1
|
Klochkov V, Chan CM, Lin WW. Methylglyoxal: A Key Factor for Diabetic Retinopathy and Its Effects on Retinal Damage. Biomedicines 2024; 12:2512. [PMID: 39595078 PMCID: PMC11592103 DOI: 10.3390/biomedicines12112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Diabetic retinopathy is the most common retinal vascular disease, affecting the retina's blood vessels and causing chronic inflammation, oxidative stress, and, ultimately, vision loss. Diabetes-induced elevated glucose levels increase glycolysis, the main methylglyoxal (MGO) formation pathway. MGO is a highly reactive dicarbonyl and the most rapid glycation compound to form endogenous advanced glycation end products (AGEs). MGO can act both intra- and extracellularly by glycating molecules and activating the receptor for AGEs (RAGE) pathway. Conclusions: This review summarizes the sources of MGO formation and its actions on various cell pathways in retinal cells such as oxidative stress, glycation, autophagy, ER stress, and mitochondrial dysfunction. Finally, the detoxification of MGO by glyoxalases is discussed.
Collapse
Affiliation(s)
- Vladlen Klochkov
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
2
|
Khan MWA, Sherwani S, Alshammari MHE, Alsukaibi AKD, Khan WA, Haque A, Alenezi KM, Shahab U. Pharmacological Activities of Zingiber officinale Roscoe: Inhibition of HSA Protein Glycation, Structure Stability and Function Restoration. Pharmaceuticals (Basel) 2024; 17:1469. [PMID: 39598381 PMCID: PMC11597160 DOI: 10.3390/ph17111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Controlled non-enzymatic glycation reactions are common under normal physiological conditions. However, during elevated blood glucose conditions, the glycation reactions are accelerated, leading to the formation of toxic compounds such as advanced glycation end products (AGEs). Several natural products are now being investigated as protective agents against glycation to preserve blood protein structure and functions. METHODS Human serum albumin (HSA) was glycated with 0.05 M α-D-glucose alone or in the presence of Zingiber officinale Roscoe (ginger) extract (0.781-100 μg/mL) for 10 weeks, and biochemical, biophysical, and computational analyses were carried out. RESULTS HSA glycated for 10 weeks (G-HSA-10W) resulted in significant production of ketoamines, carbonyl compounds, and AGE pentosidine. Notable structural alterations were observed in G-HSA-10W, ascertained by ultraviolet (UV), fluorescence, and circular dichroism (CD) studies. Antioxidant, anti-glycating, AGEs inhibitory, and antibacterial effects of ginger extracts were observed and attributed to the presence of various phytochemicals. Molecular docking studies suggested that the compounds 8-shagaol and gingerol exhibited strong and multiple interactions with HSA. Molecular simulation analysis suggests HSA attains a high degree of conformational stability with the compounds gingerol and 8-shogaol. CONCLUSIONS These findings showed that ginger extract has an antioxidant function and can prevent glycation-induced biochemical and biophysical alterations in HSA. Thus, aqueous ginger extract can be utilized to combat glycation and AGE-related health issues, especially diabetes, neurological disorders, inflammatory diseases, etc.
Collapse
Affiliation(s)
- Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.H.E.A.); (A.K.D.A.); (A.H.); (K.M.A.)
- Medical and Diagnostic Research Center, University of Ha’il, Ha’il 55473, Saudi Arabia;
| | - Subuhi Sherwani
- Medical and Diagnostic Research Center, University of Ha’il, Ha’il 55473, Saudi Arabia;
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Muna H. E. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.H.E.A.); (A.K.D.A.); (A.H.); (K.M.A.)
| | - Abdulmohsen K. D. Alsukaibi
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.H.E.A.); (A.K.D.A.); (A.H.); (K.M.A.)
| | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62521, Saudi Arabia;
| | - Ashanul Haque
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.H.E.A.); (A.K.D.A.); (A.H.); (K.M.A.)
| | - Khalaf M. Alenezi
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 55473, Saudi Arabia; (M.H.E.A.); (A.K.D.A.); (A.H.); (K.M.A.)
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow 226003, India;
| |
Collapse
|
3
|
Kaya A, Ceylan AF, Kavutcu M, Santamaria A, Šoltésová Prnová M, Stefek M, Karasu Ç. A dual-acting aldose reductase inhibitor impedes oxidative and carbonyl stress in tissues of fructose- and streptozotocin-induced rats: comparison with antioxidant stobadine. Drug Chem Toxicol 2024; 47:710-720. [PMID: 37795621 DOI: 10.1080/01480545.2023.2262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
Inhibiting aldose reductase (ALR2, AR) as well as maintaining a concomitant antioxidant (AO) activity via dual-acting agents may be a rational approach to prevent cellular glucotoxicity and at least delay the progression of diabetes mellitus (DM). This study was aimed at evaluating the dual-acting AR inhibitor (ARI) cemtirestat (CMTI) on tissue oxidative stress (OS) and carbonyl stress (CS) biomarkers in rats exposed to fructose alone (F) or fructose plus streptozotocin (D; type-2 diabetic). D and F rats were either untreated or treated daily with low- or high-dose CMTI, ARI drug epalrestat (EPA) or antioxidant stobadine (STB) for 14 weeks. Malondialdehyde (MDA), glutathione S-transferase (GST), nitric oxide synthase (NOS), and catalase (CAT) were increased in the sciatic nerve of F and D. These increases were attenuated by low doses of CMTI and STB in D, but exacerbated by low-dose EPA and high-dose CMTI in F. STB and CMTI and to a lesser extent EPA improved MDA, protein-carbonyl, GST and CAT in the hearts and lungs of F and D. CMTI and STB were more effective than EPA in improving the increased MDA and protein-carbonyl levels in the kidneys of F and especially D. CMTI ameliorated renal GST inhibition in D. In the lungs, hearts, and kidneys of F and D, the GSH to GSSG ratio decreased and caspase-3 activity increased, but partially resolved with treatments. In conclusion, CMTI with ARI/AO activity may be advantageous in overcoming OS, CS, and their undesirable consequences, with low dose efficacy and limited toxicity, compared to ARI or antioxidant alone.
Collapse
Affiliation(s)
- Alican Kaya
- Department of Medical Services and Techniques, Health Services Vocational School, Medical Laboratory Techniques Program, Bayburt University, Bayburt, Turkey
| | - Aslı F Ceylan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mustafa Kavutcu
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Marta Šoltésová Prnová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Milan Stefek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Çimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Haque A, Khan MWA, Alenezi KM, Soury R, Khan MS, Ahamad S, Mushtaque M, Gupta D. Synthesis, Characterization, Antiglycation Evaluation, Molecular Docking, and ADMET Studies of 4-Thiazolidinone Derivatives. ACS OMEGA 2024; 9:1810-1820. [PMID: 38222574 PMCID: PMC10785283 DOI: 10.1021/acsomega.3c08463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
The design and development of new small-molecule glycation inhibitors are essential for preventing various chronic diseases, including diabetes mellitus, immunoinflammation, cardiovascular, and neurodegenerative diseases. 4-Thiazolidinone or thiazolidine-4-one is a well-known heterocyclic compound with the potential to inhibit the formation of advanced glycation end products. In the present work, we report the synthesis and characterization of four new 5-arylidene 3-cyclopropyl-2-(phenylimino)thiazolidin-4-one (1-4) compounds and their human serum albumin glycation inhibitory activity. One of the compounds 5-(2H-1,3-benzodioxol-5-ylmethylidene)-3-cyclopropyl-2-(phenylimino)-1,3-thiazolidin-4-one (3) showed potent inhibition in the synthesis of initial, intermediary, and final products of glycation reactions. Besides, conformational changes in the α-helix and β-sheet (due to hyperglycemia) were also found to be reversed upon the addition of (3). Experimental findings were complemented by computational [molecular docking, ADME/Tox, and density functional theory (DFT)] studies. The docking scores of the compounds were in order 1 > 3 > 2 > 4, indicating the importance of the polar group at the 5-arylidene moiety. The results of ADME/Tox and DFT calculations revealed the safe nature of the compounds with high drug-likeness and stability. Overall, we speculate that the results of this study could provide valuable insights into the biological activity of 4-thiazolidinones.
Collapse
Affiliation(s)
- Ashanul Haque
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Khalaf M. Alenezi
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Raoudha Soury
- Department
of Chemistry, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
- Medical
and Diagnostic Research Centre, University
of Ha’il, Ha’il 55473, Saudi Arabia
| | - Muhammad S. Khan
- Department
of Chemistry, College of Science, Sultan
Qaboos University, Muscat 123, Oman
| | - Shahzaib Ahamad
- Translational
Bioinformatics Group, International Centre
for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg 110067, New Delhi, India
| | - Md. Mushtaque
- Department
of Chemistry, Millat College (A Constituent
College of Lalit Narayan Mithila University), Darbhanga 846003, Bihar, India
| | - Dinesh Gupta
- Translational
Bioinformatics Group, International Centre
for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg 110067, New Delhi, India
| |
Collapse
|
5
|
Mrowicka M, Mrowicki J, Majsterek I. Relationship between Biochemical Pathways and Non-Coding RNAs Involved in the Progression of Diabetic Retinopathy. J Clin Med 2024; 13:292. [PMID: 38202299 PMCID: PMC10779474 DOI: 10.3390/jcm13010292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic retinopathy (DR) is a progressive blinding disease, which affects the vision and quality of life of patients, and it severely impacts the society. This complication, caused by abnormal glucose metabolism, leads to structural, functional, molecular, and biochemical abnormalities in the retina. Oxidative stress and inflammation also play pivotal roles in the pathogenic process of DR, leading to mitochondrial damage and a decrease in mitochondrial function. DR causes retinal degeneration in glial and neural cells, while the disappearance of pericytes in retinal blood vessels leads to alterations in vascular regulation and stability. Clinical changes include dilatation and blood flow changes in response to the decrease in retinal perfusion in retinal blood vessels, leading to vascular leakage, neovascularization, and neurodegeneration. The loss of vascular cells in the retina results in capillary occlusion and ischemia. Thus, DR is a highly complex disease with various biological factors, which contribute to its pathogenesis. The interplay between biochemical pathways and non-coding RNAs (ncRNAs) is essential for understanding the development and progression of DR. Abnormal expression of ncRNAs has been confirmed to promote the development of DR, suggesting that ncRNAs such as miRNAs, lncRNAs, and circRNAs have potential as diagnostic biomarkers and theranostic targets in DR. This review provides an overview of the interactions between abnormal biochemical pathways and dysregulated expression of ncRNAs under the influence of hyperglycemic environment in DR.
Collapse
Affiliation(s)
- Małgorzata Mrowicka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (J.M.); (I.M.)
| | | | | |
Collapse
|
6
|
Ahmad S, Rehman S. Impact of Reactive Dicarbonyls on Biological Macromolecules- Role in Metabolic Disorders. Curr Protein Pept Sci 2021; 21:844-845. [PMID: 33323095 DOI: 10.2174/138920372109201105114029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saheem Ahmad
- IIRC-1. Laboratory of Glycation Biology and Metabolic Disorders Department of Biosciences Integral University Lucknow, India
| | - Shahnawaz Rehman
- IIRC-1. Laboratory of Glycation Biology and Metabolic Disorders Department of Biosciences Integral University Lucknow, India
| |
Collapse
|