1
|
Wu F, Song C, Zhen G, Jin Q, Li W, Liang X, Xu W, Guo W, Yang Y, Dong W, Jiang A, Kong P, Yan J. Exosomes derived from BMSCs in osteogenic differentiation promote type H blood vessel angiogenesis through miR-150-5p mediated metabolic reprogramming of endothelial cells. Cell Mol Life Sci 2024; 81:344. [PMID: 39133273 PMCID: PMC11335269 DOI: 10.1007/s00018-024-05371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Osteogenesis is tightly coupled with angiogenesis spatiotemporally. Previous studies have demonstrated that type H blood vessel formed by endothelial cells with high expression of CD31 and Emcn (CD31hi Emcnhi ECs) play a crucial role in bone regeneration. The mechanism of the molecular communication around CD31hi Emcnhi ECs and bone mesenchymal stem cells (BMSCs) in the osteogenic microenvironment is unclear. This study indicates that exosomes from bone mesenchymal stem cells with 7 days osteogenic differentiation (7D-BMSCs-exo) may promote CD31hi Emcnhi ECs angiogenesis, which was verified by tube formation assay, qRT-PCR, Western blot, immunofluorescence staining and µCT assays etc. in vitro and in vivo. Furthermore, by exosomal miRNA microarray and WGCNA assays, we identified downregulated miR-150-5p as the most relative hub gene coupling osteogenic differentiation and type H blood vessel angiogenesis. With bioinformatics assays, dual luciferase reporter experiments, qRT-PCR and Western blot assays, SOX2(SRY-Box Transcription Factor 2) was confirmed as a novel downstream target gene of miR-150-5p in exosomes, which might be a pivotal mechanism regulating CD31hi Emcnhi ECs formation. Additionally, JC-1 immunofluorescence staining, Western blot and seahorse assay results showed that the overexpression of SOX2 could shift metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis to enhance the CD31hi Emcnhi ECs formation. The PI3k/Akt signaling pathway might play a key role in this process. In summary, BMSCs in osteogenic differentiation might secrete exosomes with low miR-150-5p expression to induce type H blood vessel formation by mediating SOX2 overexpression in ECs. These findings might reveal a molecular mechanism of osteogenesis coupled with type H blood vessel angiogenesis in the osteogenic microenvironment and provide a new therapeutic target or cell-free remedy for osteogenesis impaired diseases.
Collapse
Affiliation(s)
- Feng Wu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Chengchao Song
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Guanqi Zhen
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Qin Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Wei Li
- School of Humanities and Social Sciences, Harbin Medical University, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Xiongjie Liang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
- Department of Orthopedics, Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, 545000, P.R. China
| | - Wenbo Xu
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Wenhui Guo
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Yang Yang
- Department of Respiratory Diseases, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P.R. China
| | - Wei Dong
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, 150081, P. R. China
| | - Anlong Jiang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Pengyu Kong
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China
| | - Jinglong Yan
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, P. R. China.
| |
Collapse
|
2
|
Li H, Wang G, Zhao G, Liu H, Liu L, Cao Y, Li C. TGF-β1 maintains the developmental potential of embryonic submandibular gland epithelia separated with mesenchyme. Heliyon 2024; 10:e33506. [PMID: 39040362 PMCID: PMC11261778 DOI: 10.1016/j.heliyon.2024.e33506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Objective The objective of this study was to investigate the impact of transforming growth factor β1 (TGF-β1) on epithelial development using an ex vivo model of submandibular gland (SMG) epithelial-mesenchymal separation. Materials and methods The ex vivo model was established by separating E13 mouse SMG epithelia and mesenchyme, culturing them independently for 24 h, recombining them, and observing branching morphogenesis. Microarray analysis was performed to evaluate the transcriptome of epithelia treated with and without 1 ng/ml TGF-β1. Differential gene expression, pathway enrichment, and protein-protein interaction networks were analyzed. Quantitative real-time polymerase chain reaction, Western blot, and immunofluorescence were employed to validate the mRNA and protein levels. Results Recombined SMGs using separated epithelia and mesenchyme that were cultured for 24 h showed a significant inhibition of epithelial development compared to SMGs recombined immediately after separation. The level of TGF-β1 decreased in the SMG epithelia after epithelia-mesenchyme separation. Epithelia that were separated from mesenchyme for 24 h and pretreated with 1 ng/ml TGF-β1 continued to develop after recombination with mesenchyme, while epithelia without 1 ng/ml TGF-β1 treatment did not. Microarray analysis suggested pathway enrichment related to epithelial development and an upregulation of Sox2 in the 1 ng/ml TGF-β1-treated epithelia. Further experiments validated the phosphorylation of SMAD2 and SMAD3, upregulation of SOX2 and genes associated with epithelial development, including Prol1, Dcpp1, Bhlha15, Smgc, and Bpifa2. Additionally, 1 ng/ml TGF-β1 inhibited epithelial apoptosis by improving the BCL2/BAX ratio and reducing cleaved caspase 3. Conclusions The addition of 1 ng/ml TGF-β1 maintained the developmental potential of embryonic SMG epithelia separated from mesenchyme for 24 h. This suggests that 1 ng/ml TGF-β1 may partially compensate for the role of mesenchyme during the separation phase, although its compensation is limited in extent.
Collapse
Affiliation(s)
- Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guanru Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guile Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Huabing Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
3
|
Wang H, Zhang L, Hu C, Li H, Jiang M. Wnt signaling and tumors (Review). Mol Clin Oncol 2024; 21:45. [PMID: 38798312 PMCID: PMC11117032 DOI: 10.3892/mco.2024.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Wnt signaling is a highly conserved evolutionary pathway that plays a key role in regulation of embryonic development, as well as tissue homeostasis and regeneration. Abnormalities in Wnt signaling are associated with tumorigenesis and development, leading to poor prognosis in patients with cancer. However, the pharmacological effects and mechanisms underlying Wnt signaling and its inhibition in cancer treatment remain unclear. In addition, potential side effects of inhibiting this process are not well understood. Therefore, the present review outlines the role of Wnt signaling in tumorigenesis, development, metastasis, cancer stem cells, radiotherapy resistance and tumor immunity. The present review further identifies inhibitors that target Wnt signaling to provide a potential novel direction for cancer treatment. This may facilitate early application of safe and effective drugs targeting Wnt signaling in clinical settings. An in-depth understanding of the mechanisms underlying inhibition of Wnt signaling may improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Lihai Zhang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
4
|
Wan X, Ma D, Song G, Tang L, Jiang X, Tian Y, Yi Z, Jiang C, Jin Y, Hu A, Bai Y. The SOX2/PDIA6 axis mediates aerobic glycolysis to promote stemness in non-small cell lung cancer cells. J Bioenerg Biomembr 2024; 56:323-332. [PMID: 38441855 DOI: 10.1007/s10863-024-10009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 05/24/2024]
Abstract
Non-small cell lung cancer (NSCLC) is an aggressive and rapidly expanding lung cancer. Abnormal upregulation or knockdown of PDIA6 expression can predict poor prognosis in various cancers. This study aimed to investigate the biological function of PDIA6 in NSCLC. SOX2 and PDIA6 expression in NSCLC tissues and regulatory relationship between them were analyzed using bioinformatics. GSEA was performed on the enrichment pathway of PDIA6. qRT-PCR was utilized to examine expression of SOX2 and PDIA6 in NSCLC tissues and cells, and dual-luciferase reporter assay and ChIP experiments were performed to validate their regulatory relationship. CCK-8 experiment was conducted to assess cell viability, western blot was to examine levels of stem cell markers and proteins related to aerobic glycolysis pathway in cells. Cell sphere formation assay was used to evaluate efficiency of cell sphere formation. Reagent kits were used to measure glycolysis levels and glycolysis products. High expression of PDIA6 in NSCLC was linked to aerobic glycolysis. Knockdown of PDIA6 reduced cell viability, expression of stem cell surface markers, and cell sphere formation efficiency in NSCLC. Overexpression of PDIA6 could enhance cell viability and promote aerobic glycolysis, but the addition of 2-DG could reverse this result. Bioinformatics predicted the existence of upstream transcription factor SOX2 for PDIA6, and SOX2 was significantly upregulated in NSCLC, and they had a binding relationship. Further experiments revealed that PDIA6 overexpression restored repressive effect of knocking down SOX2 on aerobic glycolysis and cell stemness. This work revealed that the SOX2/PDIA6 axis mediated aerobic glycolysis to promote NSCLC cell stemness, providing new therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Xiaoya Wan
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Daiyuan Ma
- Department Of Oncology, Affiliated Hospital Of North Sichuan Medical College, Nanchong, 637000, China
| | - Guanglin Song
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Lina Tang
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Xianxue Jiang
- Department Of Thoracic Surgery, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Yingguo Tian
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Zunli Yi
- Department Of Pathology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Chengying Jiang
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Yong Jin
- Department Of Oncology, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Anmu Hu
- Department Of Ultrasound, People's Hospital of Yuechi County, Guang 'an, 638300, China
| | - Yuju Bai
- Department of Thoracic Oncology, The Second Affiliated Hospital Of Zunyi Medical University, Intersection of Xinpu Avenue and Xinlong Avenue, Xinpu New District, Zunyi, 563000, China.
| |
Collapse
|
5
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
6
|
Luo C, Yu Y, Zhu J, Chen L, Li D, Peng X, Liu Z, Li Q, Cao Q, Huang K, Yuan R. Deubiquitinase PSMD7 facilitates pancreatic cancer progression through activating Nocth1 pathway via modifying SOX2 degradation. Cell Biosci 2024; 14:35. [PMID: 38494478 PMCID: PMC10944620 DOI: 10.1186/s13578-024-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Ubiquitination is a critical post-translational modification which can be reversed with an enzyme family known as deubiquitinating enzymes (DUBs). It has been reported that dysregulation of deubiquitination leads to carcinogenesis. As a member of the DUBs family, proteasome 26 S subunit non-ATPase 7 (PSMD7) serves as an underlying tumour-promoting factor in multiple cancers. However, the clinical significance and biological functions of PSMD7 in pancreatic cancer (PC) remain unclear. RESULTS In this study, we first reported frequent overexpression of PSMD7 in PC tissues, and high levels of PSMD7 were markedly linked to shorter survival and a malignant phenotype in PC patients. An array of in vitro and in vivo gain/loss-of-function tests revealed that PSMD7 facilitates the progression of PC cells. Additionally, we found that PSMD7 promotes PC cell progression by activating the Notch homolog 1 (Notch1) signalling. Interestingly, in PC cells, the inhibitory effect of PSMD7 knockdown on cellular processes was comparable to that observed upon Notch1 knockdown. Mechanistically, PSMD7 deubiquitinated and stabilised sex determining region Y (SRY)-box 2 (SOX2), a key mediator of Notch1 signalling. The stabilisation of SOX2, mediated by PSMD7, dramatically increased SOX2 protein levels, subsequently activating the Notch1 pathway. Finally, restoration of SOX2 expression abrogated the PSMD7-silenced antitumour effect. CONCLUSIONS Taken together, our work identifies and validates PSMD7 as a promoter of PC progression through augmentation of the Notch1 signalling pathway mediated by SOX2. This finding suggests that PSMD7 holds promise as a potential therapeutic target for the management of this refractory disease.
Collapse
Affiliation(s)
- Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yi Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, 410219, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qing Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qing Cao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Kai Huang
- Department of General Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi Province, 330029, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
7
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
8
|
Zhang K, Mi F, Li X, Wang Z, Jiang F, Song E, Guo P, Lan X. Detection of genetic variation in bovine CRY1 gene and its associations with carcass traits. Anim Biotechnol 2023; 34:3387-3394. [PMID: 36448652 DOI: 10.1080/10495398.2022.2149547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The biological clock (also known as circadian clock) is closely related to growth and development, metabolism, and diseases in animals. As a part of the circadian clock, the cryptochrome circadian regulator 1 (CRY1) gene is involved in the regulation of biological processes such as osteogenesis, energy metabolism and cell proliferation, however, few studies have been reported on the relationship between this gene and animal carcass traits. Herein, a total of four insertion/deletion (InDel) loci within the CRY1 gene were detected in Shandong Black Cattle Genetic Resource (SDBCGR) population (n = 433). Among them, the P1-6-bp-del locus was polymorphic in population of interest. Moreover, the P1-6-bp-del locus showed two genotypes, with a higher insertion/insertion (II) genotype frequency (0.751) than insertion/deletion (ID) genotype frequency (0.249). Correlation analysis showed that the P1-6-bp-del locus polymorphisms were significantly associated with twenty carcass traits (e.g., slaughter weight, limb weight, and belly meat weight). Individuals with II genotype were significantly better than those with ID genotype for eighteen carcass traits. Therefore, the P1-6-bp-del locus of the CRY1 gene can be used as a molecular marker for beef cattle breeding.
Collapse
Affiliation(s)
- Kejing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fang Mi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Enliang Song
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Peng Guo
- College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Bekas N, Samiotaki M, Papathanasiou M, Mokos P, Pseftogas A, Xanthopoulos K, Thanos D, Mosialos G, Dafou D. Inactivation of Tumor Suppressor CYLD Inhibits Fibroblast Reprogramming to Pluripotency. Cancers (Basel) 2023; 15:4997. [PMID: 37894364 PMCID: PMC10605754 DOI: 10.3390/cancers15204997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical regulatory function in a variety of signaling pathways and biological processes involved in cancer development and progression, many of which are also key modulators of somatic cell reprogramming. Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of investigating the involvement of CYLD in reprogramming and developing a better understanding of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT) and CYLD DUB-deficient (CYLDΔ9/Δ9) mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4, c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower early reprogramming kinetics. The introduction of WT CYLD to CYLDΔ9/Δ9 MEFs rescued the phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in CYLDΔ9/Δ9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix and several metabolic pathways. Our findings not only establish for the first time CYLD's significance as a regulatory component of early reprogramming but also highlight its role as an extracellular matrix regulator, which has profound implications in cancer research.
Collapse
Affiliation(s)
- Nikolaos Bekas
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
| | - Maria Papathanasiou
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - Panagiotis Mokos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Athanasios Pseftogas
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Dimitra Dafou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| |
Collapse
|
10
|
Feng Q, Cui N, Li S, Cao J, Chen Q, Wang H. Upregulation of SOX9 promotes the self-renewal and tumorigenicity of cervical cancer through activating the Wnt/β-catenin signaling pathway. FASEB J 2023; 37:e23174. [PMID: 37668416 DOI: 10.1096/fj.202201596rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Sry-box9 (SOX9) maintains stem cell properties and plays crucial roles in many cancers. However, whether SOX9 is correlated with cervical cancer cell stemness and its detailed mechanism remains obscure. We studied the relationship between SOX9 and prognosis of cervical cancer through public database, and SOX9 was related to poor prognosis of cervical cancer. Elevated SOX9 expression enhanced the self-renewal properties and promotes tumorigenicity in cervical cancer. Overexpression of SOX9 could promote the expression of stem cell-related factors in cervical cancer cells and xenografts. Meanwhile, overexpression of SOX9 could also enhance the expressions of FZD10, β-catenin, and c-Myc in cervical cancer cells and xenografts, while inhibiting the expression of DDK1. The activation of Wnt pathway by chir-99 021 raised the tumor spheroid ability of SOX9 knockdown HeLa cells. In addition, SOX9 could transcriptional inhibit DKK1 and activate FZD10 and MYC by binding to their promoters to affect the Wnt/β-catenin pathway. These results demonstrated SOX9 regulated the self-renewal and tumorigenicity of cervical cancer through Wnt/β-catenin pathway by directly transcriptional activation of FZD10, MYC and transcriptional inhibition of DKK1.
Collapse
Affiliation(s)
- Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Shan Li
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jing Cao
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Qian Chen
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Haiyan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Jameel M, Fatma H, Nadtochii LA, Siddique HR. Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules. Life (Basel) 2023; 13:1976. [PMID: 37895357 PMCID: PMC10608662 DOI: 10.3390/life13101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (CaP) is one of the most prevalent male malignancies, accounting for a considerable number of annual mortalities. However, the prompt identification of early-stage CaP often faces delays due to diverse factors, including socioeconomic inequalities. The androgen receptor (AR), in conjunction with various other signaling pathways, exerts a central influence on the genesis, progression, and metastasis of CaP, with androgen deprivation therapy (ADT) serving as the primary therapeutic strategy. Therapeutic modalities encompassing surgery, chemotherapy, hormonal intervention, and radiotherapy have been formulated for addressing early and metastatic CaP. Nonetheless, the heterogeneous tumor microenvironment frequently triggers the activation of signaling pathways, culminating in the emergence of chemoresistance, an aspect to which cancer stem cells (CSCs) notably contribute. Phytochemicals emerge as reservoirs of bioactive agents conferring manifold advantages against human morbidity. Several of these phytochemicals demonstrate potential chemoprotective and chemosensitizing properties against CaP, with selectivity exhibited towards malignant cells while sparing their normal counterparts. In this context, the present review aims to elucidate the intricate molecular underpinnings associated with metastatic CaP development and the acquisition of chemoresistance. Moreover, the contributions of phytochemicals to ameliorating CaP initiation, progression, and chemoresistance are also discussed.
Collapse
Affiliation(s)
- Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Liudmila A. Nadtochii
- Department of Microbiology, Saint Petersburg State Chemical & Pharmaceutical University, 197022 Saint Petersburg, Russia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| |
Collapse
|
12
|
Meng H, Li J, Sun H, Lin Y, Xu H, Zhang N. The transcription factor ATF2 promotes gastric cancer progression by activating the METTL3/cyclin D1 pathway. Drug Dev Res 2023; 84:1325-1334. [PMID: 37421203 DOI: 10.1002/ddr.22092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Globally, gastric cancer (GC) is a major cause of cancer death. This study is aimed at investigating the biological functions of activating transcription factor 2 (ATF2) and the underlying mechanism in GC. In the present work, GEPIA, UALCAN, Human Protein Atlas and StarBase databases were adopted to analyze ATF2 expression characteristics in GC tissues and normal gastric tissues, and its relationships with tumor grade and patients' survival time. Quantitative real-time polymerase chain reaction (qRT-PCR) method was employed to examine ATF2 mRNA expression in normal gastric tissues, GC tissues, and GC cell lines. Cell counting kit-8 (CCK-8) and EdU assays were utilized for detecting GC cell proliferation. Cell apoptosis was detected by flow cytometry. PROMO database was applied to predict the binding site of ATF2 with the METTL3 promoter region. The binding relationship between ATF2 and the METTL3 promoter region was verified through dual-luciferase reporter gene assay and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay. Western blot was performed to evaluate the effect of ATF2 on METTL3 expression. METTL3-related signaling pathways were predicted using Gene Set Enrichment Analysis (GSEA) in the LinkedOmics database. It was found that, ATF2 level was elevated in GC tissues and cell lines in comparison with normal tissues and correlated with short patients' survival time. ATF2 overexpression facilitated GC cell growth and suppressed the apoptosis, whereas ATF2 knockdown suppressed GC cell proliferation and facilitated the apoptosis. ATF2 bound to the METTL3 promoter region, and ATF2 overexpression promoted the transcription of METTL3, and ATF2 knockdown restrained the transcription of METTL3. METTL3 was associated with cell cycle progression, and ATF2 overexpression enhanced cyclin D1 expression, and METTL3 knockdown reduced cyclin D1 expression. In summary, ATF2 facilitates GC cell proliferation and suppresses the apoptosis via activating the METTL3/cyclin D1 signaling pathway, and ATF2 is promising to be an anti-drug target for GC.
Collapse
Affiliation(s)
- Hong Meng
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huapeng Sun
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yanxin Lin
- Xinjiang Medical University, Urumchi, China
| | - Haisheng Xu
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Na Zhang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
13
|
Fisher ML, Balinth S, Hwangbo Y, Wu C, Ballon C, Goldberg GL, Mills AA. Cancer-associated fibroblasts promote cancer stemness by inducing expression of the chromatin-modifying protein CBX4 in squamous cell carcinoma. Carcinogenesis 2023; 44:485-496. [PMID: 37463322 PMCID: PMC10436759 DOI: 10.1093/carcin/bgad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The chromobox-containing protein CBX4 is an important regulator of epithelial cell proliferation and differentiation, and has been implicated in several cancer types. The cancer stem cell (CSC) population is a key driver of metastasis and recurrence. The undifferentiated, plastic state characteristic of CSCs relies on cues from the microenvironment. Cancer-associated fibroblasts (CAFs) are a major component of the microenvironment that can influence the CSC population through the secretion of extracellular matrix and a variety of growth factors. Here we show CBX4 is a critical regulator of the CSC phenotype in squamous cell carcinomas of the skin and hypopharynx. Moreover, CAFs can promote the expression of CBX4 in the CSC population through the secretion of interleukin-6 (IL-6). IL-6 activates JAK/STAT3 signaling to increase ∆Np63α-a key transcription factor that is essential for epithelial stem cell function and the maintenance of proliferative potential that is capable of regulating CBX4. Targeting the JAK/STAT3 axis or CBX4 directly suppresses the aggressive phenotype of CSCs and represents a novel opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gary L Goldberg
- Zucker School of Medicine, Hofstra University/Northwell Health, Hempstead, NY 11549, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
14
|
Ding LN, Yu YY, Ma CJ, Lei CJ, Zhang HB. SOX2-associated signaling pathways regulate biological phenotypes of cancers. Biomed Pharmacother 2023; 160:114336. [PMID: 36738502 DOI: 10.1016/j.biopha.2023.114336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
SOX2 is a transcription factor involved in multiple stages of embryonic development. In related reports, SOX2 was found to be abnormally expressed in tumor tissues and correlated with clinical features such as TNM staging, tumor grade, and prognosis in patients with various cancer types. In most cancer types, SOX2 is a tumor-promoting factor that regulates tumor progression and metastasis primarily by maintaining the stemness of cancer cells. In addition, SOX2 also regulates the proliferation, apoptosis, invasion, migration, ferroptosis and drug resistance of cancer cells. However, SOX2 acts as a tumor suppressor in some cases in certain cancer types, such as gastric and lung cancer. These key regulatory functions of SOX2 involve complex regulatory networks, including protein-protein and protein-nucleic acid interactions through signaling pathways and noncoding RNA interactions, modulating SOX2 expression may be a potential therapeutic strategy for clinical cancer patients. Therefore, we sorted out the phenotypes related to SOX2 in cancer, hoping to provide a basis for further clinical translation.
Collapse
Affiliation(s)
- L N Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Y Y Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - C J Lei
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - H B Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Chen Q, Zhu S, Jiao N, Zhang Z, Gao G, Zheng W, Feng G, Han W. Improvement in the performance of an autoantibody panel in combination with heat shock protein 90a for the detection of early‑stage lung cancer. Exp Ther Med 2023; 25:82. [PMID: 36741915 PMCID: PMC9852419 DOI: 10.3892/etm.2023.11781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The early diagnosis of lung cancer is closely associated with the decline of mortality. A panel consisting of seven lung cancer-related autoantibodies (7-AABs) has been shown to be a reliable and specific indicator for the early detection of lung cancer, with a specificity of ~90% and a positive predictive value of ~85%. However, its low sensitivity and negative predictive value limit its wide application. To improve its diagnostic value, the diagnostic efficiencies of 7-AABs in combination with non-specific tumor markers were retrospectively investigated for the detection of early-stage lung cancer. A total of 217 patients with small lung nodules who presented with ground-glass opacity or solid nodules as well as 30 healthy controls were studied. The concentrations of 7-AABs and heat shock protein 90a (HSP90a) were assessed using ELISA. Automated flow fluorescence immune analysis was used for the assessment of CEA, CYFRA21-1, CA199 and CA125 levels. The results showed that 7-AABs + HSP90a possessed a remarkably improved diagnostic efficiency for patients with small pulmonary nodules or for patients with lung nodules of different types, which suggested that 7-AABs in combination with HSP90a could have a high clinical value for the improvement of the diagnostic efficiency of early-stage lung cancer.
Collapse
Affiliation(s)
- Qing Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Nanlin Jiao
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ziyu Zhang
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Guangjian Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenqiang Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Wenzheng Han or Dr Gang Feng, Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| | - Wenzheng Han
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Wenzheng Han or Dr Gang Feng, Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
16
|
Xiu W, Pang J, Hu Y, Shi H. Immune-related mechanisms and immunotherapy in extragonadal germ cell tumors. Front Immunol 2023; 14:1145788. [PMID: 37138865 PMCID: PMC10149945 DOI: 10.3389/fimmu.2023.1145788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose of review Extragonadal germ cell tumors (EGCTs) are relatively rare tumors, accounting for 1%-5% of all GCTs. In this review, we summarize the current research progress regarding the pathogenesis, diagnosis, and treatment of EGCTs from an immunology perspective. Recent findings The histological origin of EGCTs is related to a gonadal origin, but they are located outside the gonad. They show great variation in morphology and can occur in the cranium, mediastinum, sacrococcygeal bone, and other areas. The pathogenesis of EGCTs is poorly understood, and their differential diagnosis is extensive and challenging. EGCT behavior varies greatly according to patient age, histological subtype, and clinical stage. Summary This review provides ideas for the future application of immunology in the fight against such diseases, which is a hot topic currently.
Collapse
Affiliation(s)
- Weigang Xiu
- 1Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyun Pang
- 1Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yang Hu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yang Hu, ; Huashan Shi,
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yang Hu, ; Huashan Shi,
| |
Collapse
|
17
|
Zang K, Yu ZH, Wang M, Huang Y, Zhu XX, Yao B. SOX2 como posible biomarcador pronóstico y diana molecular en el cáncer de pulmón: metaanálisis. Rev Clin Esp 2022; 222:584-592. [PMID: 35941044 DOI: 10.1016/j.rceng.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the association of SOX2 with the prognosis in lung cancer, studies providing survival information were selected based on multivariate Cox regression analysis. MATERIAL AND METHODS PubMed, Embase, and Web of Science databases were searched to identify eligible studies before June 19, 2021. The hazard ratios (HR) with 95% confidence intervals (CI) were calculated to assess the prognostic impact of SOX2 based on multivariate Cox regression analysis. Publication bias was used to assess the risk of bias. Functional analysis of SOX2 was also conducted. RESULTS 13 studies with a total of 2008 patients with lung cancer were included. SOX2 expression was not correlated with overall survival in lung cancer (10 studies with 1591 cases). Between-study heterogeneity was noted (I2=85.6%, p<0.0001). Subgroup analysis suggested that no correlation was found between SOX2 expression and overall survival in non-small cell lung cancer (NSCLC: eight studies with 1319 cases) and small-cell lung cancer (SCLC: two studies with 272 cases). SOX2 expression was significantly associated with worse time-to-progression (two studies with 104 cases: HR=3.50, 95% CI=1.34-9.15) and recurrence-free survival (two studies with 335 cases: HR=1.45, 95% CI=1.12-1.87) in NSCLC. Function analysis demonstrated that SOX2 was involved in DNA repair, cell cycle, regulation of stem cell population maintenance, and Hippo signaling pathway. CONCLUSION SOX2 may be an independent prognostic factor in time-to-progression and recurrence-free survival and may become a promising therapeutic target. More studies are essential to further our findings.
Collapse
Affiliation(s)
- K Zang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an City, China
| | - Z-H Yu
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an City, China.
| | - M Wang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an City, China
| | - Y Huang
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an City, China
| | - X-X Zhu
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an City, China
| | - B Yao
- Department of ICU, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an City, China
| |
Collapse
|
18
|
Liu XY, Gao Y, Kui XY, Liu XS, Zhang YH, Zhang Y, Ke CB, Pei ZJ. High expression of HNRNPR in ESCA combined with 18F-FDG PET/CT metabolic parameters are novel biomarkers for preoperative diagnosis of ESCA. Lab Invest 2022; 20:450. [PMID: 36195940 PMCID: PMC9533615 DOI: 10.1186/s12967-022-03665-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/25/2022] [Indexed: 01/17/2023]
Abstract
Background The aim of this study was to determine the expression and function of heterogeneous nuclear ribonucleoprotein R (HNRNPR) in esophageal carcinoma (ESCA), the correlation between its expression and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computerized tomography scan (PET/CT)-related parameters. We also investigated whether 18F-FDG PET/CT can be used to predict the expression of HNRNPR in ESCA. Methods We analyzed patients with ESCA who underwent 18F-FDG PET/CT before surgery, and their tissues were stained with HNRNPR IHC. The associated parameters were derived using the 18F-FDG PET imaging data, and the correlation with the IHC score was evaluated. The Oncomine, TCGA, and GEO datasets were used to investigate HNRNPR expression in the pan- and esophageal cancers, as well as its relationship with N6-methyladenosine (m6A) modification and glycolysis. The R software, LinkedOmics, GeneMANIA, and StringOnline tools were used to perform GO/KEGG, GGI, and PPI analyses on the HNRNPR. Results HNRNPR is highly expressed in the majority of pan-cancers, including ESCA, and is associated with BMI, weight, and history of reflux in patients with ESCA. HNRNPR is somewhat accurate in predicting the clinical prognosis of ESCA. HNRNPR expression was positively correlated with SUVmax, SUVmean, and TLG in ESCA (p < 0.05). The combination of these three variables provides a strong predictive value for HNRNPR expression in ESCA. GO/KEGG analysis showed that HNRNPR played a role in the regulation of cell cycle, DNA replication, and the Fannie anemia pathway. The analysis of the TCGA and GEO data sets revealed a significant correlation between HNRNPR expression and m6A and glycolysis-related genes. GSEA analysis revealed that HNRNPR was involved in various m6A and glycolysis related-pathways. Conclusion HNRNPR overexpression correlates with 18F-FDG uptake in ESCA and may be involved in the regulation of the cell cycle, m6A modification, and cell glycolysis. 18F-FDG PET/CT-related parameters can predict the diagnostic accuracy of HNRNPR expression in ESCA.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xue-Yan Kui
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,Taihe Hospital, Postgraduate Training Basement of Jinzhou Medical University, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yu Zhang
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chang-Bin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China. .,Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei, China.
| |
Collapse
|
19
|
Dissecting Stemness in Aggressive Intracranial Meningiomas: Prognostic Role of SOX2 Expression. Int J Mol Sci 2022; 23:ijms231911690. [PMID: 36232992 PMCID: PMC9570252 DOI: 10.3390/ijms231911690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas are mostly benign tumors that, at times, can behave aggressively, displaying recurrence despite gross-total resection (GTR) and progression to overt malignancy. Such cases represent a clinical challenge, particularly because they are difficult to recognize at first diagnosis. SOX2 (Sex-determining region Y-box2) is a transcription factor with a key role in stem cell maintenance and has been associated with tumorigenesis in a variety of cancers. The purpose of the present work was to dissect the role of SOX2 in predicting the aggressiveness of meningioma. We analyzed progressive/recurrent WHO grade 1−2 meningiomas and WHO grade 3 meningiomas; as controls, non-recurring WHO grade 1 and grade 2 meningioma patients were enrolled. SOX2 expression was evaluated using both immunohistochemistry (IHC) and RT-PCR. The final analysis included 87 patients. IHC was able to reliably assess SOX2 expression, as shown by the good correlation with mRNA levels (Spearman R = 0.0398, p = 0.001, AUC 0.87). SOX2 expression was an intrinsic characteristic of any single tumor and did not change following recurrence or progression. Importantly, SOX2 expression at first surgery was strongly related to meningioma clinical behavior, histological grade and risk of recurrence. Finally, survival data suggest a prognostic role of SOX2 expression in the whole series, both for overall and for recurrence-free survival (p < 0.0001 and p = 0.0001, respectively). Thus, SOX2 assessment could be of great help to clinicians in informing adjuvant treatments during follow-up.
Collapse
|
20
|
Li C, Ma YQ. Prognostic significance of sex determining region Y-box 2, E-cadherin, and vimentin in esophageal squamous cell carcinoma. World J Clin Cases 2022; 10:9657-9669. [PMID: 36186174 PMCID: PMC9516931 DOI: 10.12998/wjcc.v10.i27.9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sex determining region Y-box 2 (SOX2) can promote squamous cell carcinoma (SSC) because it regulates the migration and invasion of several different types of squamous carcinoma cells. However, few studies have examined the prognostic value of SOX2 and its effect on the epithelial-mesenchymal transition (EMT) in esophageal SSC (ESCC), a cancer characterized by high invasion and rapid metastasis.
AIM To verify the relationship of SOX2 and the EMT in ESCC and determine the prognostic value and significance of SOX2 and protein markers of the EMT in ESCC.
METHODS One hundred and eighty-five postsurgical ESCC patients were retrospectively examined. Immunohistochemistry was used to detect SOX2, E-cadherin, and vimentin in ESCC tissues. The chi-square test was used to determine the relationships of the expression of these proteins with clinical data. Kaplan-Meier survival curves were used to evaluate factors associated with overall survival (OS).
RESULTS SOX2 and vimentin had high expression in ESCC tissues and correlated with the depth of local carcinoma invasion. SOX2 expression had positive correlations with tumor size, vimentin expression, and the EMT, and a negative correlation with E-cadherin expression. Expression of SOX2 and vimentin had negative correlations with OS. SOX2 expression was an independent prognostic risk factor for poor OS in patients with ESCC.
CONCLUSION SOX2 expression was an independent risk factor for OS in patients with ESCC and its expression had a positive correlation with the expression of vimentin, a classic marker of the EMT. SOX2 promoted the migration and invasion of ESCC, and this may related to its effect on vimentin in promoting the EMT.
Collapse
Affiliation(s)
- Chao Li
- Department of RICU, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| | - Yu-Qing Ma
- Department of Pathology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
21
|
SOX2 como posible biomarcador pronóstico y diana molecular en el cáncer de pulmón: metaanálisis. Rev Clin Esp 2022. [DOI: 10.1016/j.rce.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
lncRNA LUCAT1/ELAVL1/LIN28B/SOX2 Positive Feedback Loop Promotes Cell Stemness in Triple-Negative Breast Cancer. Breast J 2022; 2022:7689718. [PMID: 35711895 PMCID: PMC9187271 DOI: 10.1155/2022/7689718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Background. Triple-negative breast cancer (TNBC), as a subtype of breast cancer (BC), features an aggressive nature. Long noncoding RNAs (lncRNAs) are proved to get involved in the processes of cancers. lncRNA lung cancer associated transcript 1 (LUCAT1) has been reported in multiple cancers. The role of LUCAT1 in TNBC and its latent regulatory mechanism were investigated. Methods. RT-qPCR was performed to examine LUCAT1 expression. Functional experiments were implemented to disclose the role of LUCAT1 in TNBC. The underlying regulatory mechanism of LUCAT1 in TNBC was explored by chromatin immunoprecipitation (ChIP), RNA-binding protein immunoprecipitation (RIP), luciferase reporter, and RNA pull-down assays. Results. LUCAT1 is significantly overexpressed in TNBC cells. LUCAT1 interference impedes cell stemness in TNBC cells. SRY-box transcription factor 2 (SOX2) is an active transcription factor of LUCAT1. LUCAT1 recruits ELAV-like RNA binding protein 1 (ELAVL1) protein to stabilize lin-28 homolog B (LIN28B) mRNA, thereby further modulating SOX2 expression, which forms a positive feedback loop. Conclusion. The lncRNA LUCAT1/ELAVL1/LIN28B/SOX2 positive feedback loop promotes cell stemness in TNBC. The exploration of the mechanisms underlying TNBC stemness might be beneficial to TNBC treatment.
Collapse
|
23
|
Xie H, Yao J, Wang Y, Ni B. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv 2022; 29:1257-1271. [PMID: 35467477 PMCID: PMC9045767 DOI: 10.1080/10717544.2022.2057617] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circular RNAs (circRNAs) play important regulatory roles in multiple human malignancies, including non-small cell lung cancer (NSCLC). Here, we explored the role of circRNA vacuole membrane protein 1 (circVMP1) in NSCLC progression and cisplatin (DDP) resistance. Methods The DDP resistance, proliferation, sphere formation ability, migration, invasion, and apoptosis of NSCLC cells were analyzed by Cell Counting Kit-8 (CCK8) assay, 5-ethynyl-2′-deoxyuridine (EdU) assay, sphere formation assay, wound healing assay, Transwell assay, and flow cytometry. Methylated RIP-qPCR (MeRIP-qPCR) was conducted to analyze the m6A modification level of SRY-box transcription factor 2 (SOX2). Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay were performed to confirm the intermolecular interaction. Exosomes were identified by transmission electron microscopy (TEM) and characterized by nanoparticle tracking analysis (NTA). Results CircVMP1 expression was markedly elevated in DDP-resistant NSCLC cell lines compared with their parental cell lines. CircVMP1 absence restrained the proliferation, sphere formation, migration, invasion, and DDP resistance and promoted the apoptosis of DDP-resistant NSCLC cells. CircVMP1 acted as microRNA-524-5p (miR-524-5p) sponge to up-regulate the expression of methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3) and SOX2. CircVMP1 silencing restrained the malignant behaviors and DDP resistance of A549/DDP and H1299/DDP cells by targeting miR-524-5p. Exosomal circVMP1 disseminated the malignant properties and DDP resistance to DDP-sensitive cells. Exosomal circVMP1 elevated the DDP resistance of xenograft tumors in vivo. Exosomal circVMP1 was up-regulated in the serum samples of DDP-resistant NSCLC patients compared with DDP-sensitive patients. Conclusion Exosome-mediated transmission of circVMP1 promoted NSCLC progression and DDP resistance by targeting miR-524-5p-METTL3/SOX2 axis.Highlights CircVMP1 level is up-regulated in DDP-resistant NSCLC cell lines compared with DDP-sensitive cell lines. CircVMP1 absence restrains the malignant behaviors and DDP resistance of A549/DDP and H1299/DDP cells. CircVMP1-miR-524-5p/METTL3/SOX2 axis is identified for the first time. CircVMP1 plays an oncogenic role by targeting miR-524-5p-METTL3/SOX2 axis in A549/DDP and H1299/DDP cells. Exosomal circVMP1 transmits the malignant properties and DDP resistance to DDP-sensitive cells.
Collapse
Affiliation(s)
- Hongya Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jie Yao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Chen TY, Zhou J, Li PC, Tang CH, Xu K, Li T, Ren T. SOX2 knockdown with siRNA reverses cisplatin resistance in NSCLC by regulating APE1 signaling. Med Oncol 2022; 39:36. [PMID: 35059870 PMCID: PMC8776672 DOI: 10.1007/s12032-021-01626-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/09/2021] [Indexed: 10/25/2022]
Abstract
SOX2 is related to drug resistance in many types of cancer, including lung cancer. Herein, we investigated the role of SOX2 and its regulatory signaling in cisplatin-treated non-small-cell lung cancer (NSCLC). The effects of SOX2 on cell viability, proliferation, and apoptosis were evaluated in vitro. Western blotting, real-time quantitative PCR, immunohistochemistry, and luciferase reporter assays were used to investigate the underlying mechanism. Kaplan-Meier survival analysis and the log-rank test were used to assess the relationship between SOX2 expression and patient survival. A549/CDDP cells had marked resistance to cisplatin and stronger colony formation ability than A549 cells. The expression of SOX2 protein or mRNA in A549/CDDP was higher than that in A549. Knockdown of SOX2 in A549/CDDP-induced apoptosis by inhibiting colony formation and decreasing viability, but overexpression of SOX2 reversed these effects. Interestingly, Genomatix software predicted that the APE1 promoter has some SOX2 binding sites, while the SOX2 promoter has no APE1 binding sites. Furthermore, luciferase reporter assays proved that SOX2 could bind the promoter of APE1 in 293T cells. We further verified that SOX2 expression was not affected by shAPE1 in A549/CDDP. As expected, colony formation was obviously inhibited and apoptosis was strongly enhanced in A549/CDDP treated with SOX2 siSOX2 alone or combined with CDDP compared with control cells. Meaningfully, patients with low expression of SOX2, and even including its regulating APE1, survived longer than those with high expression of SOX2, and APE1. siSOX2 overcomes cisplatin resistance by regulating APE1 signaling, providing a new target for overcoming cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Tai-Yu Chen
- Clinical Medical College of Chengdu Medical College, Chengdu, 610500, China
| | - Ji Zhou
- Health Management Centre, The First Affiliated Hospital, Chengdu Medical College, 278 Xindu St, Chengdu, 610500, Sichuan, China
| | - Peng-Cheng Li
- Oncology Department, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang St, Xindu Distr, Chengdu, 610500, Sichuan, China
| | - Chun-Han Tang
- Clinical Medical College of Chengdu Medical College, Chengdu, 610500, China
| | - Ke Xu
- Oncology Department, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang St, Xindu Distr, Chengdu, 610500, Sichuan, China
| | - Tao Li
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, and Sichuan Cancer Center, University of Electronic Science and Technology of China, 55, 4th Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Tao Ren
- Oncology Department, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang St, Xindu Distr, Chengdu, 610500, Sichuan, China.
| |
Collapse
|
25
|
Wang Y, Jiao Y, Ding CM, Sun WZ. The role of autoantibody detection in the diagnosis and staging of lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1673. [PMID: 34988182 PMCID: PMC8667094 DOI: 10.21037/atm-21-5357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 01/19/2023]
Abstract
Background Previously, the clinical value of seven autoantibodies (p53, PGP9.5, SOX2, GAGE7, GBU4-5, MAGEA1, and CAGE) has been surveyed in our pilot observation and other published studies. Herein, we aimed to further investigate the role of these autoantibodies in the diagnosis and staging of LC. Methods We included a total of 135 individuals, who were divided into a Lung cancer (LC) group and a control group according to the final diagnosis. Seven autoantibody detection kits were used (ELISA method) for the expression measurement. The patients’ demographics information (e.g., age, gender, and smoking history) were also documented. Results Among the seven types of autoantibodies, only P53 and GBU4-5 were significantly increased in the LC group compared to the controls. Also, the P53 autoantibody was markedly different among the various subtype groups. Meanwhile, the GBU4-5 level was significantly higher in the small cell lung cancer (SCLC) patients compared to patients with adenocarcinoma (ADC). Autoantibodies against PGP9.5, SOX2, GBU4-5, and CAGE were found to be associated with stages. Their expressions were notably higher in the advanced stage (IV) versus early stages (I–II). Using logistic regression, the outcomes of LC prediction and stage prediction showed that the area under curve (AUCs) of the receiver operating characteristic (ROC) curves were 0.743 and 0.798, respectively. Conclusions In summary, our study confirmed the diagnostic value of tumor-associated autoantibodies, which may be useful as latent tumor markers to facilitate the detection of early LC. Single autoantibody testing is not yet sufficient in LC cancer screening, and the combined detection of autoantibodies can improve the sensitivity of detection compared with single antibody detection, especially for P53, PGP9.5, SOX2, GBU4-5, and CAGE autoantibodies.
Collapse
Affiliation(s)
- Yun Wang
- Department of Respiratory Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Jiao
- Hebei Medical University, Shijiazhuang, China
| | - Cui-Min Ding
- Department of Respiratory Medicine, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wu-Zhuang Sun
- Department of Respiratory Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
SOX2 expression in the pathogenesis of premalignant lesions of the uterine cervix: its histo-topographical distribution distinguishes between low- and high-grade CIN. Histochem Cell Biol 2022; 158:545-559. [PMID: 35945296 PMCID: PMC9726813 DOI: 10.1007/s00418-022-02145-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
SOX2 expression in high-grade cervical intraepithelial neoplasia (CIN3) and cervical squamous cell carcinoma is increased compared to that in the normal cervical epithelium. However, data on the expression and histological distribution of SOX2 in squamous epithelium during progression of CIN are largely lacking. We studied SOX2 expression throughout the epithelium in 53 cases of CIN1, 2, and 3. In general, SOX2 expression increased and expanded from basal/parabasal to the intermediate/superficial compartment during early stages of progression of CIN. An unexpected, specific expression pattern was found in areas classified as CIN2 and CIN3. This pattern was characterized by the absence or low expression of SOX2 in the basal/parabasal compartment and variable levels in the intermediate and superficial compartments. It was significantly associated with CIN3 (p = 0.009), not found in CIN1 and only seen in part of the CIN2 lesions. When the different patterns were correlated with the genetic make-up and presence of HPV, the CIN3-related pattern contained HPV-positive cells in the basal/parabasal cell compartment that were disomic. This is in contrast to the areas exhibiting the CIN1 and CIN2 related patterns, which frequently exhibited aneusomic cells. Based on their SOX2 localisation pattern, CIN1 and CIN2 could be delineated from CIN3. These data shed new light on the pathogenesis and dynamics of progression in premalignant cervical lesions, as well as on the target cells in the epithelium for HPV infection.
Collapse
|
27
|
Huang H, Li X, Yu L, Liu L, Zhu H, Cao W, Sun Z, Yu X. Wogonoside inhibits TNF receptor-associated factor 6 (TRAF6) mediated-tumor microenvironment and prognosis of pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1460. [PMID: 34734012 PMCID: PMC8506702 DOI: 10.21037/atm-21-4164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
Background Pancreatic cancer (PC) is one of the worst prognostic cancers. Here, we probed the anti-cancer activity of wogonoside (Wog), a flavonoid isolated from Scutellaria baicalensis Georgi, on PC, as well as potential molecular mechanism. Methods Following Wog stimulation, the viability, proliferation, apoptosis, stem cell-like transition, and mesenchymal transition were detected in PC cells. Bioinformatics analysis was used to identify possible signaling pathways involved in the anti-PC activity of Wog. Tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) was overexpressed and TRAF6 activator IL-1β was used in PC cells to confirm whether Wog exerted anti-PC activity via modulating TRAF6. In vivo, an experiment was conducted to further confirm our supposition. Results Wog inhibited PC cell proliferation, promoted cell apoptosis, limited PC cell stem cell-like transition and mesenchymal transition. TNF signaling pathway was activated in PC. Besides, Wog inactivated TRAF6/nuclear factor-kappa B (NF-κB)/p65 pathway in PC cells. TRAF6, vascular cell adhesion molecule-1 (VCAM1), CD44, and matrix metalloproteinase 14 (MMP14) expressions were upregulated in PC tissues and negatively correlated with PC survival and prognosis. Finally, Wog suppressed TRAF6 overexpression-induced PC cell stem cell-like transition and mesenchymal transition in vitro and tumor growth in vivo. Conclusions Wog exerted anti-cancer activity on PC and suppressed the TRAF6 mediated-tumor microenvironment of PC, thereby regulating PC's prognosis.
Collapse
Affiliation(s)
- Hui Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xia Li
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Liu
- Department of Cardiology, Second People's Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhongling Sun
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Yuan D, Wang J, Yan M, Xu Y. SOX2 as a prognostic marker and a potential molecular target in cervical cancer: A meta-analysis. Int J Biol Markers 2021; 36:45-53. [PMID: 34719977 DOI: 10.1177/17246008211042899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sex determining region Y-box 2 (SOX2) has been reported as a potential therapeutic target for cancer. However, the role of SOX2 in cervical cancer remains largely undetermined. This study was performed to evaluate the correlation of SOX2 with clinical characteristics and prognosis in cervical cancer. METHODS Multiple databases were systematically searched for eligible publications. The combined odds ratios (ORs) or hazard ratios (HRs) with the corresponding 95% confidence intervals (CIs) were used to assess the effect sizes. RESULTS A total of 17 studies with 1906 participants were identified. SOX2 expression was higher in cervical cancer than in the normal control group (OR = 10.83, 95% CI = 6.64-17.67, P < 0.001), while no significant difference was observed between cervical cancer and cervical intraepithelial neoplasia. SOX2 expression was not associated with age, tumor stage, and lymph node metastasis, but was correlated with tumor grade (grade 2-3 vs. grade 1: OR = 4.59, 95% CI = 2.76-7.62, P < 0.001) and tumor size (≥4 cm vs. ≤4 cm: OR = 1.66, 95% CI = 1.05-2.60, P = 0.028). Based on multivariate Cox analysis, SOX2 expression was not correlated with overall survival, but was closely associated with poor recurrence-free survival (HR = 5.83, 95% CI = 1.35-25.16, P = 0.018) and progress-free survival HR = 2.29, 95% CI = 1.01-5.19, P = 0.046). CONCLUSION SOX2 may serve as a novel prognostic factor and a promising molecular target for cervical cancer.
Collapse
Affiliation(s)
- Dandan Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Jian Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, PR China
| | - Mingyu Yan
- Inner Mongolia Medical College Third Affiliated Hospital, Baotou, PR China
| | - Yaohui Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, PR China
| |
Collapse
|
29
|
Mei C, Xin L, Liu Y, Lin J, Xian H, Zhang X, Hu W, Xia Z, Wang H, Lyu Y. Establishment of a New Cell Line of Canine Mammary Tumor CMT-1026. Front Vet Sci 2021; 8:744032. [PMID: 34712723 PMCID: PMC8546253 DOI: 10.3389/fvets.2021.744032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023] Open
Abstract
Canine mammary tumors (CMTs) have histopathological, epidemiologic and clinical characteristics similar to those in humans and are known to be one of the best models for human breast cancer (HBC). This research aimed to describe a newly established canine cell line, CMT-1026. Tumor samples were collected from a female dog exhibiting clinical mammary neoplasm, and the adherent cells were cultured. Both the histology and immunohistochemistry (IHC) of tumor samples were estimated. Cell growth, ultrastructural, cytological and immunocytochemistry (ICC) features of CMT-1026 were examined. CMT-1026 cells were inoculated into 10 female BALB/c nude mice to evaluate oncogenicity and metastatic ability. Hematoxylin-eosin (H.E.) staining of the tumors revealed an epithelial morphology. Electron microscopy was used to detect histological and cytological of smears, and ultrathin sections showed that CMT-1026 cells were polygonal and characterized by atypia and high mitotic index in the tumor, with prominent nucleoli and multinucleated cells. IHC characterization of CMT-1026 indicated ER-, PR-, HER-2, p63+, CK5/6+, and α-SMA+ epithelial cells. ICC characterization of CMT-1026 showed high expression of Claudin-1, Delta-catenin, SOX-2, and KI-67. At 2 weeks after inoculation of the CMT-1026 cells, phyma was found in 100% of the mice. The xenograft cancers showed conservation of the original H.E. features of the female dog cancer. In conclusion, CMT-1026 may be a model of canine mammary cancer that can be used in research on the pathogenesis of both CMT and HBC.
Collapse
Affiliation(s)
- Chen Mei
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Liang Xin
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Yang Liu
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Jiabao Lin
- College of Veterinary Medicine, Veterinary Teaching Hospital, China Agricultural University, Beijing, China
| | - Hong Xian
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Wei Hu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Zhaofei Xia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yanli Lyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Yuan XQ, Zhang XM. Melatonin reduces inflammation in intestinal cells, organoids and intestinal explants. Inflammopharmacology 2021; 29:1555-1564. [PMID: 34431007 DOI: 10.1007/s10787-021-00869-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/14/2021] [Indexed: 01/08/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic and recurrent diseases that often occur in young people and place a heavy burden on public health in both developed and developing countries. Melatonin has been confirmed to be useful in various diseases, including Alzheimer's disease, liver injuries and diseases, and cancers, while its role in IBDs remains unclear. To uncover the function of melatonin in IBDs, three intestinal models, including Caco-2 cells, 3D intestinal organoids and intestinal explants, were used. It was found that different concentrations of melatonin could significantly inhibit the expression levels of NFκB and its downstream cytokines, including IL6 and IL8 in Caco-2 cells (*P < 0.05, **P < 0.01), 3D intestinal organoids (*P < 0.05, **P < 0.01) and intestinal explants (*P < 0.05, **P < 0.01). Melatonin abolished the activation of LPS on the expression levels of NFκB, IL6, and IL8 in three intestinal models (*P < 0.05, **P < 0.01, ***P < 0.001). Importantly, the roles of melatonin in the regulation of inflammation was dependent on its receptor (i.e., MTNR1), since it was found that silencing of the melatonin receptor (MTNR1A) abolished the reduction in inflammation induced by melatonin in Caco-2 cells (***P < 0.001) and 3D intestinal organoids (***P < 0.01, ****P < 0.0001). Herein, the findings in this study might provide useful information for understanding the pathogenesis of IBDs and developing novel drugs to treat the diseases.
Collapse
Affiliation(s)
- Xiao-Qiang Yuan
- Department of Trauma, Tangshan Gongren Hospital, No. 27, Wenhua Road, Lubei District, Tangshan, 063000, Hebei, China
| | - Xu-Ming Zhang
- Anorectal Surgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
31
|
Yan G, Yan S, Wang J, Lei S, Tian W, Yue X, Zhang Y. MicroRNA-296-5p inhibits cell proliferation by targeting HMGA1 in colorectal cancer. Exp Ther Med 2021; 22:793. [PMID: 34093749 PMCID: PMC8170657 DOI: 10.3892/etm.2021.10225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/08/2019] [Indexed: 01/10/2023] Open
Abstract
An increasing body of evidence indicates the involvement of microRNAs (miRNAs/miRs) in the initiation and progression of colorectal cancer (CRC). miR-296-5p was recently identified as a tumor suppressor in a variety of human cancer types; however, its function in CRC remains largely unknown. The present study demonstrated that the expression of miR-296-5p was significantly downregulated in CRC tissues and cell lines. The overexpression of miR-296-5p markedly inhibited proliferation, and induced cell cycle arrest and apoptosis in CRC cells. Bioinformatics analysis suggested that high mobility group AT-hook 1 (HMGA1) may be a target of miR-296-5p in CRC cells. Further experiments showed that miR-296-5p bound the 3'-untranslated region of HMGA1 and decreased its expression in CRC cells. HMGA1 was overexpressed in CRC tissues and was inversely correlated with the expression of miR-296-5p. The restoration of HMGA1 significantly reversed the inhibitory effect of miR-296-5p on the proliferation of CRC cells. Overall, the findings of the present study indicate that miR-296-5p suppressed the progression of CRC, at least partially via targeting HMGA1. Thus, miR-296-5p is a potential target for novel therapies in CRC.
Collapse
Affiliation(s)
- Guohui Yan
- The Medical Department of the Xiamen University, Xiamen, Fujian 361000, P.R. China
- The Medical Department of the Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Department of Ultrasound, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shuidi Yan
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jiajia Wang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shen Lei
- The Medical Department of the Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Weimin Tian
- Department of Paediatrics, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Xin Yue
- Department of Imaging, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Yang Zhang
- The Medical Department of the Xiamen University, Xiamen, Fujian 361000, P.R. China
- The Medical Department of the Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
32
|
Wawruszak A, Halasa M, Okon E, Kukula-Koch W, Stepulak A. Valproic Acid and Breast Cancer: State of the Art in 2021. Cancers (Basel) 2021; 13:3409. [PMID: 34298623 PMCID: PMC8306563 DOI: 10.3390/cancers13143409] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Valproic acid (2-propylpentanoic acid, VPA) is a short-chain fatty acid, a member of the group of histone deacetylase inhibitors (HDIs). VPA has been successfully used in the treatment of epilepsy, bipolar disorders, and schizophrenia for over 50 years. Numerous in vitro and in vivo pre-clinical studies suggest that this well-known anticonvulsant drug significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. Breast cancer (BC) is the most common malignancy affecting women worldwide. Despite significant progress in the treatment of BC, serious adverse effects, high toxicity to normal cells, and the occurrence of multi-drug resistance (MDR) still limit the effective therapy of BC patients. Thus, new agents which improve the effectiveness of currently used methods, decrease the emergence of MDR, and increase disease-free survival are highly needed. This review focuses on in vitro and in vivo experimental data on VPA, applied individually or in combination with other anti-cancer agents, in the treatment of different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| |
Collapse
|
33
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
34
|
Zhong C, Tao B, Tang F, Yang X, Peng T, You J, Xia K, Xia X, Chen L, Peng L. Remodeling cancer stemness by collagen/fibronectin via the AKT and CDC42 signaling pathway crosstalk in glioma. Am J Cancer Res 2021; 11:1991-2005. [PMID: 33408794 PMCID: PMC7778591 DOI: 10.7150/thno.50613] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer development is a complex set of proliferative progression, which arises in most cases via multistep pathways associated with various factors, including the tumor microenvironment and extracellular matrix. However, the underlying mechanisms of cancer development remain unclear and this study aimed to explore the role of extracellular matrix in glioma progression. Methods: The expression of type I collagen and fibronectin in tumor tissues from glioma patients was examined by immunofluorescence staining. The correlations between collagen/fibronectin and glioma progression were then analyzed. A 3D collagen/fibronectin cultured system was established for tumor cells culture in vitro. Quantitative, real-time PCR and western blot were used to detect PI3K/ATK and CDC42 signals associated proteins expression in glioma. We used in vitro Cell Counting Kit-8, colony formation, and tumorigenesis assays to investigate the function of PI3K/AKT and CDC42 signals associated proteins. A xenograft glioma mice model was also used to study the anticancer effects of integrin inhibitor in vivo. Results: Our study demonstrated that type I collagen and fibronectin collaborate to regulate glioma cell stemness and tumor growth. In a 3D collagen/fibronectin culture model, glioma cells acquired tumorigenic potential and revealed strengthened proliferative characteristics. More significantly, collagen/fibronectin could facilitate the activation of PI3K/AKT/SOX2 and CDC42/YAP-1/NUPR1/Nestin signaling pathways via integrin αvβ3, eliciting sustained tumor growth and cancer relapse. Combination of the integrin signaling pathway inhibitor and the chemotherapeutic agent efficiently suppressed glioma cell proliferation and tumorigenic ability. Conclusion: We demonstrated that type I collagen and fibronectin could collaborate to promote glioma progression through PI3K/AKT/SOX2 and CDC42/YAP-1/NUPR1/Nestin signaling pathways. Blockade of the upstream molecular integrin αvβ3 revealed improved outcome in glioma therapy, which provide new insights for eradicating tumors and reducing glioma cancer relapse.
Collapse
|
35
|
Androgen Deprivation Induces Transcriptional Reprogramming in Prostate Cancer Cells to Develop Stem Cell-Like Characteristics. Int J Mol Sci 2020; 21:ijms21249568. [PMID: 33339129 PMCID: PMC7765584 DOI: 10.3390/ijms21249568] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Enzalutamide, an antiandrogen, is approved for therapy of castration resistant prostate cancer. Clinical applications have shown that approximately 30% of patients acquire resistance after a short period of treatment. However, the molecular mechanisms underlying this resistance is not completely understood. To identify transcriptomic signatures associated with acquisition of drug resistance we profiled gene expression of paired enzalutamide sensitive and resistant human prostate cancer LNCaP (lymph node carcinoma of the prostate) and C4-2B cells. Overlapping genes differentially regulated in the enzalutamide resistant cells were ranked by Ingenuity Pathway Analysis and their functional validation was performed using ingenuity knowledge database followed by confirmation to correlate transcript with protein expression. Analysis revealed that genes associated with cancer stem cells, such as POU5F1 (OCT4), SOX2, NANOG, BMI1, BMP2, CD44, SOX9, and ALDH1 were markedly upregulated in enzalutamide resistant cells. Amongst the pathways enriched in the enzalutamide-resistant cells were those associated with RUNX2, hedgehog, integrin signaling, and molecules associated with elastic fibers. Further examination of a patient cohort undergoing ADT and its comparison with no-ADT group demonstrated high expression of POU5F1 (OCT4), ALDH1, and SOX2 in ADT specimens, suggesting that they may be clinically relevant therapeutic targets. Altogether, our approach exhibits the potential of integrative transcriptomic analyses to identify critical genes and pathways of antiandrogen resistance as a promising approach for designing novel therapeutic strategies to circumvent drug resistance.
Collapse
|
36
|
Wu G, Zhou H, Li D, Zhi Y, Liu Y, Li J, Wang F. LncRNA DANCR upregulation induced by TUFT1 promotes malignant progression in triple negative breast cancer via miR-874-3p-SOX2 axis. Exp Cell Res 2020; 396:112331. [PMID: 33058834 DOI: 10.1016/j.yexcr.2020.112331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with poorest survival outcome and is prone to metastasis. TUFT1 and the long non-coding RNA (lncRNA), DANCR, play vital roles in metastasis and progression of various cancers. However, the correlation between TUFT1 and DANCR in TNBC and their downstream molecular mechanisms are still undetermined. We demonstrated that upregulation of TUFT1 in TNBC was related to a worse survival in TNBC patients. The TNBC cells invasiveness was augmented by TUFT1 in a dose-dependent manner, while inhibiting TUFT1 repressed the invasiveness. Particularly, the expression of TUFT1 was positively correlated with the expression of DANCR in TNBC tissues. In addition, TUFT1 increased DANCR expression, while silencing DANCR ameliorated the invasiveness of TNBC cells induced by TUFT1. As demonstrated, TUFT1 interacted with miR-874-3p. Subsequently, qRT-PCR together with luciferase reporter further demonstrated that DANCR acted as competing endogenous (ceRNA) for miR-874-3p, thereby regulating the de-repression of SOX2 and advancing epithelial-mesenchymal transition (EMT) in TNBC. The present research shows that TUFT1 promotes the malignant development in TNBC via enhancing the expression of DANCR. The upregulation of DANCR may contribute to the progression and tumor invasiveness of TNBC, considering that DANCR functions as a miR-874-3p sponge, thus modulating SOX2 positively. Collectively, the present study explored the molecular mechanism underlying TUFT1 in TNBC, raising a TUFT1-mediated therapy for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Guiyun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Huatao Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Danhua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yaowei Zhi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yafang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Junhua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Fei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
37
|
Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther 2020; 5:135. [PMID: 32728033 PMCID: PMC7391717 DOI: 10.1038/s41392-020-00242-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
SOX2 is a well-characterized pluripotent factor that is essential for stem cell self-renewal, reprogramming, and homeostasis. The cellular levels of SOX2 are precisely regulated by a complicated network at the levels of transcription, post-transcription, and post-translation. In many types of human cancer, SOX2 is dysregulated due to gene amplification and protein overexpression. SOX2 overexpression is associated with poor survival of cancer patients. Mechanistically, SOX2 promotes proliferation, survival, invasion/metastasis, cancer stemness, and drug resistance. SOX2 is, therefore, an attractive anticancer target. However, little progress has been made in the efforts to discover SOX2 inhibitors, largely due to undruggable nature of SOX2 as a transcription factor. In this review, we first briefly introduced SOX2 as a transcription factor, its domain structure, normal physiological functions, and its involvement in human cancers. We next discussed its role in embryonic development and stem cell-renewal. We then mainly focused on three aspects of SOX2: (a) the regulatory mechanisms of SOX2, including how SOX2 level is regulated, and how SOX2 cross-talks with multiple signaling pathways to control growth and survival; (b) the role of SOX2 in tumorigenesis and drug resistance; and (c) current drug discovery efforts on targeting SOX2, and the future perspectives to discover specific SOX2 inhibitors for effective cancer therapy.
Collapse
|
38
|
Lin S, Zhen Y, Guan Y, Yi H. Roles of Wnt/β-Catenin Signaling Pathway Regulatory Long Non-Coding RNAs in the Pathogenesis of Non-Small Cell Lung Cancer. Cancer Manag Res 2020; 12:4181-4191. [PMID: 32581590 PMCID: PMC7280066 DOI: 10.2147/cmar.s241519] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer. Long non-coding RNAs (lncRNAs) are promising novel diagnostic and prognostic biomarkers, as well as potential therapeutic targets for lung cancer. Long non-coding RNAs (lncRNAs) have been demonstrated to modulate tumor cells proliferation, cell cycle progression, invasion, and metastasis by regulating gene expression at transcriptional, post-transcriptional, and epigenetic levels. The oncogenic aberrant Wnt/β-catenin signaling is prominent in lung cancer, playing a vital role in tumorigenesis, prognosis, and resistance to therapy. Interestingly, compelling studies have demonstrated that lncRNAs exert either oncogenic or tumor suppressor roles by regulating Wnt/β-catenin signaling. In this review, we aim to present the current accumulated knowledge regarding the roles of Wnt/β-catenin signaling-regulated lncRNAs in the pathogenesis of non-small cell lung cancer (NSCLC). Better understanding of the effects of lncRNAs on Wnt/β-catenin signaling might contribute to the improved understanding of the molecular tumor pathogenesis and to the uncovering of novel therapeutic targets in NSCLC.
Collapse
Affiliation(s)
- Shan Lin
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, People's Republic of China.,Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yinghui Guan
- Department of Respiratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin 130021, People's Republic of China
| |
Collapse
|
39
|
Shen C, Chen JH, Oh H, Park JH. SOX2 is a positive regulator of osteoclast differentiation. Biochem Biophys Res Commun 2020; 526:147-153. [PMID: 32199613 DOI: 10.1016/j.bbrc.2020.03.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Elucidating the mechanism underlying osteoclast differentiation is important to improve our understanding of the pathophysiologies related to skeletal diseases and osteolytic metastasis in cancer. Sex-determining region Y-box containing gene 2 (SOX2), a stemness marker, is known to affect osteoblast differentiation and cancer metastasis. However, its role in osteoclastogenesis has not been investigated to date. Here, we report that SOX2 protein and mRNA expression was upregulated during osteoclast differentiation. The overexpression or knockdown of SOX2 in osteoclast precursor cells enhanced or suppressed, respectively, receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation and migration, and nuclear factor of activated T-cell c1 (NFATc1) and factor-associated suicide ligand (FASL) expression. In addition, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK) activation were regulated by SOX2 expression; both EGFR and ERK inhibitors abrogated the SOX2 overexpression-induced increase in osteoclast differentiation and NFATc1 expression under RANKL stimulation. Overall, these results suggest SOX2 as a positive regulatory factor during osteoclast differentiation partly through the EGFR and ERK signaling pathways, highlighting a new potential target for restoring abnormal osteoclast activation.
Collapse
Affiliation(s)
- Chen Shen
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Hong Chen
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Haram Oh
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ji Hyun Park
- Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
40
|
The Role of Epithelial-to-Mesenchymal Transition in Cutaneous Squamous Cell Carcinoma : Epithelial-to-Mesenchymal Transition in Cutaneous SCC. Curr Treat Options Oncol 2020; 21:47. [PMID: 32350682 DOI: 10.1007/s11864-020-00735-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT The capacity of cells to modify their phenotypes from epithelial to mesenchymal (epithelial-to-mesenchymal transition or EMT) and vice versa provides them with a dynamic plasticity essential for human life, from embryogenesis to wound healing. Current knowledge about carcinogenetic mechanisms leaves little doubts on the pivotal participation of these interchangeable processes in cancer development, and their influence has been quite clearly established in the progression of cutaneous squamous cell carcinoma. A complex and ordered interplay of signals induces the shift between both phenotypes, providing cells with the most suitable state at every moment to face the next step in tumor invasion and dissemination. Some stimulatory triggers have opposite effects according to the biological context and in many cases exert collateral functions. This scenario makes finding an ideal therapeutic target difficult but provides the opportunity to intervene simultaneously at many different levels with small actions such as targeting the tumor environment. In any case, advances in knowledge of the EMT mechanisms and their influence on carcinogenesis and drug resistance will greatly influence the therapeutic strategies for many human tumors, including cutaneous squamous cell carcinoma.
Collapse
|