Hypertension Is Associated with Joint Pain Severity Among Individuals with Osteoarthritis. Pain Manag Nurs 2023; 24:e97-e101. [PMID: 37544788 DOI: 10.1016/j.pmn.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Previous studies have reported an association between hypertension (HTN) and osteoarthritis (OA). However, limited research has examined the association between HTN and symptoms, such as pain severity, in people with OA. Therefore, the aim was to investigate the prevalence of HTN in individuals with OA and the association between HTN and pain severity in this population. This study was cross-sectional and included participants aged 50 years and older from the community. Demographic data were included and self-reported history of chronic illnesses including diabetes, HTN, cardiovascular disease, dyslipidemia, anemia, osteoporosis, neurological disease, and back pain were obtained. Numerous medications and chronic diseases were included. A subsample of people who self-reported osteoarthritis was included in this study. Pain severity was measured over the past 7 days using a pain numeric rating scale. Multiple linear regression was used after adjusting for covariates. A total of 82 participants with OA were included, and the prevalence of HTN among individuals with OA was 28.91%. Hypertension was significantly associated with increased joint pain severity in this population after adjustments for covariates (B=1.81; 95% CI, 0.65, 2.97; p = .003). Hypertension is prevalent in individuals with OA and is significantly associated with pain severity in this population. Future research should consider the effect of HTN control and medication on symptoms in people with OA. Clinicians may implement screening for HTN among individuals with OA because of the association between HTN and symptoms, such as pain, in this population.
Collapse
Affiliation(s)
- Aqeel M Alenazi
- Department of Health and Rehabilitation Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Riyadh, Saudi Arabia.
| | - Khalid M Alkhathami
- Department of Health Rehabilitation, Shaqra University, Shaqra, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Wang X, Li X. Regulation of pain neurotransmitters and chondrocytes metabolism mediated by voltage-gated ion channels: A narrative review. Heliyon 2023; 9:e17989. [PMID: 37501995 PMCID: PMC10368852 DOI: 10.1016/j.heliyon.2023.e17989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of chronic pain and dysfunction. It is essential to comprehend the nature of pain and cartilage degeneration and its influencing factors on OA treatment. Voltage-gated ion channels (VGICs) are essential in chondrocytes and extracellular matrix (ECM) metabolism and regulate the pain neurotransmitters between the cartilage and the central nervous system. This narrative review focused primarily on the effects of VGICs regulating pain neurotransmitters and chondrocytes metabolism, and most studies have focused on voltage-sensitive calcium channels (VSCCs), voltage-gated sodium channels (VGSCs), acid-sensing ion channels (ASICs), voltage-gated potassium channels (VGKCs), voltage-gated chloride channels (VGCCs). Various ion channels coordinate to maintain the intracellular environment's homeostasis and jointly regulate metabolic and pain under normal circumstances. In the OA model, the ion channel transport of chondrocytes is abnormal, and calcium influx is increased, which leads to increased neuronal excitability. The changes in ion channels are strongly associated with the OA disease process and individual OA risk factors. Future studies should explore how VGICs affect the metabolism of chondrocytes and their surrounding tissues, which will help clinicians and pharmacists to develop more effective targeted drugs to alleviate the progression of OA disease.
Collapse
|
4
|
Wang H, Sun S, Ren Y, Yang R, Guo J, Zong Y, Zhang Q, Zhao J, Zhang W, Xu W, Guan S, Xu J. Selenite Ameliorates Cadmium-induced Cytotoxicity Through Downregulation of ROS Levels and Upregulation of Selenoprotein Thioredoxin Reductase 1 in SH-SY5Y Cells. Biol Trace Elem Res 2023; 201:139-148. [PMID: 35066751 DOI: 10.1007/s12011-022-03117-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/12/2022] [Indexed: 01/20/2023]
Abstract
Cadmium (Cd) as a ubiquitous toxic heavy metal in the environment, causes severe hazards to human health, such as cellular stress and organ injury. Selenium (Se) was reported to reduce Cd toxicity and the mechanisms have been intensively studied so far. However, it is not yet crystal clear whether the protective effect of Se against Cd-induced cytotoxicity is related to selenoproteins in nerve cells or not. In this study, we found that Cd inhibited selenoprotein thioredoxin reductase 1 (TrxR1; TXNRD1) and decreased the expression level of TrxR1, resulting in cellular oxidative stress, and Se supplements ameliorated Cd-induced cytotoxicity in SH-SY5Y cells. Mechanistically, the detoxification of Se against Cd is attributed to the increase of the cellular TrxR activity and upregulated TrxR1 protein level, culminating in strengthened antioxidant capacity. Results showed that Se supplements attenuated the ROS production and apoptosis in SH-SY5Y cells, and significantly mitigated Cd-induced SH-SY5Y cell death. This study may be a valuable reference for shedding light on the mechanism of Cd-induced cytotoxicity and the role of TrxR1 in Se-mitigated cytotoxicity of Cd in neuroblast cells, which may be helpful for understanding the therapeutic potential of Cd and Se in treating or preventing neurodegenerative diseases, like Alzheimer's disease (AD) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Hecheng Wang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yan Ren
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Rui Yang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Jianli Guo
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yu Zong
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Qiuxian Zhang
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Jing Zhao
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Wei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453000, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST), Dalian University of Technology, Panjin, 124221, China
| | - Shui Guan
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Research & Educational Center for the Control Engineering of Translational Precision Medicine, School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
5
|
Hunter CW, Deer TR, Jones MR, Chang Chien GC, D’Souza RS, Davis T, Eldon ER, Esposito MF, Goree JH, Hewan-Lowe L, Maloney JA, Mazzola AJ, Michels JS, Layno-Moses A, Patel S, Tari J, Weisbein JS, Goulding KA, Chhabra A, Hassebrock J, Wie C, Beall D, Sayed D, Strand N. Consensus Guidelines on Interventional Therapies for Knee Pain (STEP Guidelines) from the American Society of Pain and Neuroscience. J Pain Res 2022; 15:2683-2745. [PMID: 36132996 PMCID: PMC9484571 DOI: 10.2147/jpr.s370469] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Knee pain is second only to the back as the most commonly reported area of pain in the human body. With an overall prevalence of 46.2%, its impact on disability, lost productivity, and cost on healthcare cannot be overlooked. Due to the pervasiveness of knee pain in the general population, there are no shortages of treatment options available for addressing the symptoms. Ranging from physical therapy and pharmacologic agents to interventional pain procedures to surgical options, practitioners have a wide array of options to choose from - unfortunately, there is no consensus on which treatments are "better" and when they should be offered in comparison to others. While it is generally accepted that less invasive treatments should be offered before more invasive ones, there is a lack of agreement on the order in which the less invasive are to be presented. In an effort to standardize the treatment of this extremely prevalent pathology, the authors present an all-encompassing set of guidelines on the treatment of knee pain based on an extensive literature search and data grading for each of the available alternative that will allow practitioners the ability to compare and contrast each option.
Collapse
Affiliation(s)
- Corey W Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy R Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | | | | | - Ryan S D’Souza
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - Erica R Eldon
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Johnathan H Goree
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lissa Hewan-Lowe
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jillian A Maloney
- Department of Anesthesiology, Division of Pain Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Anthony J Mazzola
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Jeanmarie Tari
- Ainsworth Institute of Pain Management, New York, NY, USA
| | | | | | - Anikar Chhabra
- Department of Orthopedic Surgery, Mayo Clinic, Phoenix, AZ, USA
| | | | - Chris Wie
- Interventional Spine and Pain, Dallas, TX, USA
| | - Douglas Beall
- Comprehensive Specialty Care, Oklahoma City, OK, USA
| | - Dawood Sayed
- Department of Anesthesiology, Division of Pain Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
6
|
Yuan Z, Liu S, Song W, Liu Y, Bi G, Xie R, Ren L. Galactose Enhances Chondrogenic Differentiation of ATDC5 and Cartilage Matrix Formation by Chondrocytes. Front Mol Biosci 2022; 9:850778. [PMID: 35615738 PMCID: PMC9124793 DOI: 10.3389/fmolb.2022.850778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Galactose, an important carbohydrate nutrient, is involved in several types of cellular metabolism, participating in physiological activities such as glycosaminoglycan (GAG) synthesis, glycosylation, and intercellular recognition. The regulatory effects of galactose on osteoarthritis have attracted increased attention. In this study, in vitro cell models of ATDC5 and chondrocytes were prepared and cultured with different concentrations of galactose to evaluate its capacity on chondrogenesis and cartilage matrix formation. The cell proliferation assay demonstrated that galactose was nontoxic to both ATDC5 cells and chondrocytes. RT-PCR and immunofluorescence staining indicated that the gene expressions of cartilage matrix type II collagen and aggrecan were significantly upregulated with increasing galactose concentration and the expression and accumulation of the extracellular matrix (ECM) protein. Overall, these results indicated that a galactose concentration below 8 mM exhibited the best effect on promoting chondrogenesis, which entitles galactose as having considerable potential for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Ying Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Gangyuan Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
- Jiangxi Key Laboratory of Medical Tissue Engineering Materials and Biofabrication, Gannan Medical University, Ganzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| |
Collapse
|
7
|
Luo W, Wang J, Zhou Y, Pang M, Yu X, Tong J. Dynamic mRNA and miRNA expression of the head during early development in bighead carp (Hypophthalmichthys nobilis). BMC Genomics 2022; 23:168. [PMID: 35232381 PMCID: PMC8887032 DOI: 10.1186/s12864-022-08387-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Head of fish species, an exquisitely complex anatomical system, is important not only for studying fish evolution and development, but also for economic values. Currently, although some studies have been made on fish growth and body shapes, very limited information is available on the molecular mechanism of head development. Results In this study, RNA sequencing (RNA–Seq) and small RNA sequencing (sRNA–Seq) technologies were used to conduct integrated analysis for the head of bighead carp at different development stages, including 1, 3, 5, 15 and 30 Dph (days post hatch). By RNA-Seq data, 26 pathways related to growth and bone formation were identified as the main physiological processes during early development. Coupling this to sRNA–Seq data, we picked out six key pathways that may be responsible for head development, namely ECM receptor interaction, TNF signaling pathway, osteoclast differentiation, PI3K–Akt signaling pathway, Neuroactive ligand–receptor interaction and Jak–STAT signaling pathway. Totally, 114 important candidate genes from the six pathways were obtained. Then we found the top 20 key genes according to the degree value by cytohubba, which regulated cell growth, skeletal formation and blood homeostasis, such as pik3ca, pik3r1, egfr, vegfa, igf1 and itga2b. Finally, we also acquired 19 key miRNAs playing multiple roles in the perfection of various tissues in the head (such as brain, eye and mouth) and mineralization of head bone system, such as let–7e, miR–142a–5p, miR–144–3p, miR–23a–3p and miR–223. Conclusions Results of this study will be informative for genetic mechanisms of head development and also provide potential candidate targets for the interaction regulation during early growth in bighead carp. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08387-x.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.,Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Li M, Zeng Y, Nie Y, Wu Y, Liu Y, Wu L, Xu J, Shen B. The effects of different antihypertensive drugs on pain and joint space width of knee osteoarthritis - A comparative study with data from Osteoarthritis Initiative. J Clin Hypertens (Greenwich) 2021; 23:2009-2015. [PMID: 34657366 PMCID: PMC8630607 DOI: 10.1111/jch.14362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 02/05/2023]
Abstract
Hypertension was one common comorbidity of knee osteoarthritis (KOA), but the effect of different types of antihypertensive drugs on pain and joint space width (JSW) was unclear and not compared. Four hundred ninety KOA patients using one of the beta-blockers, ACE inhibitors, angiotensin receptor blockers, Calcium channel blockers (CCBs), or thiazide diuretics were followed for four years. The blood pressure, cumulative knee replacement rate, Womac pain, and JSW were compared among groups. All data were from the Osteoarthritis Initiative project. The CCBs group has the highest systolic blood pressure, replacement rate, and pain score at most visit timepoints. At baseline, the CCBs group was with significantly higher pain score than the beta-blockers group (3.3 vs 1.3, p < .05), the angiotensin receptor blockers group (3.3 vs 1.4, p < .05), and the thiazide diuretics group (3.3 vs 1.6, p < .05) in male; the CCBs group was with significantly higher pain score than the beta-blockers group (3.8 vs 2.0, p < .01), and the angiotensin receptor blockers group (3.8 vs 2.2, p < .05) in female. The results of females at 36 months were similar to the baseline. Among the common antihypertensive drugs, CCBs were associated with high replacement rates, high pain scores, and less JSW in KOA patients.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yong Nie
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jiawen Xu
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
9
|
Karaarslan N, Yilmaz I, Sirin DY. Toxicity of the acetyl-para-aminophenol group of medicines to intact intervertebral disc tissue cells. Exp Ther Med 2021; 21:147. [PMID: 33456514 PMCID: PMC7791924 DOI: 10.3892/etm.2020.9578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to investigate the effects of paracetamol, an analgesic and antipyretic that is used in emergency departments and neurosurgery departments for postoperative pain management on intervertebral disc tissue. Paracetamol-treated human primary cell cultures and untreated cell cultures were compared using molecular analyses. Cell proliferation and gene expression were statistically analyzed. Cell proliferation was suppressed on days 10 (P=0.05) and 20 (P<0.05) in the paracetamol-treated groups. Gene expression of chondroadherin, matrix metalloproteinase (MMP)-7, MMP-13 and MMP-19 was higher in the paracetamol-treated samples while gene expression of Cartilage Oligomeric Matrix Protein and interleukin-1β was lower (P<0.05). Paracetamol, which appears innocuous compared with many analgesics, may increase the expression of MMPs, which serve a significant role in catabolic reactions and suppress the proliferation of intact intervertebral disc tissue cells.
Collapse
Affiliation(s)
- Numan Karaarslan
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag 59100, Turkey
| |
Collapse
|