1
|
Yuan H, Zheng Z, Bao Y, Zhao X, Lv J, Tang C, Wang N, Liang Z, Li H, Xiang J, Qian Y, Shi Y. Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice. Int J Mol Sci 2024; 25:2177. [PMID: 38396854 PMCID: PMC10889564 DOI: 10.3390/ijms25042177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In direct seeding, hypoxia is a major stress faced by rice plants. Therefore, dissecting the response mechanism of rice to hypoxia stress and the molecular regulatory network is critical to the development of hypoxia-tolerant rice varieties and direct seeding of rice. This review summarizes the morphological, physiological, and ecological changes in rice under hypoxia stress, the discovery of hypoxia-tolerant and germination-related genes/QTLs, and the latest research on candidate genes, and explores the linkage of hypoxia tolerance genes and their distribution in indica and japonica rice through population variance analysis and haplotype network analysis. Among the candidate genes, OsMAP1 is a typical gene located on the MAPK cascade reaction for indica-japonica divergence; MHZ6 is involved in both the MAPK signaling and phytohormone transduction pathway. MHZ6 has three major haplotypes and one rare haplotype, with Hap3 being dominated by indica rice varieties, and promotes internode elongation in deep-water rice by activating the SD1 gene. OsAmy3D and Adh1 have similar indica-japonica varietal differentiation, and are mainly present in indica varieties. There are three high-frequency haplotypes of OsTPP7, namely Hap1 (n = 1109), Hap2 (n = 1349), and Hap3 (n = 217); Hap2 is more frequent in japonica, and the genetic background of OsTPP7 was derived from the japonica rice subpopulation. Further artificial selection, natural domestication, and other means to identify more resistance mechanisms of this gene may facilitate future research to breed superior rice cultivars. Finally, this study discusses the application of rice hypoxia-tolerant germplasm in future breeding research.
Collapse
Affiliation(s)
- Hongyan Yuan
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Zhenzhen Zheng
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaling Bao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Jiaqi Lv
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Chenghang Tang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Nansheng Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Zhaojie Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Hua Li
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Jun Xiang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Yingzhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (Z.Z.); (Y.B.); (X.Z.); (J.L.); (C.T.); (N.W.); (Z.L.); (H.L.); (J.X.); (Y.Q.)
| |
Collapse
|
2
|
Pandey S. Agronomic potential of plant-specific Gγ proteins. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:337-347. [PMID: 38623166 PMCID: PMC11016034 DOI: 10.1007/s12298-024-01428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The vascular plant-specific type III Gγ proteins have emerged as important targets for biotechnological applications. These proteins are exemplified by Arabidopsis AGG3, rice Grain Size 3 (GS3), Dense and Erect Panicle 1 (DEP1), and GGC2 and regulate plant stature, seed size, weight and quality, nitrogen use efficiency, and multiple stress responses. These Gγ proteins are an integral component of the plant heterotrimeric G-protein complex and differ from the canonical Gγ proteins due to the presence of a long, cysteine-rich C-terminal region. Most cereal genomes encode three or more of these proteins, which have similar N-terminal Gγ domains but varying lengths of the C-terminal domain. The C-terminal domain is hypothesized to give specificity to the protein function. Intriguingly, many accessions of cultivated cereals have natural deletion of this region in one or more proteins, but the mechanistic details of protein function remain perplexing. Distinct, sometimes contrasting, effects of deletion of the C-terminal region have been reported in different crops or under varying environmental conditions. This review summarizes the known roles of type III Gγ proteins, the possible action mechanisms, and a perspective on what is needed to comprehend their full agronomic potential.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132 USA
| |
Collapse
|
3
|
Kuanar SR, Sarkar RK, Panigrahi R, Mohapatra PK. Introgression of SUB1 aggravates the susceptibility of the popular rice cultivars Swarna and Savitri to stagnant flooding. Sci Rep 2023; 13:9032. [PMID: 37270542 DOI: 10.1038/s41598-023-35251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Identification of the Sub1 gene for tolerance to flash flooding and its introgression into high-yielding rice cultivars are major targets in rice breeding for flood-prone rice agro-ecosystems for ensuring yield stability. However, knowledge is scant on the response of the modified genotypes under stagnant flooding (SF) to meet the challenge of finding a superior allele that may confer greater resilience to the plant under a stress-prone environment. In pursuance, we have tested the response of Sub1-introgression in two popular rice varieties, Swarna and Savitri to SF by comparing the biochemical factors in the control of flag leaf senescence and its primary production mechanisms of the parental lines' versus Sub1-introgressed lines. The activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GR), and ascorbate peroxidase (APX) increased while various parameters of primary production like total chlorophyll content, stomatal conductance (gs), normalized difference vegetation index (NDVI) and photosynthetic activity (Pn) decreased progressively with passage of time in the flag leaf of the cultivars during the post-anthesis period and SF-treatment increased the enzyme activity while depressing primary production further. Introgression of Sub1 had no influence on these activities under control conditions but widened the margin of effects under SF. It was concluded that the functional ability of flag leaf in mega rice cultivars like Swarna and Savitri decreased significantly by SF because of an ethylene-mediated promotion of senescence of the flag leaf. The enhancement of antioxidant enzyme activity by SF could not sustain the stability of primary production in the flag leaf. The introgression of the Sub1 gene made the cultivars more vulnerable to SF because the gene induced overexpression of ethylene.
Collapse
Affiliation(s)
- Sandhya Rani Kuanar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Anchal College, Padampur, 768036, India
| | | | - Rashmi Panigrahi
- School of Life Science, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | | |
Collapse
|
4
|
Usman B, Derakhshani B, Jung KH. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2019. [PMID: 37653936 PMCID: PMC10221523 DOI: 10.3390/plants12102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 09/02/2023]
Abstract
Rice is an important staple food crop for over half of the world's population. However, abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe, healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of rice plants in response to different stresses can provide an important theoretical basis for breeding rice varieties with higher stress resistance. This review presents the molecular mechanisms and the effects of various abiotic stresses on rice growth and development and explains the signal perception mode and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors in regulating gene expression and important downstream factors in coordinating stress tolerance are outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules and sustainable rice production.
Collapse
Affiliation(s)
- Babar Usman
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Behnam Derakhshani
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
| | - Ki-Hong Jung
- Graduate School of Green Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea; (B.U.)
- Research Center for Plant Plasticity, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
5
|
Rezvi HUA, Tahjib‐Ul‐Arif M, Azim MA, Tumpa TA, Tipu MMH, Najnine F, Dawood MFA, Skalicky M, Brestič M. Rice and food security: Climate change implications and the future prospects for nutritional security. Food Energy Secur 2022. [DOI: 10.1002/fes3.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Md. Tahjib‐Ul‐Arif
- Department of Biochemistry and Molecular Biology Bangladesh Agricultural University Mymensingh Bangladesh
| | - Md. Abdul Azim
- Biotechnology Division Bangladesh Sugarcrop Research Institute Pabna Bangladesh
| | - Toufica Ahmed Tumpa
- Department of Entomology Bangladesh Agricultural University Mymensingh Bangladesh
| | | | - Farhana Najnine
- Food Science and Engineering South China University of Technology Guangdong Guangzhou China
| | - Mona F. A. Dawood
- Botany and Microbiology Department, Faculty of Science Assiut University Assiut Egypt
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
| | - Marián Brestič
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic
- Institute of Plant and Environmental Sciences Faculty of Agrobiology and Food Resources Slovak University of Agriculture Nitra Slovakia
| |
Collapse
|
6
|
Nawaz A, Rehman AU, Rehman A, Ahmad S, Siddique KH, Farooq M. Increasing sustainability for rice production systems. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
The Effect of Water Level in Rice Cropping System on Phosphorus Uptake Activity of Pup1 in a Pup1+ Sub1 Breeding Line. PLANTS 2021; 10:plants10081523. [PMID: 34451568 PMCID: PMC8402110 DOI: 10.3390/plants10081523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
Pyramiding useful QTLs into an elite variety is a promising strategy to develop tolerant varieties against multiple abiotic stresses. However, some QTLs may not be functionally compatible when they are introgressed into the same variety. Here, we tested the functional compatibility of Pup1 and Sub1, major QTLs for tolerance to phosphorus (P)-deficiency and submergence conditions, respectively. Phenotypic analysis revealed that IR64-Pup1+Sub1 (IPS) plants harboring both Pup1 and Sub1 QTLs show significant tolerance to submerged conditions, similarly to IR64-Sub1, while IPS failed to tolerate P deficiency and mild drought conditions; only IR64-Pup1 showed P deficiency tolerance. In submerged conditions, Sub1A and OsPSTOL1, major genes for Sub1 and Pup1 QTLs, respectively, were expressed at the same levels as in IPS and IR64-Sub1 and in IPS and IR64-Pup1, respectively. On the other hand, in P-non-supplied condition, crown root number, root length, and OsPSTOL1 expression level were significantly lower in IPS compared to those of IR64-Pup1. However, there was no significant difference in P content between IPS and IR64-Pup1. These results imply that Pup1 does not compromise Sub1 function in submerged condition, while Sub1 suppresses Pup1 function in P-non-supplied condition, possibly by regulating the transcript level of Pup1. In conclusion, Pup1 and Sub1 are regarded as functionally compatible under submergence condition but not under P-non-supplied condition. Further study is needed to elucidate the functional incompatibility of Pup1 and Sub1 QTLs in IPS under P-non-supplied condition.
Collapse
|
8
|
Pandey GK, Chinnusamy V, Lenka SK. Genes, Genomes and Germplasm for Climate-Smart Agriculture- Part-I. Curr Genomics 2021; 22:2-3. [PMID: 34045919 PMCID: PMC8142346 DOI: 10.2174/138920292201210412161326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Girdhar K. Pandey
- Address correspondence to this author at the Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India; E-mail:
| | | | | |
Collapse
|