1
|
Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S, Shareef U. Formulation for the Targeted Delivery of a Vaccine Strain of Oncolytic Measles Virus (OMV) in Hyaluronic Acid Coated Thiolated Chitosan as a Green Nanoformulation for the Treatment of Prostate Cancer: A Viro-Immunotherapeutic Approach. Int J Nanomedicine 2023; 18:185-205. [PMID: 36643861 PMCID: PMC9838128 DOI: 10.2147/ijn.s386560] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023] Open
Abstract
Background Oncolytic viruses are reported as dynamite against cancer treatment nowadays. Methodology In the present work, a live attenuated oral measles vaccine (OMV) strain was used to formulate a polymeric surface-functionalized ligand-based nanoformulation (NF). OMV (half dose: not less than 500 TCID units; 0.25 mL) was encapsulated in thiolated chitosan and outermost coating with hyaluronic acid by ionic gelation method characterizing parameters was performed. Results and Discussion CD44 high expression was confirmed in prostatic adenocarcinoma (PRAD) by GEPIA which extracted data of normal and cancer tissue from GTEx and TCGA. Bioinformatics tools confirmed the viral hemagglutinin capsid protein interaction with human Caspase-I, NLRP3, and TNF-α and viral fusion protein interaction with COX-II and Caspase-I after successful delivery of MV encapsulated in NFs due to high affinity of hyaluronic acid with CD44 on the surface of prostate cancer cells. Particle size = 275.6 mm, PDI = 0.372, and ±11.5 zeta potential were shown by zeta analysis, while the thiolated group in NFs was confirmed by FTIR and Raman analysis. SEM and XRD showed a spherical smooth surface and crystalline nature, respectively, while TEM confirmed virus encapsulation within nanoparticles, which makes it very useful in targeted virus delivery systems. The virus was released from NFs in a sustained but continuous release pattern till 48 h. The encapsulated virus titer was calculated as 2.34×107 TCID50/mL units, which showed syncytia formation on post-day infection 7. Multiplicities of infection 0.1, 0.5, 1, 3, 5, 10, 15, and 20 of HA-coated OMV-loaded NFs as compared to MV vaccine on PC3 was inoculated with IC50 of 5.1 and 3.52, respectively, and growth inhibition was seen after 72 h via MTT assay which showed apoptotic cancer cell death. Conclusion Active targeted, efficacious, and sustained delivery of formulated oncolytic MV is a potent moiety in cancer treatment at lower doses with safe potential for normal prostate cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Kousain Kousar
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Salik Kakar
- Healthcare Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudia Arabia
| | - Usman Shareef
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| |
Collapse
|
2
|
Vorobjeva IV, Zhirnov OP. Modern approaches to treating cancer with oncolytic viruses. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-91-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
According to the World Health Organization, cancer is the second leading cause of death in the world. This serves as a powerful incentive to search for new effective cancer treatments. Development of new oncolytic viruses capable of selectively destroying cancer cells is one of the modern approaches to cancer treatment. The advantage of this method – the selective lysis of tumor cells with the help of viruses – leads to an increase in the antitumor immune response of the body, that in turn promotes the destruction of the primary tumor and its metastases. Significant progress in development of this method has been achieved in the last decade. In this review we analyze the literature data on families of oncolytic viruses that have demonstrated a positive therapeutic effect against malignant neoplasms in various localizations. We discuss the main mechanisms of the oncolytic action of viruses and assess their advantages over other methods of cancer therapy as well as the prospects for their use in clinical practice.
Collapse
Affiliation(s)
- I. V. Vorobjeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology
| | - O. P. Zhirnov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, D. I. Ivanovsky Institute of Virology; The Russian-German Academy of Medical and Biotechnological Sciences
| |
Collapse
|
3
|
Fusciello M, Ylösmäki E, Feola S, Uoti A, Martins B, Aalto K, Hamdan F, Chiaro J, Russo S, Viitala T, Cerullo V. A novel cancer vaccine for melanoma based on an approved vaccine against measles, mumps, and rubella. Mol Ther Oncolytics 2022; 25:137-145. [PMID: 35572195 PMCID: PMC9065466 DOI: 10.1016/j.omto.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/14/2022] [Indexed: 01/22/2023] Open
Abstract
Common vaccines for infectious diseases have been repurposed as cancer immunotherapies. The intratumoral administration of these repurposed vaccines can induce immune cell infiltration into the treated tumor. Here, we have used an approved trivalent live attenuated measles, mumps, and rubella (MMR) vaccine in our previously developed PeptiENV cancer vaccine platform. The intratumoral administration of this novel MMR-containing PeptiENV cancer vaccine significantly increased both intratumoral as well as systemic tumor-specific T cell responses. In addition, PeptiENV therapy, in combination with immune checkpoint inhibitor therapy, improved tumor growth control and survival as well as increased the number of mice responsive to immune checkpoint inhibitor therapy. Importantly, mice pre-vaccinated with the MMR vaccine responded equally well, if not better, to the PeptiENV therapy, indicating that pre-existing immunity against the MMR vaccine viruses does not compromise the use of this novel cancer vaccine platform.
Collapse
Affiliation(s)
- Manlio Fusciello
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Erkko Ylösmäki
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Corresponding author Erkko Ylösmäki, Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland.
| | - Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Arttu Uoti
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Beatriz Martins
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Karri Aalto
- Pharmaceutical Biophysics Research Group, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Firas Hamdan
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Salvatore Russo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Tapani Viitala
- Pharmaceutical Biophysics Research Group, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology, Naples University “Federico II”, S. Pansini 5, Naples, Italy
- Corresponding author. Vincenzo Cerullo, Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland.
| |
Collapse
|
4
|
Rastegarpanah M, Azadmanesh K, Negahdari B, Asgari Y, Mazloomi M. Screening of candidate genes associated with high titer production of oncolytic measles virus based on systems biology approach. Virus Genes 2022; 58:270-283. [PMID: 35477822 DOI: 10.1007/s11262-022-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
The number of viral particles required for oncolytic activity of measles virus (MV) can be more than a million times greater than the reported amount for vaccination. The aim of the current study is to find potential genes and signaling pathways that may be involved in the high-titer production of MV. In this study, a systems biology approach was considered including collection of gene expression profiles from the Gene Expression Omnibus (GEO) database, obtaining differentially expressed genes (DEGs), performing gene ontology, functional enrichment analyses, and topological analyses on the protein-protein interaction (PPI) network. Then, to validate the in-silico data, total RNA was isolated from five cell lines, and full-length cDNA from template RNA was synthesized. Subsequently, quantitative reverse transcription-PCR (RT-qPCR) was employed. We identified five hub genes, including RAC1, HSP90AA1, DNM1, LTBP1, and FSTL1 associated with the enhancement in MV titer. Pathway analysis indicated enrichment in PI3K-Akt signaling pathway, axon guidance, proteoglycans in cancer, regulation of actin cytoskeleton, focal adhesion, and calcium signaling pathways. Upon verification by RT-qPCR, the relative expression of candidate genes was generally consistent with our bioinformatics analysis. Hub genes and signaling pathways may be involved in understanding the pathological mechanisms by which measles virus manipulates host factors in order to facilitate its replication. RAC1, HSP90AA1, DNM1, LTBP1, and FSTL1 genes, in combination with genetic engineering techniques, will allow the direct design of high-throughput cell lines to answer the required amounts for the oncolytic activity of MV.
Collapse
Affiliation(s)
- Malihe Rastegarpanah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammadali Mazloomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
5
|
Sandbrink JB, Alley EC, Watson MC, Koblentz GD, Esvelt KM. Insidious Insights: Implications of viral vector engineering for pathogen enhancement. Gene Ther 2022; 30:407-410. [PMID: 35264741 DOI: 10.1038/s41434-021-00312-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
Optimizing viral vectors and their properties will be important for improving the effectiveness and safety of clinical gene therapy. However, such research may generate dual-use insights relevant to the enhancement of pandemic pathogens. In particular, reliable and generalizable methods of immune evasion could increase viral fitness sufficient to cause a new pandemic. High potential for misuse is associated with (1) the development of universal genetic elements for immune modulation, (2) specific insights on capsid engineering for antibody evasion applicable to viruses with pandemic potential, and (3) the development of computational methods to inform capsid engineering. These risks may be mitigated by prioritizing non-viral delivery systems, pharmacological immune modulation methods, non-genetic vector surface modifications, and engineering methods specific to AAV and other viruses incapable of unassisted human-to-human transmission. We recommend that computational vector engineering and the publication of associated code and data be limited to AAV until a technical solution for preventing malicious access to viral engineering tools has been established.
Collapse
Affiliation(s)
- Jonas B Sandbrink
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Future of Humanity Institute, University of Oxford, Oxford, UK.
| | - Ethan C Alley
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew C Watson
- Center for Health Security, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gregory D Koblentz
- Schar School of Policy and Government, George Mason University, Fairfax, VA, USA
| | - Kevin M Esvelt
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Vandeborne L, Pantziarka P, Van Nuffel AMT, Bouche G. Repurposing Infectious Diseases Vaccines Against Cancer. Front Oncol 2021; 11:688755. [PMID: 34055652 PMCID: PMC8155725 DOI: 10.3389/fonc.2021.688755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccines used to prevent infections have long been known to stimulate immune responses to cancer as illustrated by the approval of the Bacillus Calmette-Guérin (BCG) vaccine to treat bladder cancer since the 1970s. The recent approval of immunotherapies has rejuvenated this research area with reports of anti-tumor responses with existing infectious diseases vaccines used as such, either alone or in combination with immune checkpoint inhibitors. Here, we have reviewed and summarized research activities using approved vaccines to treat cancer. Data supporting a cancer therapeutic use was found for 16 vaccines. For 10 (BCG, diphtheria, tetanus, human papillomavirus, influenza, measles, pneumococcus, smallpox, typhoid and varicella-zoster), clinical trials have been conducted or are ongoing. Within the remaining 6, preclinical evidence supports further evaluation of the rotavirus, yellow fever and pertussis vaccine in carefully designed clinical trials. The mechanistic evidence for the cholera vaccine, combined with the observational data in colorectal cancer, is also supportive of clinical translation. There is limited data for the hepatitis B and mumps vaccine (without measles vaccine). Four findings are worth highlighting: the superiority of intravesical typhoid vaccine instillations over BCG in a preclinical bladder cancer model, which is now the subject of a phase I trial; the perioperative use of the influenza vaccine to limit and prevent the natural killer cell dysfunction induced by cancer surgery; objective responses following intratumoral injections of measles vaccine in cutaneous T-cell lymphoma; objective responses induced by human papillomavirus vaccine in cutaneous squamous cell carcinoma. All vaccines are intended to induce or improve an anti-tumor (immune) response. In addition to the biological and immunological mechanisms that vary between vaccines, the mode of administration and sequence with other (immuno-)therapies warrant more attention in future research.
Collapse
|
7
|
Chiu M, Armstrong EJL, Jennings V, Foo S, Crespo-Rodriguez E, Bozhanova G, Patin EC, McLaughlin M, Mansfield D, Baker G, Grove L, Pedersen M, Kyula J, Roulstone V, Wilkins A, McDonald F, Harrington K, Melcher A. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert Opin Biol Ther 2020; 20:635-652. [PMID: 32067509 DOI: 10.1080/14712598.2020.1729351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICI) have dramatically improved the outcome for cancer patients across multiple tumor types. However the response rates to ICI monotherapy remain relatively low, in part due to some tumors cultivating an inherently 'cold' immune microenvironment. Oncolytic viruses (OV) have the capability to promote a 'hotter' immune microenvironment which can improve the efficacy of ICI.Areas covered: In this article we conducted a literature search through Pubmed/Medline to identify relevant articles in both the pre-clinical and clinical settings for combining OVs with ICIs and discuss the impact of this approach on treatment as well as changes within the tumor microenvironment. We also explore the future directions of this novel combination strategy.Expert opinion: The imminent results of the Phase 3 study combining pembrolizumab with or without T-Vec injection are eagerly awaited. OV/ICI combinations remain one of the most promising avenues to explore in the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew Chiu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Edward John Lloyd Armstrong
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Vicki Jennings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Shane Foo
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Eva Crespo-Rodriguez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Galabina Bozhanova
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Martin McLaughlin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - David Mansfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Gabriella Baker
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Lorna Grove
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Malin Pedersen
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Joan Kyula
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Anna Wilkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Alan Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Loewe D, Dieken H, Grein TA, Weidner T, Salzig D, Czermak P. Opportunities to debottleneck the downstream processing of the oncolytic measles virus. Crit Rev Biotechnol 2020; 40:247-264. [PMID: 31918573 DOI: 10.1080/07388551.2019.1709794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses (including measles virus) offer an alternative approach to reduce the high mortality rate of late-stage cancer. Several measles virus strains infect and lyse cancer cells efficiently, but the broad application of this therapeutic concept is hindered by the large number of infectious particles required (108-1012 TCID50 per dose). The manufacturing process must, therefore, achieve high titers of oncolytic measles virus (OMV) during upstream production and ensure that the virus product is not damaged during purification by applying appropriate downstream processing (DSP) unit operations. DSP is currently a production bottleneck because there are no specific platforms for OMV. Infectious OMV must be recovered as intact, enveloped particles, and host cell proteins and DNA must be reduced to acceptable levels to meet regulatory guidelines that were developed for virus-based vaccines and gene therapy vectors. Handling such high viral titers and process volumes is technologically challenging and expensive. This review considers the state of the art in OMV purification and looks at promising DSP technologies. We discuss here the purification of other enveloped viruses where such technologies could also be applied to OMV. The development of DSP technologies tailored for enveloped viruses is necessary to produce sufficient titers for virotherapy, which could offer hope to millions of patients suffering from incurable cancer.
Collapse
Affiliation(s)
- Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, University of Giessen, Giessen, Germany
| | - Hauke Dieken
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tanja A Grein
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.,Faculty of Biology and Chemistry, University of Giessen, Giessen, Germany.,Project Group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
9
|
Grein TA, Loewe D, Dieken H, Weidner T, Salzig D, Czermak P. Aeration and Shear Stress Are Critical Process Parameters for the Production of Oncolytic Measles Virus. Front Bioeng Biotechnol 2019; 7:78. [PMID: 31058145 PMCID: PMC6478815 DOI: 10.3389/fbioe.2019.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/27/2019] [Indexed: 12/26/2022] Open
Abstract
Oncolytic Measles virus is a promising candidate for cancer treatment, but clinical studies have shown that extremely high doses (up to 1011 TCID50 per dose) are required to effect a cure. Very high titers of the virus must therefore be achieved during production to ensure an adequate supply. We have previously shown that Measles virus can be produced in Vero cells growing on a Cytodex 1 microcarrier in serum-containing medium using a stirred-tank reactor (STR). However, process optimization and further process transfer or scale up requires the identification of critical process parameters, particularly because the use of STRs increases the risk of cell damage and lower product yields due to shear stress. Using a small-scale STR (0.5 L working volume) we found that Measles virus titers are sensitive to agitator-dependent shear, with shear stress ≥0.25 N m-2 reducing the titer by more than four orders of magnitude. This effect was observed in both serum-containing and serum-free medium. At this scale, virus of titers up to 1010 TCID50 mL-1 could be achieved with an average shear stress of 0.1 N m-2. We also found that the aeration method affected the virus titer. Aeration was necessary to ensure a sufficient oxygen supply to the Vero cells, and CO2 was also needed to regulate the pH of the sodium bicarbonate buffer system. Continuous gassing with air and CO2 reduced the virus titer by four orders of magnitude compared to head-space aeration. The manufacture of oncolytic Measles virus in a STR can therefore be defined as a shear-sensitive process, but high titers can nevertheless be achieved by keeping shear stress levels below 0.25 N m-2 and by avoiding extensive gassing of the medium.
Collapse
Affiliation(s)
- Tanja A. Grein
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Daniel Loewe
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Hauke Dieken
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
- Project group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
10
|
Kemler I, Ennis MK, Neuhauser CM, Dingli D. In Vivo Imaging of Oncolytic Measles Virus Propagation with Single-Cell Resolution. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:68-78. [PMID: 30705967 PMCID: PMC6348983 DOI: 10.1016/j.omto.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Recombinant measles viruses (MVs) have oncolytic activity against a variety of human cancers. However, their kinetics of spread within tumors has been unexplored. We established an intravital imaging system using the dorsal skin fold chamber, which allows for serial, non-invasive imaging of tumor cells and replication of a fusogenic and a hypofusogenic MV. Hypofusogenic virus-infected cells were detected at the earliest 3 days post-infection (dpi), with peak infection around 6 dpi. In contrast, the fusogenic virus replicated faster: infected cells were detectable 1 dpi and cells were killed quickly. Infection foci were significantly larger with the fusogenic virus. Both viruses formed syncytia. The spatial relationships between cells have a major influence on the outcome of therapy with oncolytic viruses.
Collapse
Affiliation(s)
- Iris Kemler
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew K Ennis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David Dingli
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
11
|
Fusogenic Viruses in Oncolytic Immunotherapy. Cancers (Basel) 2018; 10:cancers10070216. [PMID: 29949934 PMCID: PMC6070779 DOI: 10.3390/cancers10070216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 01/09/2023] Open
Abstract
Oncolytic viruses are under intense development and have earned their place among the novel class of cancer immunotherapeutics that are changing the face of cancer therapy. Their ability to specifically infect and efficiently kill tumor cells, while breaking immune tolerance and mediating immune responses directed against the tumor, make oncolytic viruses highly attractive candidates for immunotherapy. Increasing evidence indicates that a subclass of oncolytic viruses, which encodes for fusion proteins, could outperform non-fusogenic viruses, both in their direct oncolytic potential, as well as their immune-stimulatory properties. Tumor cell infection with these viruses leads to characteristic syncytia formation and cell death due to fusion, as infected cells become fused with neighboring cells, which promotes intratumoral spread of the infection and releases additional immunogenic signals. In this review, we discuss the potential of fusogenic oncolytic viruses as optimal candidates to enhance immunotherapy and initiate broad antitumor responses. We provide an overview of the cytopathic mechanism of syncytia formation through viral-mediated expression of fusion proteins, either endogenous or engineered, and their benefits for cancer therapy. Growing evidence indicates that fusogenicity could be an important feature to consider in the design of optimal oncolytic virus platforms for combinatorial oncolytic immunotherapy.
Collapse
|
12
|
Carrier Cells for Delivery of Oncolytic Measles Virus into Tumors: Determinants of Efficient Loading. Virol Sin 2018; 33:234-240. [PMID: 29767404 DOI: 10.1007/s12250-018-0033-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/11/2018] [Indexed: 12/22/2022] Open
Abstract
Oncolytic measles virus (OMV) is a promising antitumor agent. However, the presence of anti-measles neutralizing antibodies (NAbs) against the hemagglutinin (H) protein of OMV is a major barrier to the therapeutic application of OMV in clinical practice. In order to overcome this challenge, specific types of cells have been used as carriers for OMV. Differential loading strategies appear to result in different therapeutic outcomes; despite this, only few studies have reported practical ex vivo loading strategies required for effective treatment. To this end, we systematically evaluated the antitumor efficacy of OMV using different loading strategies; this involved varying the in vitro loading duration and loading dose of OMV. We found that improved oncolysis of carrier cells was achieved by a prolonged loading duration in the absence of NAbs. However, the enhanced oncolytic effect was abrogated in the presence of NAbs. Further, we found that the expression of H protein on the surface of carrier cells was predominantly determined by the loading duration rather than the loading dose. Finally, we showed that NAbs blocked viral transfer by targeting H protein prior to the occurrence of cell-to-cell interactions. Our results provide comprehensive information on the determinants of an effective loading strategy for carrier cell-based virotherapy; these results may be useful for guiding the application of OMV as an antitumor agent in clinical practice.
Collapse
|
13
|
Xu F, Tanaka S, Watanabe H, Shimane Y, Iwasawa M, Ohishi K, Maruyama T. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors. Viruses 2018; 10:E236. [PMID: 29751531 PMCID: PMC5977229 DOI: 10.3390/v10050236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/18/2023] Open
Abstract
Measles virus (MV) causes an acute and highly devastating contagious disease in humans. Employing the crystal structures of three human receptors, signaling lymphocyte-activation molecule (SLAM), CD46, and Nectin-4, in complex with the measles virus hemagglutinin (MVH), we elucidated computationally the details of binding energies between the amino acid residues of MVH and those of the receptors with an ab initio fragment molecular orbital (FMO) method. The calculated inter-fragment interaction energies (IFIEs) revealed a number of significantly interacting amino acid residues of MVH that played essential roles in binding to the receptors. As predicted from previously reported experiments, some important amino-acid residues of MVH were shown to be common but others were specific to interactions with the three receptors. Particularly, some of the (non-polar) hydrophobic residues of MVH were found to be attractively interacting with multiple receptors, thus indicating the importance of the hydrophobic pocket for intermolecular interactions (especially in the case of Nectin-4). In contrast, the electrostatic interactions tended to be used for specific molecular recognition. Furthermore, we carried out FMO calculations for in silico experiments of amino acid mutations, finding reasonable agreements with virological experiments concerning the substitution effect of residues. Thus, the present study demonstrates that the electron-correlated FMO method is a powerful tool to search exhaustively for amino acid residues that contribute to interactions with receptor molecules. It is also applicable for designing inhibitors of MVH and engineered MVs for cancer therapy.
Collapse
Affiliation(s)
- Fengqi Xu
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hirofumi Watanabe
- Education Center on Computational Science and Engineering, Kobe University, 7-1-48, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Yasuhiro Shimane
- Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima, Yokosuka, Kanagawa 237-0061, Japan.
| | - Misako Iwasawa
- Center for Earth Information Science and Technology, Japan Agency for Marine-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan.
| | - Kazue Ohishi
- Faculty of Engineering, Tokyo Polytechnic University, 1583, Iiyama, Atsugi, Kanagawa 243-0297, Japan.
| | - Tadashi Maruyama
- Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology, 2-15, Natsushima, Yokosuka, Kanagawa 237-0061, Japan.
| |
Collapse
|
14
|
Lundstrom K. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics 2018; 12:43-60. [PMID: 29445265 PMCID: PMC5810530 DOI: 10.2147/btt.s140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec.
Collapse
|
15
|
Abstract
Gene therapy based on viral vectors has demonstrated steady progress recently, not only in the area of cancers. A multitude of viral vectors has been engineered for both preventive and therapeutic applications. Two main approaches comprise of viral vector-based delivery of toxic or anticancer genes or immunization with anticancer antigens. Tumor growth inhibition and tumor regression have been observed, providing improved survival rates in animal tumor models. Furthermore, vaccine-based cancer immunotherapy has demonstrated both tumor regression and protection against challenges with lethal doses of tumor cells. Several clinical trials with viral vectors have also been conducted. Additionally, viral vector-based cancer drugs have been approved. This review gives an overview of different viral vector systems and their applications in cancer gene therapy.
Collapse
|
16
|
Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R. Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach. PLoS One 2017; 12:e0184347. [PMID: 28934210 PMCID: PMC5608221 DOI: 10.1371/journal.pone.0184347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/22/2017] [Indexed: 01/26/2023] Open
Abstract
In the present paper, we address by means of mathematical modeling the following main question: How can oncolytic virus infection of some normal cells in the vicinity of tumor cells enhance oncolytic virotherapy? We formulate a mathematical model describing the interactions between the oncolytic virus, the tumor cells, the normal cells, and the antitumoral and antiviral immune responses. The model consists of a system of delay differential equations with one (discrete) delay. We derive the model's basic reproductive number within tumor and normal cell populations and use their ratio as a metric for virus tumor-specificity. Numerical simulations are performed for different values of the basic reproduction numbers and their ratios to investigate potential trade-offs between tumor reduction and normal cells losses. A fundamental feature unravelled by the model simulations is its great sensitivity to parameters that account for most variation in the early or late stages of oncolytic virotherapy. From a clinical point of view, our findings indicate that designing an oncolytic virus that is not 100% tumor-specific can increase virus particles, which in turn, can further infect tumor cells. Moreover, our findings indicate that when infected tissues can be regenerated, oncolytic viral infection of normal cells could improve cancer treatment.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- DST/NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch, Stellenbosch, South Africa
| | - Amina Eladdadi
- The College of Saint Rose, Albany, NY, United States of America
| | | | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Oncolytic Alphaviruses in Cancer Immunotherapy. Vaccines (Basel) 2017; 5:vaccines5020009. [PMID: 28417936 PMCID: PMC5492006 DOI: 10.3390/vaccines5020009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses show specific targeting and killing of tumor cells and therefore provide attractive assets for cancer immunotherapy. In parallel to oncolytic viral vectors based on adenoviruses and herpes simplex viruses, oncolytic RNA viruses and particularly alphaviruses have been evaluated as delivery vehicles. Immunization studies in experimental rodent models for various cancers including glioblastoma, hematologic, hepatocellular, colon, cervix, and lung cancer as well as melanoma have been conducted with naturally occurring oncolytic alphavirus strains such as M1 and Sindbis AR339. Moreover, animals were vaccinated with engineered oncolytic replication-deficient and -competent Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus vectors expressing various antigens. Vaccinations elicited strong antibody responses and resulted in tumor growth inhibition, tumor regression and even complete tumor eradication. Vaccination also led to prolonged survival in several animal models. Furthermore, preclinical evaluation demonstrated both prophylactic and therapeutic efficacy of oncolytic alphavirus administration. Clinical trials in humans have mainly been limited to safety studies so far.
Collapse
|
18
|
Persistent Morbillivirus Infection Leads to Altered Cortactin Distribution in Histiocytic Sarcoma Cells with Decreased Cellular Migration Capacity. PLoS One 2016; 11:e0167517. [PMID: 27911942 PMCID: PMC5135102 DOI: 10.1371/journal.pone.0167517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/15/2016] [Indexed: 12/04/2022] Open
Abstract
Histiocytic sarcomas represent rare but fatal neoplasms in humans. Based on the absence of a commercially available human histiocytic sarcoma cell line the frequently affected dog displays a suitable translational model. Canine distemper virus, closely related to measles virus, is a highly promising candidate for oncolytic virotherapy. Therapeutic failures in patients are mostly associated with tumour invasion and metastasis often induced by misdirected cytoskeletal protein activities. Thus, the impact of persistent canine distemper virus infection on the cytoskeletal protein cortactin, which is frequently overexpressed in human cancers with poor prognosis, was investigated in vitro in a canine histiocytic sarcoma cell line (DH82). Though phagocytic activity, proliferation and apoptotic rate were unaltered, a significantly reduced migration activity compared to controls (6 hours and 1 day after seeding) accompanied by a decreased number of cortactin mRNA transcripts (1 day) was detected. Furthermore, persistently canine distemper virus infected DH82 cells showed a predominant diffuse intracytoplasmic cortactin distribution at 6 hours and 1 day compared to controls with a prominent membranous expression pattern (p ≤ 0.05). Summarized, persistent canine distemper virus infection induces reduced tumour cell migration associated with an altered intracellular cortactin distribution, indicating cytoskeletal changes as one of the major pathways of virus-associated inhibition of tumour spread.
Collapse
|
19
|
Replicon RNA Viral Vectors as Vaccines. Vaccines (Basel) 2016; 4:vaccines4040039. [PMID: 27827980 PMCID: PMC5192359 DOI: 10.3390/vaccines4040039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.
Collapse
|
20
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
21
|
Zamarin D, Pesonen S. Replication-Competent Viruses as Cancer Immunotherapeutics: Emerging Clinical Data. Hum Gene Ther 2016; 26:538-49. [PMID: 26176173 PMCID: PMC4968310 DOI: 10.1089/hum.2015.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Replication-competent (oncolytic) viruses (OV) as cancer immunotherapeutics have gained an increasing level of attention over the last few years while the clinical evidence of virus-mediated antitumor immune responses is still anecdotal. Multiple clinical studies are currently ongoing and more immunomonitoring results are expected within the next five years. All viruses can be recognized by the immune system and are therefore potential candidates for immune therapeutics. However, each virus activates innate immune system by using different combination of recognition receptors/pathways which leads to qualitatively different adaptive immune responses. This review summarizes immunological findings in cancer patients following treatment with replication-competent viruses.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- 1 Memorial Sloan Kettering Cancer Center , New York, New York
| | | |
Collapse
|
22
|
Buijs PRA, Verhagen JHE, van Eijck CHJ, van den Hoogen BG. Oncolytic viruses: From bench to bedside with a focus on safety. Hum Vaccin Immunother 2016; 11:1573-84. [PMID: 25996182 DOI: 10.1080/21645515.2015.1037058] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oncolytic viruses are a relatively new class of anti-cancer immunotherapy agents. Several viruses have undergone evaluation in clinical trials in the last decades, and the first agent is about to be approved to be used as a novel cancer therapy modality. In the current review, an overview is presented on recent (pre)clinical developments in the field of oncolytic viruses that have previously been or currently are being evaluated in clinical trials. Special attention is given to possible safety issues like toxicity, environmental shedding, mutation and reversion to wildtype virus.
Collapse
Key Words
- CAR, Coxsackie Adenovirus receptor
- CD, cytosine deaminase
- CEA, carcinoembryonic antigen
- CVA, Coxsackievirus type A
- DAF, decay accelerating factor
- DNA, DNA
- EEV, extracellular enveloped virus
- EGF, epidermal growth factor
- EGF-R, EGF receptor
- EMA, European Medicines Agency
- FDA, Food and Drug Administration
- GBM, glioblastoma multiforme
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HA, hemagglutinin
- HAdV, Human (mast)adenovirus
- HER2, human epidermal growth factor receptor 2
- HSV, herpes simplex virus
- ICAM-1, intercellular adhesion molecule 1
- IFN, interferon
- IRES, internal ribosome entry site
- KRAS, Kirsten rat sarcoma viral oncogene homolog
- Kb, kilobase pairs
- MeV, Measles virus
- MuLV, Murine leukemia virus
- NDV, Newcastle disease virus
- NIS, sodium/iodide symporter
- NSCLC, non-small cell lung carcinoma
- OV, oncolytic virus
- PEG, polyethylene glycol
- PKR, protein kinase R
- PV, Polio virus
- RCR, replication competent retrovirus
- RCT, randomized controlled trial
- RGD, arginylglycylaspartic acid (Arg-Gly-Asp)
- RNA, ribonucleic acid
- Rb, retinoblastoma
- SVV, Seneca Valley virus
- TGFα, transforming growth factor α
- VGF, Vaccinia growth factor
- VSV, Vesicular stomatitis virus
- VV, Vaccinia virus
- cancer
- crHAdV, conditionally replicating HAdV
- dsDNA, double stranded DNA
- dsRNA, double stranded RNA
- environment
- hIFNβ, human IFN β
- immunotherapy
- mORV, Mammalian orthoreovirus
- mORV-T3D, mORV type 3 Dearing
- oHSV, oncolytic HSV
- oncolytic virotherapy
- oncolytic virus
- rdHAdV, replication-deficient HAdV
- review
- safety
- shedding
- ssRNA, single stranded RNA
- tk, thymidine kinase
Collapse
Affiliation(s)
- Pascal R A Buijs
- a Department of Surgery; Erasmus MC; University Medical Center ; Rotterdam , The Netherlands
| | | | | | | |
Collapse
|
23
|
Abstract
RNA viruses are characterized by their efficient capacity to replicate at high levels in mammalian cells leading to high expression of foreign genes and making them attractive candidates for vectors engineered for vaccine development and gene therapy. Particularly, alphaviruses, flaviviruses, rhabdoviruses and measles viruses have been applied for immunization against infectious agents and tumors. Application of replicon RNA, DNA/RNA-layered vectors and replication-deficient viral particles have provided strong immune responses and protection against challenges with lethal doses of viral pathogens or tumor cells. Moreover, tumor regression has been obtained when RNA replicons have been administered in the form of RNA, DNA and viral particles, including replication-proficient oncolytic particles.
Collapse
|
24
|
Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic Immunotherapy for Treatment of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:241-83. [PMID: 27240460 DOI: 10.1007/978-94-017-7555-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.
Collapse
Affiliation(s)
- A Tsun
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - X N Miao
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - C M Wang
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - D C Yu
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China.
| |
Collapse
|
25
|
Achard C, Boisgerault N, Delaunay T, Roulois D, Nedellec S, Royer PJ, Pain M, Combredet C, Mesel-Lemoine M, Cellerin L, Magnan A, Tangy F, Grégoire M, Fonteneau JF. Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response. Oncotarget 2015; 6:44892-904. [PMID: 26539644 PMCID: PMC4792599 DOI: 10.18632/oncotarget.6285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
Attenuated measles virus (MV) is currently being evaluated as an oncolytic virus in clinical trials and could represent a new therapeutic approach for malignant pleural mesothelioma (MPM). Herein, we screened the sensitivity to MV infection and replication of twenty-two human MPM cell lines and some healthy primary cells. We show that MV replicates in fifteen of the twenty-two MPM cell lines. Despite overexpression of CD46 by a majority of MPM cell lines compared to healthy cells, we found that the sensitivity to MV replication did not correlate with this overexpression. We then evaluated the antiviral type I interferon (IFN) responses of MPM cell lines and healthy cells. We found that healthy cells and the seven insensitive MPM cell lines developed a type I IFN response in presence of the virus, thereby inhibiting replication. In contrast, eleven of the fifteen sensitive MPM cell lines were unable to develop a complete type I IFN response in presence of MV. Finally, we show that addition of type I IFN onto MV sensitive tumor cell lines inhibits replication. These results demonstrate that defects in type I IFN response are frequent in MPM and that MV takes advantage of these defects to exert oncolytic activity.
Collapse
Affiliation(s)
- Carole Achard
- INSERM, UMR892, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- CNRS, UMR6299, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- Université de Nantes, Nantes, France
| | - Nicolas Boisgerault
- INSERM, UMR892, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- CNRS, UMR6299, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- Université de Nantes, Nantes, France
| | - Tiphaine Delaunay
- INSERM, UMR892, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- CNRS, UMR6299, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- Université de Nantes, Nantes, France
| | - David Roulois
- INSERM, UMR892, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- CNRS, UMR6299, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- Université de Nantes, Nantes, France
| | - Steven Nedellec
- Université de Nantes, Nantes, France
- INSERM UMS016, SFR Santé, Nantes, France
| | - Pierre-Joseph Royer
- Université de Nantes, Nantes, France
- INSERM UMRS1087, Institut du Thorax, Nantes, France
| | - Mallory Pain
- Université de Nantes, Nantes, France
- INSERM UMRS1087, Institut du Thorax, Nantes, France
| | - Chantal Combredet
- CNRS UMR3569, Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
| | - Mariana Mesel-Lemoine
- CNRS UMR3569, Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
| | - Laurent Cellerin
- CHU de Nantes, Service d'Oncologie Médicale Thoracique et Digestive, Nantes, France
| | - Antoine Magnan
- Université de Nantes, Nantes, France
- INSERM UMRS1087, Institut du Thorax, Nantes, France
- CHU de Nantes, Service de Pneumologie, Nantes, France
| | - Frédéric Tangy
- CNRS UMR3569, Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
| | - Marc Grégoire
- INSERM, UMR892, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- CNRS, UMR6299, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- Université de Nantes, Nantes, France
| | - Jean-François Fonteneau
- INSERM, UMR892, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- CNRS, UMR6299, Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
- Université de Nantes, Nantes, France
| |
Collapse
|
26
|
Rajani KR, Vile RG. Harnessing the Power of Onco-Immunotherapy with Checkpoint Inhibitors. Viruses 2015; 7:5889-901. [PMID: 26580645 PMCID: PMC4664987 DOI: 10.3390/v7112914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Oncolytic viruses represent a diverse class of replication competent viruses that curtail tumor growth. These viruses, through their natural ability or through genetic modifications, can selectively replicate within tumor cells and induce cell death while leaving normal cells intact. Apart from the direct oncolytic activity, these viruses mediate tumor cell death via the induction of innate and adaptive immune responses. The field of oncolytic viruses has seen substantial advancement with the progression of numerous oncolytic viruses in various phases of clinical trials. Tumors employ a plethora of mechanisms to establish growth and subsequently metastasize. These include evasion of immune surveillance by inducing up-regulation of checkpoint proteins which function to abrogate T cell effector functions. Currently, antibodies blocking checkpoint proteins such as anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death-1 (PD-1) have been approved to treat cancer and shown to impart durable clinical responses. These antibodies typically need pre-existing active immune tumor microenvironment to establish durable clinical outcomes and not every patient responds to these therapies. This review provides an overview of published pre-clinical studies demonstrating superior therapeutic efficacy of combining oncolytic viruses with checkpoint blockade compared to monotherapies. These studies provide compelling evidence that oncolytic therapy can be potentiated by coupling it with checkpoint therapies.
Collapse
Affiliation(s)
- Karishma R Rajani
- Department of Molecular Medicine; Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Richard G Vile
- Department of Molecular Medicine; Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Toro Bejarano M, Merchan JR. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic Virother 2015; 4:169-81. [PMID: 27512680 PMCID: PMC4918394 DOI: 10.2147/ov.s66045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The oncolytic virotherapy field has made significant advances in the last decade, with a rapidly increasing number of early- and late-stage clinical trials, some of them showing safety and promising therapeutic efficacy. Targeting tumor vasculature by oncolytic viruses (OVs) is an attractive strategy that offers several advantages over nontargeted viruses, including improved tumor viral entry, direct antivascular effects, and enhanced antitumor efficacy. Current understanding of the biological mechanisms of tumor neovascularization, novel vascular targets, and mechanisms of resistance has allowed the development of oncolytic viral vectors designed to target tumor neovessels. While some OVs (such as vaccinia and vesicular stomatitis virus) can intrinsically target tumor vasculature and induce vascular disruption, the majority of reported vascular-targeted viruses are the result of genetic manipulation of their viral genomes. Such strategies include transcriptional or transductional endothelial targeting, "armed" viruses able to downregulate angiogenic factors, or to express antiangiogenic molecules. The above strategies have shown preclinical safety and improved antitumor efficacy, either alone, or in combination with standard or targeted agents. This review focuses on the recent efforts toward the development of vascular-targeted OVs for cancer treatment and provides a translational/clinical perspective into the future development of new generation biological agents for human cancers.
Collapse
Affiliation(s)
- Marcela Toro Bejarano
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Jaime R Merchan
- Division of Hematology-Oncology, Department of Medicine, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
28
|
Oncolysis by paramyxoviruses: preclinical and clinical studies. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30019-5. [PMID: 26640815 PMCID: PMC4667943 DOI: 10.1038/mto.2015.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical studies demonstrate that a broad spectrum of human malignant cells can be killed by oncolytic paramyxoviruses, which include cells of ecto-, endo-, and mesodermal origin. In clinical trials, significant reduction in size or even complete elimination of primary tumors and established metastases are reported. Different routes of viral administration (intratumoral, intravenous, intradermal, intraperitoneal, or intrapleural), and single- versus multiple-dose administration schemes have been explored. The reported side effects are grade 1 and 2, with the most common among them being mild fever. Some advantages in using paramyxoviruses as oncolytic agents versus representatives of other viral families exist. The cytoplasmic replication results in a lack of host genome integration and recombination, which makes paramyxoviruses safer and more attractive candidates for widely used therapeutic oncolysis in comparison with retroviruses or some DNA viruses. The list of oncolytic paramyxovirus representatives includes attenuated measles virus (MV), mumps virus (MuV), low pathogenic Newcastle disease (NDV), and Sendai (SeV) viruses. Metastatic cancer cells frequently overexpress on their surface some molecules that can serve as receptors for MV, MuV, NDV, and SeV. This promotes specific viral attachment to the malignant cell, which is frequently followed by specific viral replication. The paramyxoviruses are capable of inducing efficient syncytium-mediated lyses of cancer cells and elicit strong immunomodulatory effects that dramatically enforce anticancer immune surveillance. In general, preclinical studies and phase 1–3 clinical trials yield very encouraging results and warrant continued research of oncolytic paramyxoviruses as a particularly valuable addition to the existing panel of cancer-fighting approaches.
Collapse
|
29
|
Hutzen B, Raffel C, Studebaker AW. Advances in the design and development of oncolytic measles viruses. Oncolytic Virother 2015; 4:109-18. [PMID: 27512675 PMCID: PMC4918395 DOI: 10.2147/ov.s66078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV) is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic.
Collapse
Affiliation(s)
- Brian Hutzen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Raffel
- Department of Neurological Surgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
30
|
Du J, Zhang Y, Xu C, Xu X. Apoptin-modified human mesenchymal stem cells inhibit growth of lung carcinoma in nude mice. Mol Med Rep 2015; 12:1023-9. [PMID: 25816208 PMCID: PMC4438975 DOI: 10.3892/mmr.2015.3501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) represent a novel carrier for gene therapy and apoptin is a potential tumor-selective apoptosis-inducing protein. In the present study, the anti-tumoral effect of MSCs modified with apoptin against lung carcinoma was evaluated. Apoptin protein was expressed in a prokaryotic expression system and purified by affinity chromatography. Subsequently, anti-apoptin antibody was prepared by immunizing BALB/c mice with purified apoptin protein. Human MSCs were isolated, amplified and transduced with lentiviral vectors encoding full-length apoptin, in which the secretory signal and protein transduction sequence were added into the amino terminus to assist apoptin in entering into target cells. The differentiation and apoptin expression of apoptin-modified MSCs were confirmed. Subsequently, the anti-tumor effect of apoptin-modified MSCs was measured in vitro and in vivo. Following modification with apoptin, MSCs retained their differentiation capacity, and successfully synthesized and secreted apoptin, which entered target cells and selectively induced lung cancer cell apoptosis through activating caspase-3. The percentage of tumor cells with activated caspase-3 in the apoptin-modified MSCs group was markedly higher than that in the MSCs group (16.5±2.9% at 24 h and 27.3±2.0% at 48 h vs. 3.4±1.1% at 24 h and 2.2±0.6% at 48 h). When injected into nude mice, apoptin-modified MSCs inhibited the growth of lung carcinoma compared with that in the control groups (0.14±0.02 g vs. 0.21±0.04 g vs. 0.31±0.05 g, P<0.05). The results of the present study provided preclinical support of apoptin-based cancer therapy with MSCs as cellular vehicles.
Collapse
Affiliation(s)
- Jingchun Du
- Department of Laboratory Medicine, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Yanling Zhang
- Department of Laboratory Medicine, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Chun Xu
- Department of Clinical Immunology, School of Kingmed Diagnostics, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Xia Xu
- Department of Clinical Immunology, School of Kingmed Diagnostics, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| |
Collapse
|
31
|
Weiss K, Gerstenberger J, Salzig D, Mühlebach MD, Cichutek K, Pörtner R, Czermak P. Oncolytic measles viruses produced at different scales under serum‐free conditions. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Katja Weiss
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyMittelhessen University of Applied Sciences Giessen Germany
| | - Jarrid Gerstenberger
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyMittelhessen University of Applied Sciences Giessen Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyMittelhessen University of Applied Sciences Giessen Germany
| | - Michael D. Mühlebach
- Oncolytic Measles Viruses and Vectored VaccinesPaul‐Ehrlich‐Institut Langen Germany
| | - Klaus Cichutek
- Division of Medical BiotechnologyPaul‐Ehrlich‐Institut Langen Germany
| | - Ralf Pörtner
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology Hamburg Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical TechnologyMittelhessen University of Applied Sciences Giessen Germany
- Department of Chemical EngineeringKansas State University Manhattan KS USA
- Faculty of Biology and ChemistryJustus‐Liebig‐University of Giessen Germany
| |
Collapse
|
32
|
Clements D, Helson E, Gujar SA, Lee PW. Reovirus in cancer therapy: an evidence-based review. Oncolytic Virother 2014; 3:69-82. [PMID: 27512664 PMCID: PMC4918368 DOI: 10.2147/ov.s51321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reovirus, a double-stranded ribonucleic acid virus and benign human pathogen, preferentially infects and kills cancer cells in its unmodified form, and is one of the leading oncolytic viruses currently undergoing clinical trials internationally. With 32 clinical trials completed or ongoing thus far, reovirus has demonstrated clinical therapeutic applicability against a multitude of cancers, including but not limited to breast cancer, prostate cancer, pancreatic cancer, malignant gliomas, advanced head and neck cancers, and metastatic ovarian cancers. Phase I trials have demonstrated that reovirus is safe to use via both intralesional/intratumoral and systemic routes of administration, with the most common adverse reactions being grade I/II toxicities, such as flu-like illness (fatigue, nausea, vomiting, headache, fever/chills, dizziness), diarrhea, and lymphopenia. In subsequent Phase II trials, reovirus administration was demonstrated to successfully decrease tumor size and promote tumor necrosis, thereby complementing compelling preclinical evidence of tumor destruction by the virus. Importantly, reovirus has been shown to be effective as a monotherapy, as well as in combination with other anticancer options, including radiation and chemotherapeutic agents, such as gemcitabine, docetaxel, paclitaxel, and carboplatin. Of note, the first Phase III clinical trial using reovirus in combination with paclitaxel and carboplatin for the treatment of head and neck cancers is under way. Based on the evidence from clinical trials, we comprehensively review the use of reovirus as an anticancer agent, acknowledge key obstacles, and suggest future directions to ultimately potentiate the efficacy of reovirus oncotherapy.
Collapse
Affiliation(s)
- Derek Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erin Helson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Strategy and Organizational Performance, IWK Health Center, Halifax, Nova Scotia, Canada
| | - Patrick Wk Lee
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
33
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|
34
|
High scFv-receptor affinity does not enhance the antitumor activity of HER2-retargeted measles virus. Cancer Gene Ther 2014; 21:256-60. [PMID: 24874841 PMCID: PMC4096840 DOI: 10.1038/cgt.2014.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
Abstract
The relationship between ligand-receptor affinity and antitumor potency of an oncolytic virus was investigated using a panel of six HER2/neu (HER2) targeted measles viruses (MV) displaying single-chain antibodies (scFv) that bind to the same epitope on HER2, but with affinities ranging from 10−6 to 10−11 M. All viruses were able to infect SKOV3ip.1 human ovarian cancer cells in vitro, but only the high affinity MV (Kd > 10−8 M) induced cytopathic effects of syncytia formation in the cell monolayers. In contrast, all six viruses were therapeutically active in vivo against orthotopic human ovarian SKOV3ip.1 tumor xenografts in athymic mice compared to saline treated controls. The oncolytic activities of MV displaying the high affinity scFv (Kd=10−9, 10−10, 10−11 M) were not significantly superior to MV displaying scFv with Kd of 10−8 M or less. Results from this study suggest that increasing the receptor affinity of the attachment protein of an oncolytic measles virus has minimal impact on its in vivo efficacy against a tumor that expresses the targeted receptor.
Collapse
|
35
|
Moehler M, Goepfert K, Heinrich B, Breitbach CJ, Delic M, Galle PR, Rommelaere J. Oncolytic virotherapy as emerging immunotherapeutic modality: potential of parvovirus h-1. Front Oncol 2014; 4:92. [PMID: 24822170 PMCID: PMC4013456 DOI: 10.3389/fonc.2014.00092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/14/2014] [Indexed: 12/11/2022] Open
Abstract
Human tumors develop multiple strategies to evade recognition and efficient suppression by the immune system. Therefore, a variety of immunotherapeutic strategies have been developed to reactivate and reorganize the human immune system. The recent development of new antibodies against immune check points may help to overcome the immune silencing induced by human tumors. Some of these antibodies have already been approved for treatment of various solid tumor entities. Interestingly, targeting antibodies may be combined with standard chemotherapy or radiation protocols. Furthermore, recent evidence indicates that intratumoral or intravenous injections of replicative oncolytic viruses such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cellular tumor resistance mechanisms and induce immunogenic tumor cell death resulting in the recognition of newly released tumor antigens. This is in particular the case of the oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate an anti-tumor immune response through increased presentation of tumor-associated antigens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current research and clinical studies aim to assess the potential of oncolytic virotherapy and its combination with immunotherapeutic agents or conventional treatments to further induce effective antitumoral immune responses.
Collapse
Affiliation(s)
- Markus Moehler
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Katrin Goepfert
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Bernd Heinrich
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | | | - Maike Delic
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Peter Robert Galle
- 1st Department of Internal Medicine, University Medical Center of the Johannes Gutenberg, University of Mainz , Mainz , Germany
| | - Jean Rommelaere
- Division of Tumor Virology, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
36
|
A single amino acid substitution in the measles virus F2 protein reciprocally modulates membrane fusion activity in pathogenic and oncolytic strains. Virus Res 2014; 180:43-8. [DOI: 10.1016/j.virusres.2013.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/23/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022]
|
37
|
Smith TT, Roth JC, Friedman GK, Gillespie GY. Oncolytic viral therapy: targeting cancer stem cells. Oncolytic Virother 2014; 2014:21-33. [PMID: 24834430 PMCID: PMC4018757 DOI: 10.2147/ov.s52749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression.
Collapse
Affiliation(s)
- Tyrel T Smith
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin C Roth
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
38
|
Takeda S, Kanbayashi D, Kurata T, Yoshiyama H, Komano J. Enhanced susceptibility of B lymphoma cells to measles virus by Epstein-Barr virus type III latency that upregulates CD150/signaling lymphocytic activation molecule. Cancer Sci 2014; 105:211-8. [PMID: 24238277 PMCID: PMC4317819 DOI: 10.1111/cas.12324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 01/14/2023] Open
Abstract
Measles virus (MV) is one of the candidates for the application of oncolytic virotherapy (OVT). Although an advanced clinical study has been reported on a T-cell lymphoma, the potential of MV OVT against B-cell lymphomas remains to be clarified. We found that an EBV-transformed B lymphoblastoid cell line, a model for diffuse large B-cell lymphoma, and EBV-positive Burkitt's lymphoma cells bearing type III latency were highly susceptible to the cytolysis induced by an MV vaccine strain CAM-70. As analyzed by EBV-positive and -negative counterparts of the same cytogenetic background, type III EBV latency, not type I, was shown to augment the susceptibility of B lymphoma cells to MV-induced cytolysis. Cell surface levels of CD150/signaling lymphocytic activation molecule, a receptor of MV, were upregulated in B lymphoma cell lines with type III EBV latency by 3.8-fold, on average. The cytolytic activity of CD150-tropic WT MV was akin to that of CD46- and CD150-tropic CAM-70, suggesting that CD150 is critical for the susceptibility to MV-induced cytolysis. Among EBV-encoded genes, latent membrane protein 1 was responsible for the CD150 upregulation. It was notable that the majority of B lymphoma cell lines of type III EBV latency showed higher susceptibility to the non-Edmonston-derived CAM-70 than to the Edmonston-derived Schwarz strain. This is the first report indicating the potential of non-Edmonston MV strain for the application of OVT. Furthermore, a cellular regulator of MV replication was implicated that functions in a vaccine strain-specific fashion. Altogether, the MV OVT should serve as an alternative therapy against EBV-positive diffuse large B-cell lymphoma with type III EBV latency.
Collapse
Affiliation(s)
- Satoshi Takeda
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Touchefeu Y, Khan AA, Borst G, Zaidi SH, McLaughlin M, Roulstone V, Mansfield D, Kyula J, Pencavel T, Karapanagiotou EM, Clayton J, Federspiel MJ, Russell SJ, Garrett M, Collins I, Harrington KJ. Optimising measles virus-guided radiovirotherapy with external beam radiotherapy and specific checkpoint kinase 1 inhibition. Radiother Oncol 2013; 108:24-31. [PMID: 23849174 DOI: 10.1016/j.radonc.2013.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 05/26/2013] [Accepted: 05/28/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE We previously reported a therapeutic strategy comprising replication-defective NIS-expressing adenovirus combined with radioiodide, external beam radiotherapy (EBRT) and DNA repair inhibition. We have now evaluated NIS-expressing oncolytic measles virus (MV-NIS) combined with NIS-guided radioiodide, EBRT and specific checkpoint kinase 1 (Chk1) inhibition in head and neck and colorectal models. MATERIALS AND METHODS Anti-proliferative/cytotoxic effects of individual agents and their combinations were measured by MTS, clonogenic and Western analysis. Viral gene expression was measured by radioisotope uptake and replication by one-step growth curves. Potential synergistic interactions were tested in vitro by Bliss independence analysis and in in vivo therapeutic studies. RESULTS EBRT and MV-NIS were synergistic in vitro. Furthermore, EBRT increased NIS expression in infected cells. SAR-020106 was synergistic with EBRT, but also with MV-NIS in HN5 cells. MV-NIS mediated (131)I-induced cytotoxicity in HN5 and HCT116 cells and, in the latter, this was enhanced by SAR-020106. In vivo studies confirmed that MV-NIS, EBRT and Chk1 inhibition were effective in HCT116 xenografts. The quadruplet regimen of MV-NIS, virally-directed (131)I, EBRT and SAR-020106 had significant anti-tumour activity in HCT116 xenografts. CONCLUSION This study strongly supports translational and clinical research on MV-NIS combined with radiation therapy and radiosensitising agents.
Collapse
Affiliation(s)
- Yann Touchefeu
- The Institute of Cancer Research, Division of Cancer Biology, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Friedrich K, Hanauer JR, Prüfer S, Münch RC, Völker I, Filippis C, Jost C, Hanschmann KM, Cattaneo R, Peng KW, Plückthun A, Buchholz CJ, Cichutek K, Mühlebach MD. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther 2013; 21:849-59. [PMID: 23380817 DOI: 10.1038/mt.2013.16] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Many naturally occurring viruses have a preferential, although nonexclusive, tropism for tumors and tumor cells. In addition, specific targeting of cancer cells can be achieved at the virus entry level. We optimized retargeting of cell entry by elongating the measles virus attachment protein with designed ankyrin repeat proteins (DARPins), while simultaneously ablating entry through the natural receptors. DARPin-targeted viruses were strongly attenuated in off-target tissue, thereby enhancing safety, but completely eliminated tumor xenografts. Taking advantage of the unique properties of DARPins of being fused without generating folding problems, we generated a virus simultaneous targeting two different tumor markers. The bispecific virus retained the original oncolytic efficacy, while providing proof of concept for a strategy to counteract issues of resistance development. Thus, DARPin-targeting opens new prospects for the development of personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Katrin Friedrich
- Oncolytic Measles Viruses and Vaccine Vectors, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Guillerme JB, Boisgerault N, Roulois D, Ménager J, Combredet C, Tangy F, Fonteneau JF, Gregoire M. Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells. Clin Cancer Res 2013; 19:1147-58. [PMID: 23339127 DOI: 10.1158/1078-0432.ccr-12-2733] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Plasmacytoid dendritic cells (pDC) are antigen-presenting cells specialized in antiviral response. The measles virus vaccine is proposed as an antitumor agent to target and specifically kill tumor cells without infecting healthy cells. EXPERIMENTAL DESIGN Here, we investigated, in vitro, the effects of measles virus vaccine-infected tumor cells on the phenotype and functions of human pDC. We studied maturation and tumor antigen cross-presentation by pDC, exposed either to the virus alone, or to measles virus vaccine-infected or UV-irradiated tumor cells. RESULTS We found that only measles virus vaccine-infected cells induced pDC maturation with a strong production of IFN-α, whereas UV-irradiated tumor cells were unable to activate pDC. This IFN-α production was triggered by the interaction of measles virus vaccine single-stranded RNA (ssRNA) with TLR7. We observed that measles virus vaccine-infected tumor cells were phagocytosed by pDC. Interestingly, we showed cross-presentation of the tumor antigen NYESO-1 to a specific CD8(+) T-cell clone when pDC were cocultured with measles virus vaccine-infected tumor cells, whereas pDC were unable to cross-present NYESO-1 after coculture with UV-irradiated tumor cells. CONCLUSIONS Altogether, our results suggest that the use of measles virus vaccine in antitumor virotherapy induces immunogenic tumor cell death, allowing pDC to mature, produce high amounts of IFN-α, and cross-present tumor antigen, thus representing a mode of recruiting these antigen-presenting cells in the immune response. Clin Cancer Res; 19(5); 1147-58. ©2012 AACR.
Collapse
Affiliation(s)
- Jean-Baptiste Guillerme
- Institut National de la Santé et de la Recherche Medicale, UMR892, Centre National de la Recherche Scientifique, UMR6299, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zeyaullah M, Patro M, Ahmad I, Ibraheem K, Sultan P, Nehal M, Ali A. Oncolytic viruses in the treatment of cancer: a review of current strategies. Pathol Oncol Res 2012; 18:771-81. [PMID: 22714538 DOI: 10.1007/s12253-012-9548-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/30/2012] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses are live, replication-competent viruses that replicate selectively in tumor cells leading to the destruction of the tumor cells. Tumor-selective replicating viruses offer appealing advantages over conventional cancer therapy and are promising a new approach for the treatment of human cancer. The development of virotherapeutics is based on several strategies. Virotherapy is not a new concept, but recent technical advances in the genetic modification of oncolytic viruses have improved their tumor specificity, leading to the development of new weapons for the war against cancer. Clinical trials with oncolytic viruses demonstrate the safety and feasibility of an effective virotherapeutic approach. Strategies to overcome potential obstacles and challenges to virotherapy are currently being explored. Systemic administrations of oncolytic viruses will successfully extend novel treatment against a range of tumors. Combination therapy has shown some encouraging antitumor responses by eliciting strong immunity against established cancer.
Collapse
Affiliation(s)
- Md Zeyaullah
- Department of Microbiology, Faculty of Medicine, Omar Al-Mukhtar University, Al-Baida, Libya.
| | | | | | | | | | | | | |
Collapse
|
43
|
Rojas JJ, Thorne SH. Theranostic potential of oncolytic vaccinia virus. Theranostics 2012; 2:363-73. [PMID: 22509200 PMCID: PMC3326721 DOI: 10.7150/thno.3724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 11/17/2022] Open
Abstract
Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed.
Collapse
|