1
|
Travis CR, Kean KM, Albanese KI, Henriksen HC, Treacy JW, Chao EY, Houk KN, Waters ML. Trimethyllysine Reader Proteins Exhibit Widespread Charge-Agnostic Binding via Different Mechanisms to Cationic and Neutral Ligands. J Am Chem Soc 2024; 146:3086-3093. [PMID: 38266163 PMCID: PMC11140585 DOI: 10.1021/jacs.3c10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In the last 40 years, cation-π interactions have become part of the lexicon of noncovalent forces that drive protein binding. Indeed, tetraalkylammoniums are universally bound by aromatic cages in proteins, suggesting that cation-π interactions are a privileged mechanism for binding these ligands. A prominent example is the recognition of histone trimethyllysine (Kme3) by the conserved aromatic cage of reader proteins, dictating gene expression. However, two proteins have recently been suggested as possible exceptions to the conventional understanding of tetraalkylammonium recognition. To broadly interrogate the role of cation-π interactions in protein binding interactions, we report the first large-scale comparative evaluation of reader proteins for a neutral Kme3 isostere, experimental and computational mechanistic studies, and structural analysis. We find unexpected widespread binding of readers to a neutral isostere with the first examples of readers that bind the neutral isostere more tightly than Kme3. We find that no single factor dictates the charge selectivity, demonstrating the challenge of predicting such interactions. Further, readers that bind both cationic and neutral ligands differ in mechanism: binding Kme3 via cation-π interactions and the neutral isostere through the hydrophobic effect in the same aromatic cage. This discovery explains apparently contradictory results in previous studies, challenges traditional understanding of molecular recognition of tetraalkylammoniums by aromatic cages in myriad protein-ligand interactions, and establishes a new framework for selective inhibitor design by exploiting differences in charge dependence.
Collapse
Affiliation(s)
- Christopher R. Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelsey M. Kean
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanne C. Henriksen
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Elaine Y. Chao
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Baralle M, Romano M. Age-Related Alternative Splicing: Driver or Passenger in the Aging Process? Cells 2023; 12:2819. [PMID: 38132139 PMCID: PMC10742131 DOI: 10.3390/cells12242819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative splicing changes are closely linked to aging, though it remains unclear if they are drivers or effects. As organisms age, splicing patterns change, varying gene isoform levels and functions. These changes may contribute to aging alterations rather than just reflect declining RNA quality control. Three main splicing types-intron retention, cassette exons, and cryptic exons-play key roles in age-related complexity. These events modify protein domains and increase nonsense-mediated decay, shifting protein isoform levels and functions. This may potentially drive aging or serve as a biomarker. Fluctuations in splicing factor expression also occur with aging. Somatic mutations in splicing genes can also promote aging and age-related disease. The interplay between splicing and aging has major implications for aging biology, though differentiating correlation and causation remains challenging. Declaring a splicing factor or event as a driver requires comprehensive evaluation of the associated molecular and physiological changes. A greater understanding of how RNA splicing machinery and downstream targets are impacted by aging is essential to conclusively establish the role of splicing in driving aging, representing a promising area with key implications for understanding aging, developing novel therapeutical options, and ultimately leading to an increase in the healthy human lifespan.
Collapse
Affiliation(s)
- Marco Baralle
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|
3
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
4
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Isbel L, Iskar M, Durdu S, Weiss J, Grand RS, Hietter-Pfeiffer E, Kozicka Z, Michael AK, Burger L, Thomä NH, Schübeler D. Readout of histone methylation by Trim24 locally restricts chromatin opening by p53. Nat Struct Mol Biol 2023:10.1038/s41594-023-01021-8. [PMID: 37386214 DOI: 10.1038/s41594-023-01021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 05/15/2023] [Indexed: 07/01/2023]
Abstract
The genomic binding sites of the transcription factor (TF) and tumor suppressor p53 are unusually diverse with regard to their chromatin features, including histone modifications, raising the possibility that the local chromatin environment can contextualize p53 regulation. Here, we show that epigenetic characteristics of closed chromatin, such as DNA methylation, do not influence the binding of p53 across the genome. Instead, the ability of p53 to open chromatin and activate its target genes is locally restricted by its cofactor Trim24. Trim24 binds to both p53 and unmethylated histone 3 lysine 4 (H3K4), thereby preferentially localizing to those p53 sites that reside in closed chromatin, whereas it is deterred from accessible chromatin by H3K4 methylation. The presence of Trim24 increases cell viability upon stress and enables p53 to affect gene expression as a function of the local chromatin state. These findings link H3K4 methylation to p53 function and illustrate how specificity in chromatin can be achieved, not by TF-intrinsic sensitivity to histone modifications, but by employing chromatin-sensitive cofactors that locally modulate TF function.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Murat Iskar
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sevi Durdu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Joscha Weiss
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Eric Hietter-Pfeiffer
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Alicia K Michael
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Mah SY, Vanyai HK, Yang Y, Voss AK, Thomas T. The chromatin reader protein ING5 is required for normal hematopoietic cell numbers in the fetal liver. Front Immunol 2023; 14:1119750. [PMID: 37275850 PMCID: PMC10232820 DOI: 10.3389/fimmu.2023.1119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.
Collapse
Affiliation(s)
- Sophia Y.Y. Mah
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Hannah K. Vanyai
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Yuqing Yang
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K. Voss
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tim Thomas
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Azemin WA, Alias N, Ali AM, Shamsir MS. In silico analysis prediction of HepTH1-5 as a potential therapeutic agent by targeting tumour suppressor protein networks. J Biomol Struct Dyn 2023; 41:1141-1167. [PMID: 34935583 DOI: 10.1080/07391102.2021.2017349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Many studies reported that the activation of tumour suppressor protein, p53 induced the human hepcidin expression. However, its expression decreased when p53 was silenced in human hepatoma cells. Contrary to Tilapia hepcidin TH1-5, HepTH1-5 was previously reported to trigger the p53 activation through the molecular docking approach. The INhibitor of Growth (ING) family members are also shown to directly interact with p53 and promote cell cycle arrest, senescence, apoptosis and participate in DNA replication and DNA damage responses to suppress the tumour initiation and progression. However, the interrelation between INGs and HepTH1-5 remains unknown. Therefore, this study aims to identify the mechanism and their protein interactions using in silico approaches. The finding revealed that HepTH1-5 and its ligands had interacted mostly on hotspot residues of ING proteins which involved in histone modifications via acetylation, phosphorylation, and methylation. This proves that HepTH1-5 might implicate in an apoptosis signalling pathway and preserve the protein structure and function of INGs by reducing the perturbation of histone binding upon oxidative stress response. This study would provide theoretical guidance for the design and experimental studies to decipher the role of HepTH1-5 as a potential therapeutic agent for cancer therapy. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia.,Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Nadiawati Alias
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Abdul Manaf Ali
- Faculty of Bioresources and Food Industry, School of Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin, Besut, Malaysia
| | - Mohd Shahir Shamsir
- Faculty of Science, Bioinformatics Research Group (BIRG), Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Malaysia
| |
Collapse
|
8
|
Gül N, Yıldız A. An in silico study of how histone tail conformation affects the binding affinity of ING family proteins. PeerJ 2022; 10:e14029. [PMID: 36199288 PMCID: PMC9528904 DOI: 10.7717/peerj.14029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background Due to its intrinsically disordered nature, the histone tail is conformationally heterogenic. Therefore, it provides specific binding sites for different binding proteins or factors through reversible post-translational modifications (PTMs). For instance, experimental studies stated that the ING family binds with the histone tail that has methylation on the lysine in position 4. However, numerous complexes featuring a methylated fourth lysine residue of the histone tail can be found in the UniProt database. So the question arose if other factors like the conformation of the histone tail affect the binding affinity. Methods The crystal structure of the PHD finger domain from the proteins ING1, ING2, ING4, and ING5 are docked to four histone H3 tails with two different conformations using Haddock 2.4 and ClusPro. The best four models for each combination are selected and a two-sample t-test is performed to compare the binding affinities of helical conformations vs. linear conformations using Prodigy. The protein-protein interactions are examined using LigPlot. Results The linear histone conformations in predicted INGs-histone H3 complexes exhibit statistically significant higher binding affinity than their helical counterparts (confidence level of 99%). The outputs of predicted models generated by the molecular docking programs Haddock 2.4 and ClusPro are comparable, and the obtained protein-protein interaction patterns are consistent with experimentally confirmed binding patterns. Conclusion The results show that the conformation of the histone tail is significantly affecting the binding affinity of the docking protein. Herewith, this in silico study demonstrated in detail the binding preference of the ING protein family to histone H3 tail. Further research on the effect of certain PTMs on the final tail conformation and the interaction between those factors seem to be promising for a better understanding of epigenetics.
Collapse
Affiliation(s)
- Nadir Gül
- Faculty of Natural Sciences, Turkish-German University, Istanbul, Turkey
| | - Ahmet Yıldız
- Faculty of Engineering, Turkish-German University, Istanbul, Turkey
| |
Collapse
|
9
|
Taheri M, Hussen BM, Najafi S, Abak A, Ghafouri-Fard S, Samsami M, Baniahmad A. Molecular mechanisms of inhibitor of growth (ING) family members in health and malignancy. Cancer Cell Int 2022; 22:272. [PMID: 36056353 PMCID: PMC9438315 DOI: 10.1186/s12935-022-02693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
ING genes belong to family of tumor suppressor genes with regulatory functions on cell proliferation, apoptosis, and cellular senescence. These include a family of proteins with 5 members (ING1-5), which are downregulated in human malignancies and/or affected by pathogenic mutations. ING proteins are highly evolutionarily conserved proteins containing several domains through which bind to chromatin structures by exerting their effects as readers of histone modification marks, and also binding to proteins like p53 involved in biological processes such as cell cycle regulation. Further, they are known as subunits of histone acetylation as well as deacetylation complexes and so exert their regulatory roles through epigenetic mechanisms. Playing role in restriction of proliferative but also invasive potentials of normal cells, INGs are particularly involved in cancer development and progression. However, additional studies and experimental confirmation are required for these models. This paper highlights the potential impact that INGs may have on the development of human cancer and explores what new information has recently arise on the functions of ING genes.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
10
|
Hogan AK, Sathyan KM, Willis AB, Khurana S, Srivastava S, Zasadzińska E, Lee AS, Bailey AO, Gaynes MN, Huang J, Bodner J, Rosencrance CD, Wong KA, Morgan MA, Eagen KP, Shilatifard A, Foltz DR. UBR7 acts as a histone chaperone for post-nucleosomal histone H3. EMBO J 2021; 40:e108307. [PMID: 34786730 PMCID: PMC8672181 DOI: 10.15252/embj.2021108307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/24/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Histone chaperones modulate the stability of histones beginning from histone synthesis, through incorporation into DNA, and during recycling during transcription and replication. Following histone removal from DNA, chaperones regulate histone storage and degradation. Here, we demonstrate that UBR7 is a histone H3.1 chaperone that modulates the supply of pre-existing post-nucleosomal histone complexes. We demonstrate that UBR7 binds to post-nucleosomal H3K4me3 and H3K9me3 histones via its UBR box and PHD. UBR7 binds to the non-nucleosomal histone chaperone NASP. In the absence of UBR7, the pool of NASP-bound post-nucleosomal histones accumulate and chromatin is depleted of H3K4me3-modified histones. We propose that the interaction of UBR7 with NASP and histones opposes the histone storage functions of NASP and that UBR7 promotes reincorporation of post-nucleosomal H3 complexes.
Collapse
Affiliation(s)
- Ann K Hogan
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Kizhakke M Sathyan
- R. D. Berlin Center for Cell Analysis and ModelingThe University of Connecticut School of MedicineFarmingtonCTUSA
| | - Alexander B Willis
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Sakshi Khurana
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Shashank Srivastava
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Ewelina Zasadzińska
- Drug Substance TechnologiesProcess Development, Amgen Inc.Thousand OaksCAUSA
| | - Alexander S Lee
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Matthew N Gaynes
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Jiehuan Huang
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Justin Bodner
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Celeste D Rosencrance
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Kelvin A Wong
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Marc A Morgan
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Kyle P Eagen
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| | - Daniel R Foltz
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of MedicineChicagoILUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
11
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Hsu CL, Chong SY, Lin CY, Kao CF. Histone dynamics during DNA replication stress. J Biomed Sci 2021; 28:48. [PMID: 34144707 PMCID: PMC8214274 DOI: 10.1186/s12929-021-00743-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
Accurate and complete replication of the genome is essential not only for genome stability but also for cell viability. However, cells face constant threats to the replication process, such as spontaneous DNA modifications and DNA lesions from endogenous and external sources. Any obstacle that slows down replication forks or perturbs replication dynamics is generally considered to be a form of replication stress, and the past decade has seen numerous advances in our understanding of how cells respond to and resolve such challenges. Furthermore, recent studies have also uncovered links between defects in replication stress responses and genome instability or various diseases, such as cancer. Because replication stress takes place in the context of chromatin, histone dynamics play key roles in modulating fork progression and replication stress responses. Here, we summarize the current understanding of histone dynamics in replication stress, highlighting recent advances in the characterization of fork-protective mechanisms.
Collapse
Affiliation(s)
- Chia-Ling Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Yeh Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
13
|
Vincent JB, Ausió J. MeCP2: latest insights fundamentally change our understanding of its interactions with chromatin and its functional attributes. Bioessays 2021; 43:e2000281. [PMID: 33416207 DOI: 10.1002/bies.202000281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Methyl CpG binding protein 2 (MeCP2) was initially isolated as an exclusive reader of DNA methylated at CpG. This recognition site, was subsequently extended to other DNA methylated residues and it has been the persisting dogma that binding to methylated DNA constitutes its physiologically relevant role. As we review here, two very recent papers fundamentally change our understanding of the interactions of this protein with chromatin, as well as its functional attributes. In the first one, the protein has been shown to bind to tri-methylated histone H3 (H3K27me3), providing a hint for what might turn out to be the first described chromodomain-containing protein reader in the animal kingdom, and unequivocally demonstrates the ability of MeCP2 to bind to nonmethylated CpG regions of the genome. The second paper reports how the protein dynamically participates in the formation of constitutive heterochromatin condensates. Histone H3K27me3 is a critical component of this form of chromatin.
Collapse
Affiliation(s)
- John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
14
|
Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int J Mol Sci 2020; 21:E9451. [PMID: 33322546 PMCID: PMC7764450 DOI: 10.3390/ijms21249451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Trimethyllysine is an important post-translationally modified amino acid with functions in the carnitine biosynthesis and regulation of key epigenetic processes. Protein lysine methyltransferases and demethylases dynamically control protein lysine methylation, with each state of methylation changing the biophysical properties of lysine and the subsequent effect on protein function, in particular histone proteins and their central role in epigenetics. Epigenetic reader domain proteins can distinguish between different lysine methylation states and initiate downstream cellular processes upon recognition. Dysregulation of protein methylation is linked to various diseases, including cancer, inflammation, and genetic disorders. In this review, we cover biomolecular studies on the role of trimethyllysine in carnitine biosynthesis, different enzymatic reactions involved in the synthesis and removal of trimethyllysine, trimethyllysine recognition by reader proteins, and the role of trimethyllysine on the nucleosome assembly.
Collapse
Affiliation(s)
| | | | | | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.N.M.); (J.C.J.H.); (M.R.B.P.)
| |
Collapse
|
15
|
Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194567. [PMID: 32360393 PMCID: PMC7294231 DOI: 10.1016/j.bbagrm.2020.194567] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The precise regulation of gene transcription is required to establish and maintain cell type-specific gene expression programs during multicellular development. In addition to transcription factors, chromatin, and its chemical modification, play a central role in regulating gene expression. In vertebrates, DNA is pervasively methylated at CG dinucleotides, a modification that is repressive to transcription. However, approximately 70% of vertebrate gene promoters are associated with DNA elements called CpG islands (CGIs) that are refractory to DNA methylation. CGIs integrate the activity of a range of chromatin-regulating factors that can post-translationally modify histones and modulate gene expression. This is exemplified by the trimethylation of histone H3 at lysine 4 (H3K4me3), which is enriched at CGI-associated gene promoters and correlates with transcriptional activity. Through studying H3K4me3 at CGIs it has become clear that CGIs shape the distribution of H3K4me3 and, in turn, H3K4me3 influences the chromatin landscape at CGIs. Here we will discuss our understanding of the emerging relationship between CGIs, H3K4me3, and gene expression.
Collapse
|
16
|
Chong SY, Cutler S, Lin JJ, Tsai CH, Tsai HK, Biggins S, Tsukiyama T, Lo YC, Kao CF. H3K4 methylation at active genes mitigates transcription-replication conflicts during replication stress. Nat Commun 2020; 11:809. [PMID: 32041946 PMCID: PMC7010754 DOI: 10.1038/s41467-020-14595-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription-replication conflicts (TRCs) occur when intensive transcriptional activity compromises replication fork stability, potentially leading to gene mutations. Transcription-deposited H3K4 methylation (H3K4me) is associated with regions that are susceptible to TRCs; however, the interplay between H3K4me and TRCs is unknown. Here we show that H3K4me aggravates TRC-induced replication failure in checkpoint-defective cells, and the presence of methylated H3K4 slows down ongoing replication. Both S-phase checkpoint activity and H3K4me are crucial for faithful DNA synthesis under replication stress, especially in highly transcribed regions where the presence of H3K4me is highest and TRCs most often occur. H3K4me mitigates TRCs by decelerating ongoing replication, analogous to how speed bumps slow down cars. These findings establish the concept that H3K4me defines the transcriptional status of a genomic region and defends the genome from TRC-mediated replication stress and instability. Transcription-replication conflicts (TRC) can contribute to genome instability. Here the authors reveal that under replication stress H3K4 methylation can play a role in TRC prevention.
Collapse
Affiliation(s)
- Shin Yen Chong
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Sam Cutler
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Sue Biggins
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Yi-Chen Lo
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
17
|
Jain K, Fraser CS, Marunde MR, Parker MM, Sagum C, Burg JM, Hall N, Popova IK, Rodriguez KL, Vaidya A, Krajewski K, Keogh MC, Bedford MT, Strahl BD. Characterization of the plant homeodomain (PHD) reader family for their histone tail interactions. Epigenetics Chromatin 2020; 13:3. [PMID: 31980037 PMCID: PMC6979384 DOI: 10.1186/s13072-020-0328-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plant homeodomain (PHD) fingers are central "readers" of histone post-translational modifications (PTMs) with > 100 PHD finger-containing proteins encoded by the human genome. Many of the PHDs studied to date bind to unmodified or methylated states of histone H3 lysine 4 (H3K4). Additionally, many of these domains, and the proteins they are contained in, have crucial roles in the regulation of gene expression and cancer development. Despite this, the majority of PHD fingers have gone uncharacterized; thus, our understanding of how these domains contribute to chromatin biology remains incomplete. RESULTS We expressed and screened 123 of the annotated human PHD fingers for their histone binding preferences using reader domain microarrays. A subset (31) of these domains showed strong preference for the H3 N-terminal tail either unmodified or methylated at H3K4. These H3 readers were further characterized by histone peptide microarrays and/or AlphaScreen to comprehensively define their H3 preferences and PTM cross-talk. CONCLUSIONS The high-throughput approaches utilized in this study establish a compendium of binding information for the PHD reader family with regard to how they engage histone PTMs and uncover several novel reader domain-histone PTM interactions (i.e., PHRF1 and TRIM66). This study highlights the usefulness of high-throughput analyses of histone reader proteins as a means of understanding how chromatin engagement occurs biochemically.
Collapse
Affiliation(s)
- Kanishk Jain
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Caroline S Fraser
- Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Madison M Parker
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | | | | | | | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
18
|
Yu Z, Hübner J, Herrero S, Gourain V, Fischer R. On the role of the global regulator RlcA in red-light sensing in Aspergillus nidulans. Fungal Biol 2020; 124:447-457. [PMID: 32389307 DOI: 10.1016/j.funbio.2019.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 02/02/2023]
Abstract
A large proportion of fungal genomes are under the control of light. Most fungi employ complex light sensing systems, consisting of red-, blue-, and in some cases green-light photoreceptors. Here we studied the light response in Aspergillus nidulans. In a genetic screen, followed by whole-genome sequencing we identified a global regulator, which appears to be involved in chromatin structure modification. We therefore named the protein RlcA (regulator of light sensing and chromatin remodeling). The protein comprises a nuclear localization signal, a PHD (plant homeodomain) finger, a TFSII (found in the central region of the transcription elongation factor S-II), and a SPOC domain (Spen paralog and ortholog C-terminal domain). In the mutant, where light-controlled genes were constitutively active, the SPOC domain is missing. RlcA localized to the nucleus and interacted with the phytochrome FphA. The PHD-finger domain probably binds to trimethylated lysine 4 of histone H3, whereas the TFSII domain binds RNA polymerase II. The SPOC domain could mediate interaction with a global repressor protein. In the mutant, repressor recruitment would be hindered, whereas in the wild type repressor release would be induced after light stimulation. Our results add another layer of complexity to light sensing in filamentous fungi.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany; Nanjing Agricultural University, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, College of Resources and Environmental Sciences, 210095, Nanjing, China.
| | - Jennifer Hübner
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Satur Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and GeneticsKarlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus Institute for Applied Biosciences Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
19
|
Abstract
Cancer can be identified as a chaotic cell state, which breaks the rules that govern growth and reproduction, with main characteristics such as uncontrolled division, invading other tissues, usurping resources, and eventually killing its host. It was once believed that cancer is caused by a progressive series of genetic aberrations, and certain mutations of genes, including oncogenes and tumor suppressor genes, have been identified as the cause of cancer. However, piling evidence suggests that epigenetic modifications working in concert with genetic mechanisms to regulate transcriptional activity are dysregulated in many diseases, including cancer. Cancer epigenetics explain a wide range of heritable changes in gene expression, which do not come from any alteration in DNA sequences. Aberrant DNA methylation, histone modifications, and expression of long non-coding RNAs (lncRNAs) are key epigenetic mechanisms associated with tumor initiation, cancer progression, and metastasis. Within the past decade, cancer epigenetics have enabled us to develop novel biomarkers and therapeutic target for many types of cancers. In this review, we will summarize the major epigenetic changes involved in cancer biology along with clinical and preclinical results developed as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jong Woo Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
The Role of Nucleosomes in Epigenetic Gene Regulation. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Khan HM, MacKerell AD, Reuter N. Cation-π Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. J Chem Theory Comput 2018; 15:7-12. [PMID: 30562013 DOI: 10.1021/acs.jctc.8b00839] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cation-π interactions between tryptophan and choline or trimethylated lysines are vital for many biological processes. The performance of the additive CHARMM36 force field against target quantum mechanical data is shown to reproduce QM equilibrium geometries but required modified Lennard-Jones potentials to accurately reproduce the QM interaction energies. The modified parameter set allows accurate modeling, including free energies, of cation-π indole-choline and indole-trimethylated lysines interactions relevant for protein-ligand, protein-membrane, and protein-protein interfaces.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Biological Sciences , University of Bergen , N-5020 Bergen , Norway.,Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway.,Department of Chemistry , University of Bergen , N-5020 Bergen , Norway
| |
Collapse
|
22
|
Almeida AMR, Piñeyro-Nelson A, Yockteng RB, Specht CD. Comparative analysis of whole flower transcriptomes in the Zingiberales. PeerJ 2018; 6:e5490. [PMID: 30155368 PMCID: PMC6110254 DOI: 10.7717/peerj.5490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work.
Collapse
Affiliation(s)
- Ana Maria R Almeida
- Department of Biological Sciences, California State University, Hayward, Hayward, CA, United States of America
| | - Alma Piñeyro-Nelson
- Department of Food and Animal Production, Autonomous Metropolitan University, Xochimilco, Mexico City, DF, Mexico
| | - Roxana B Yockteng
- Centro de Investigaciones Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Tibaitatá, Colombia.,Institut de Systématique, Evolution, Biodiversité-UMR-CNRS, National Museum of Natural History, Paris, France
| | - Chelsea D Specht
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
23
|
Rajarajacholan UK, Thalappilly S, Riabowol K. ING1 regulates rRNA levels by altering nucleolar chromatin structure and mTOR localization. Nucleic Acids Res 2017; 45:1776-1792. [PMID: 27903908 PMCID: PMC5389678 DOI: 10.1093/nar/gkw1161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 11/10/2016] [Indexed: 01/31/2023] Open
Abstract
Epigenetic, transcriptional and signaling processes in the nucleolus regulate rRNA transcription and cell growth. We report here that the tumor suppressor ING1b binds rDNA, regulates rDNA chromatin modifications and affects nucleolar localization of mTOR to modulate rRNA levels. ING1 represses rDNA transcription by recruiting HDAC1 to rDNA loci, increasing its association with the NoRC complex and deacetylating the histone H3K9 and H3K27 marks of active transcription. Loss of ING1 enhances nucleolar localization of phospho-mTOR and its association with Raptor and GβL, even during rapamycin treatment. ING1 inhibits rDNA transcription by inhibiting UBF activity and its interaction with mTOR. Regulation of rDNA heterochromatin and rRNA synthesis by ING1 is also apparent during normal cell growth and during cell stress. Moreover, this function was also important during PMA induced differentiation of THP1 cells, since knocking down ING1 affected the process by inhibiting rRNA transcriptional repression. These observations show that ING1 regulates the nucleolar epigenome and rDNA transcription suggesting that regulation of protein synthesis might serve as the basis for ING1 function as a type II tumor suppressor.
Collapse
Affiliation(s)
- Uma Karthika Rajarajacholan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Subhash Thalappilly
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
24
|
Zhang P, Torres K, Liu X, Liu CG, Pollock RE. An Overview of Chromatin-Regulating Proteins in Cells. Curr Protein Pept Sci 2017; 17:401-10. [PMID: 26796306 DOI: 10.2174/1389203717666160122120310] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expressions on chromosome DNA are orchestrated by a dynamic chromosome structure state that is largely controlled by chromatin-regulating proteins, which regulate chromatin structures, release DNA from the nucleosome, and activate or suppress gene expression by modifying nucleosome histones or mobilizing DNA-histone structure. The two classes of chromatinregulating proteins are 1) enzymes that modify histones through methylation, acetylation, phosphorylation, adenosine diphosphate-ribosylation, glycosylation, sumoylation, or ubiquitylation and 2) enzymes that remodel DNA-histone structure with energy from ATP hydrolysis. Chromatin-regulating proteins, which modulate DNA-histone interaction, change chromatin conformation, and increase or decrease the binding of functional DNA-regulating protein complexes, have major functions in nuclear processes, including gene transcription and DNA replication, repair, and recombination. This review provides a general overview of chromatin-regulating proteins, including their classification, molecular functions, and interactions with the nucleosome in eukaryotic cells.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
25
|
Kudrin RA, Mironov AA, Stavrovskaya ED. Chromatin and Polycomb: Biology and bioinformatics. Mol Biol 2017. [DOI: 10.1134/s0026893316060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans. PLoS Genet 2016; 12:e1006222. [PMID: 27548260 PMCID: PMC4993369 DOI: 10.1371/journal.pgen.1006222] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes—usually physically linked in co-regulated clusters—are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A. nidulans SM clusters generally carry low levels of all tested chromatin modifications and that heterochromatic marks flank most of these SM clusters. During secondary metabolism, histone marks typically associated with transcriptional activity such as H3 trimethylated at lysine-4 (H3K4me3) are established in some, but not all gene clusters even upon full activation. KdmB, a Jarid1-family histone H3 lysine demethylase predicted to comprise a BRIGHT domain, a zinc-finger and two PHD domains in addition to the catalytic Jumonji domain, targets and demethylates H3K4me3 in vivo and mediates transcriptional downregulation. Deletion of kdmB leads to increased transcription of about ~1750 genes across nutrient-rich (primary metabolism) and nutrient-limiting (secondary metabolism) conditions. Unexpectedly, an equally high number of genes exhibited reduced expression in the kdmB deletion strain and notably, this group was significantly enriched for genes with known or predicted functions in secondary metabolite biosynthesis. Taken together, this study extends our general knowledge about multi-domain KDM5 histone demethylases and provides new details on the chromatin-level regulation of fungal secondary metabolite production. In this work we monitored by proteomic analysis and ChIP-seq the genome-wide distribution of several key modifications on histone H3 in the model fungus Aspergillus nidulans cultivated either under optimal physiological conditions (active growth) or less favourable conditions which are known to promote the production of secondary metabolites (SM). When we correlated the chromatin status to transcriptional activities in actively growing cells we found that the silenced SM gene clusters are flanked by heterochromatic domains presumably contributing to silencing but that the bodies of the clusters only carry background levels of any of the investigated marks. In nutrient-depleted conditions, activating marks were invading some, but by far not all transcribed clusters, leaving open the question how activation of these regions occurs at the chromatin level. Surprisingly, a large number of these gene clusters actually depend on KdmB for normal activation and it will be interesting to see in future how this protein thought to mainly act as repressor by removing positive H3K4m3 marks switches gears to activate transcription directly or indirectly.
Collapse
|
27
|
Kim S, Natesan S, Cornilescu G, Carlson S, Tonelli M, McClurg UL, Binda O, Robson CN, Markley JL, Balaz S, Glass KC. Mechanism of Histone H3K4me3 Recognition by the Plant Homeodomain of Inhibitor of Growth 3. J Biol Chem 2016; 291:18326-41. [PMID: 27281824 PMCID: PMC5000080 DOI: 10.1074/jbc.m115.690651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/23/2022] Open
Abstract
Aberrant access to genetic information disrupts cellular homeostasis and can lead to cancer development. One molecular mechanism that regulates access to genetic information includes recognition of histone modifications, which is carried out by protein modules that interact with chromatin and serve as landing pads for enzymatic activities that regulate gene expression. The ING3 tumor suppressor protein contains a plant homeodomain (PHD) that reads the epigenetic code via recognition of histone H3 tri-methylated at lysine 4 (H3K4me3), and this domain is lost or mutated in various human cancers. However, the molecular mechanisms targeting ING3 to histones and the role of this interaction in the cell remain elusive. Thus, we employed biochemical and structural biology approaches to investigate the interaction of the ING3 PHD finger (ING3PHD) with the active transcription mark H3K4me3. Our results demonstrate that association of the ING3PHD with H3K4me3 is in the sub-micromolar range (KD ranging between 0.63 and 0.93 μm) and is about 200-fold stronger than with the unmodified histone H3. NMR and computational studies revealed an aromatic cage composed of Tyr-362, Ser-369, and Trp-385 that accommodate the tri-methylated side chain of H3K4. Mutational analysis confirmed the critical importance of Tyr-362 and Trp-385 in mediating the ING3PHD-H3K4me3 interaction. Finally, the biological relevance of ING3PHD-H3K4me3 binding was demonstrated by the failure of ING3PHD mutant proteins to enhance ING3-mediated DNA damage-dependent cell death. Together, our results reveal the molecular mechanism of H3K4me3 selection by the ING3PHD and suggest that this interaction is important for mediating ING3 tumor suppressive activities.
Collapse
Affiliation(s)
- Sophia Kim
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Senthil Natesan
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Gabriel Cornilescu
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Samuel Carlson
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Marco Tonelli
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Urszula L McClurg
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Olivier Binda
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Craig N Robson
- the Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - John L Markley
- the National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | - Stefan Balaz
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446
| | - Karen C Glass
- From the Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446,
| |
Collapse
|
28
|
Zhang P, Bergamin E, Couture JF. The many facets of MLL1 regulation. Biopolymers 2016; 99:136-45. [PMID: 23175388 DOI: 10.1002/bip.22126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity.
Collapse
Affiliation(s)
- Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5
| | | | | |
Collapse
|
29
|
Li Y, Deng H, Lv L, Zhang C, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Yan J, Zhang H, He Y, Zhu J. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget 2016; 6:10195-206. [PMID: 25991669 PMCID: PMC4496349 DOI: 10.18632/oncotarget.3555] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
As the major barrier to curative cancer chemotherapy, chemoresistance presents a formidable challenge to both cancer researchers and clinicians. We have previously shown that the bladder cancer (BCa) cell line 5637 is significantly more sensitive to the cytoxicity of five chemotherapeutic agents than H-bc cells. Using an RNA-seq-based omic analysis and validation at both the mRNA and protein levels, we found that the inhibitor of growth 5 (ING5) gene was upregulated in 5637 cells compared with H-bc cells, indicating that it has an inhibitory role in BCa chemoresistance. siRNA-mediated inhibition of ING5 increased the chemoresistance and inhibited the DNA damage response pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 decreased the chemoresistance of and activated the DNA damage response pathway in H-bc cells. We also showed that ING5 gene expression is inhibited by miR-193a-3p and is instrumental in miR-193a-3p's role in activating BCa chemoresistance. Our results demonstrate both the role and mechanism of inhibition of BCa chemoresistance by ING5.
Collapse
Affiliation(s)
- Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Hui Deng
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Lei Lv
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liting Qian
- Department of Radiotherapy, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Jun Xiao
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Gynecologic Cancer, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingwei Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jun Yan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongyu Zhang
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yinghua He
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China.,Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
30
|
Ye H, Lu L, Ge B, Gao S, Ma Y, Liang B, Yu K, Yang K. MLL2 protein is a prognostic marker for gastrointestinal diffuse large B-cell lymphoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13043-13050. [PMID: 26722499 PMCID: PMC4680444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Mixed linage leukemia gene 2 (MLL2) is identified as a novel mutation gene in diffuse large B cell lymphoma (DLBCL). However, the significance of MLL2 protein expression for the prognosis of DLBCL is unclear. In this study, we detected MLL2 protein expression in primary gastrointestinal diffuse large B cell lymphoma (PGI-DLBCL) samples by using tissue microarray immunohistochemistry, and analyzed the correlation between MLL2 protein expression and tumor proliferation activity. In addition, we investigated clinical significance of MLL2 protein expression for PGI-DLBCL prognosis. We found that there was significant difference in MLL2 protein expression between PGI-DLBCL and reactive hyperplasia of lymph node. High expression of MLL2 protein indicated higher clinical stage. In older patients (>60 years) with PGI-DLBCL, MLL2 protein expression was positively correlated with Ki-67 expression and negatively correlated with patient survival. Our data suggest that MLL2 protein is overexpressed in PGI-DLBCL and appears as a prognostic factor for patients of PGI-DLBCL, especially for those older than 60 years old.
Collapse
Affiliation(s)
- Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Lu Lu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Bei Ge
- Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang, China
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Bin Liang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Kaiyan Yang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| |
Collapse
|
31
|
Systematic Analysis of the Maize PHD-Finger Gene Family Reveals a Subfamily Involved in Abiotic Stress Response. Int J Mol Sci 2015; 16:23517-44. [PMID: 26437398 PMCID: PMC4632711 DOI: 10.3390/ijms161023517] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/28/2015] [Accepted: 09/16/2015] [Indexed: 01/26/2023] Open
Abstract
Plant homeodomain (PHD)-finger proteins were found universally in eukaryotes and known as key players in regulating transcription and chromatin structure. Many PHD-finger proteins have been well studied on structure and function in animals. Whereas, only a few of plant PHD-finger factors had been characterized, and majority of PHD-finger proteins were functionally unclear. In this study, a complete comprehensive analysis of maize PHD family is presented. Sixty-seven PHD-finger genes in maize were identified and further divided into ten groups according to phylogenetic analysis that was supported by motif and intron/exon analysis. These genes were unevenly distributed on ten chromosomes and contained 12 segmental duplication events, suggesting that segmental duplications were the major contributors in expansion of the maize PHD family. The paralogous genes mainly experienced purifying selection with restrictive functional divergence after the duplication events on the basis of the Ka/Ks ratio. Gene digital expression analysis showed that the PHD family had a wide expression profile in maize development. In addition, 15 potential stress response genes were detected by promoter cis-element and expression analysis. Two proteins ZmPHD14 and ZmPHD19 were located in the nucleus. These results provided a solid base for future functional genome study of the PHD-finger family in maize and afforded important clues for characterizing and cloning potentially important candidates in response to abiotic stresses.
Collapse
|
32
|
Yruela I. Plant development regulation: Overview and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:62-78. [PMID: 26056993 DOI: 10.1016/j.jplph.2015.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 05/07/2023]
Abstract
Plant development, as occur in other eukaryotes, is conducted through a complex network of hormones, transcription factors, enzymes and micro RNAs, among other cellular components. They control developmental processes such as embryo, apical root and shoot meristem, leaf, flower, or seed formation, among others. The research in these topics has been very active in last decades. Recently, an explosion of new data concerning regulation mechanisms as well as the response of these processes to environmental changes has emerged. Initially, most of investigations were carried out in the model eudicot Arabidopsis but currently data from other plant species are available in the literature, although they are still limited. The aim of this review is focused on summarize the main molecular actors involved in plant development regulation in diverse plant species. A special attention will be given to the major families of genes and proteins participating in these regulatory mechanisms. The information on the regulatory pathways where they participate will be briefly cited. Additionally, the importance of certain structural features of such proteins that confer ductility and flexibility to these mechanisms will also be reported and discussed.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Instituto de Biocomputacióon y Física de Sistemas Complejos, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain.
| |
Collapse
|
33
|
He D, Miao H, Xu Y, Xiong L, Wang Y, Xiang H, Zhang H, Zhang Z. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One 2014; 9:e112930. [PMID: 25411783 PMCID: PMC4239040 DOI: 10.1371/journal.pone.0112930] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022] Open
Abstract
Background microRNAs (miRNAs) play a critical role in tumorigenesis, either as a tumor suppressor or as an oncogenic miRNA, depending on different tumor types. To date, scientists have obtained a substantial amount of knowledge with regard to miRNAs in pancreatic cancer. However, the expression and function of miR-371-5p in pancreatic cancer has not been clearly elucidated. The aim of this study was to investigate the roles of miR-371-5p in pancreatic cancer and its association with the survival of patients with pancreatic cancer. Methods The expression of miR-371-5p was examined in pancreatic duct adenocarcinoma (PDAC) and their adjacent normal pancreatic tissues (ANPT) or in pancreatic cancer cell lines by qRT-PCR. The association of miR-371-5p expression with overall survival was determined. The proliferation and apoptosis of SW-1990 and Panc-1 cells, transfected with miR-371-5p mimics or inhibitor, were assessed using MTT assay and flow cytometry, respectively. The tumorigenicity was evaluated via mice xenograft experiments. miR-371-5p promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). Protein expression was analyzed by Western blot. Results The expression level of miR-371-5p was dramatically upregulated in clinical PDAC tissues compared with ANPT. Patients with high miR-371-5p expression had a significantly shorter survival than those with low miR-371-5p expression. The in vitro and in vivo assays showed that overexpression of miR-371-5p resulted in cell proliferation and increased tumor growth, which was associated with inhibitor of growth 1 (ING1) downregulation. Interestingly, we also found that ING1, in turn, inhibited expression of miR-371-5p in the promoter region. Conclusions our study demonstrates a novel ING1-miR-371-5p regulatory feedback loop, which may have a critical role in PDAC. Thus miR-371-5p can prove to be a novel prognostic factor and therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- De He
- Department of General Surgery, Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yumin Xu
- Department of General Surgery, Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Longhui Xiong
- Department of General Surgery, Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Yi Wang
- Department of General Surgery, Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Hongxia Xiang
- Department of General Surgery, Affiliated Baoan Hospital of Southern Medical University, Shenzhen, China
| | - Heng Zhang
- Department of Medicine, College of Clinical Science of China, Three Gorges University, Yichang, Hubei, China
| | - Zhiyong Zhang
- Department of Surgery, Robert Wood Johnson Medical School University Hospital, Rutgers Unversity, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
34
|
Carlson S, Glass KC. The MOZ histone acetyltransferase in epigenetic signaling and disease. J Cell Physiol 2014; 229:1571-4. [PMID: 24633655 DOI: 10.1002/jcp.24617] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 01/18/2023]
Abstract
The monocytic leukemic zinc finger (MOZ) histone acetyltransferase (HAT) plays a role in acute myeloid leukemia (AML). It functions as a quaternary complex with the bromodomain PHD finger protein 1 (BRPF1), the human Esa1-associated factor 6 homolog (hEAF6), and the inhibitor of growth 5 (ING5). Each of these subunits contain chromatin reader domains that recognize specific post-translational modifications (PTMs) on histone tails, and this recognition directs the MOZ HAT complex to specific chromatin substrates. The structure and function of these epigenetic reader modules has now been elucidated, and a model describing how the cooperative action of these domains regulates HAT activity in response to the epigenetic landscape is proposed. The emerging role of epigenetic reader domains in disease, and their therapeutic potential for many types of cancer is also highlighted.
Collapse
Affiliation(s)
- Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | | |
Collapse
|
35
|
Guérillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: Status in human tumors. Cancer Lett 2014; 345:1-16. [DOI: 10.1016/j.canlet.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
|
36
|
Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem 2014; 61:289-317. [PMID: 23150256 DOI: 10.1007/978-94-007-4525-4_13] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the field of genetics has grown by leaps and bounds within the last decade due to the completion and availability of the human genome sequence, transcriptional regulation still cannot be explained solely by an individual's DNA sequence. Complex coordination and communication between a plethora of well-conserved chromatin modifying factors are essential for all organisms. Regulation of gene expression depends on histone post translational modifications (HPTMs), DNA methylation, histone variants, remodeling enzymes, and effector proteins that influence the structure and function of chromatin, which affects a broad spectrum of cellular processes such as DNA repair, DNA replication, growth, and proliferation. If mutated or deleted, many of these factors can result in human disease at the level of transcriptional regulation. The common goal of recent studies is to understand disease states at the stage of altered gene expression. Utilizing information gained from new high-throughput techniques and analyses will aid biomedical research in the development of treatments that work at one of the most basic levels of gene expression, chromatin. This chapter will discuss the effects of and mechanism by which histone modifications and DNA methylation affect transcriptional regulation.
Collapse
Affiliation(s)
- Jaime L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | | |
Collapse
|
37
|
Denissov S, Hofemeister H, Marks H, Kranz A, Ciotta G, Singh S, Anastassiadis K, Stunnenberg HG, Stewart AF. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant. Development 2014; 141:526-37. [PMID: 24423662 DOI: 10.1242/dev.102681] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trimethylation of histone H3 lysine 4 (H3K4me3) at the promoters of actively transcribed genes is a universal epigenetic mark and a key product of Trithorax group action. Here, we show that Mll2, one of the six Set1/Trithorax-type H3K4 methyltransferases in mammals, is required for trimethylation of bivalent promoters in mouse embryonic stem cells. Mll2 is bound to bivalent promoters but also to most active promoters, which do not require Mll2 for H3K4me3 or mRNA expression. By contrast, the Set1 complex (Set1C) subunit Cxxc1 is primarily bound to active but not bivalent promoters. This indicates that bivalent promoters rely on Mll2 for H3K4me3 whereas active promoters have more than one bound H3K4 methyltransferase, including Set1C. Removal of Mll1, sister to Mll2, had almost no effect on any promoter unless Mll2 was also removed, indicating functional backup between these enzymes. Except for a subset, loss of H3K4me3 on bivalent promoters did not prevent responsiveness to retinoic acid, thereby arguing against a priming model for bivalency. In contrast, we propose that Mll2 is the pioneer trimethyltransferase for promoter definition in the naïve epigenome and that Polycomb group action on bivalent promoters blocks the premature establishment of active, Set1C-bound, promoters.
Collapse
Affiliation(s)
- Sergei Denissov
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Klein BJ, Lalonde ME, Côté J, Yang XJ, Kutateladze TG. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics 2013; 9:186-93. [PMID: 24169304 DOI: 10.4161/epi.26792] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The MOZ/MORF complexes represent an example of a chromatin-binding assembly whose recruitment to specific genomic regions and activity can be fine-tuned by posttranslational modifications of histones. Here we detail the structures and biological functions of epigenetic readers present in the four core subunits of the MOZ/MORF complexes, highlight the imperative role of combinatorial readout by the multiple readers, and discuss new research directions to advance our understanding of histone acetylation.
Collapse
Affiliation(s)
- Brianna J Klein
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Marie-Eve Lalonde
- Laval University Cancer Research Center; Hôtel-Dieu de Québec (CHUQ); Quebec City, QC Canada
| | - Jacques Côté
- Laval University Cancer Research Center; Hôtel-Dieu de Québec (CHUQ); Quebec City, QC Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Center; Departments of Medicine, Biochemistry, and Anatomy & Cell Biology; McGill University; Montréal, QC Canada
| | - Tatiana G Kutateladze
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| |
Collapse
|
39
|
Inhibitor of growth 1 (ING1) acts at early steps of multiple DNA repair pathways. Mol Cell Biochem 2013; 378:117-26. [DOI: 10.1007/s11010-013-1601-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/23/2013] [Indexed: 01/13/2023]
|
40
|
RegulatING chromatin regulators: post-translational modification of the ING family of epigenetic regulators. Biochem J 2013; 450:433-42. [DOI: 10.1042/bj20121632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.
Collapse
|
41
|
Yang HY, Liu HL, Tian LT, Song RP, Song X, Yin DL, Liang YJ, Qu LD, Jiang HC, Liu JR, Liu LX. Expression and prognostic value of ING3 in human primary hepatocellular carcinoma. Exp Biol Med (Maywood) 2012; 237:352-61. [PMID: 22550337 DOI: 10.1258/ebm.2011.011346] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor-suppressor ING3 has been shown to be involved in tumor transcriptional regulation, apoptosis and the cell cycle. Some studies have demonstrated that ING3 is dysregulated in several types of cancers. However, the expression and function of ING3 in human hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate ING3 expression in hepatic tumors and its clinical relevance in hepatic cancer. The expression of ING3 protein was examined in 120 dissected HCC tissues and 47 liver tissues adjacent to the tumor by immunohistochemical assays and confirmed by Western blot analysis in 20 paired frozen tumor and non-tumor liver tissues. The relationship between ING3 staining and clinico-pathological characteristics of HCC was further analyzed. The mRNA expression of ING3 in the dissected tissues was also analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and realtime PCR. Both mRNA and protein concentrations of ING3 were found to be downregulated in the majority of HCC tumors in comparison with matched non-tumor hepatic tissues. Analysis of the relationship between ING3 staining and clinico-pathological characteristics of HCC showed that the low expression of ING3 protein is correlated with more aggressive behavior of the tumor. Kaplan–Meier curves demonstrated that patients with a low expression of ING3 have a significantly increased risk of shortened survival time. In addition, multivariate analysis suggested that the level of ING3 expression may be an independent prognostic factor. Our findings indicate that ING3 may be an important marker for human hepatocellular carcinoma progression and prognosis, as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Hai-Yan Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Hao-Ling Liu
- Department of Endocrinology, The First Clinical College of Harbin Medical University, 23 Youzheng Street, Nangang District
| | - Lan-Tian Tian
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Rui-Peng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Da-Long Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Ying-Jian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Lian-Dong Qu
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Experimental Animal Center, 427 Ma Duan Street, Harbin 150001, PR China
| | - Hong-Chi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| | - Jia-Ren Liu
- Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | - Lian-Xin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education
| |
Collapse
|
42
|
Bonni S, Bonni A. SnoN signaling in proliferating cells and postmitotic neurons. FEBS Lett 2012; 586:1977-83. [PMID: 22710173 DOI: 10.1016/j.febslet.2012.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/28/2023]
Abstract
The transcriptional regulator SnoN plays a fundamental role as a modulator of transforming growth factor beta (TGFβ)-induced signal transduction and biological responses. In recent years, novel functions of SnoN have been discovered in both TGFβ-dependent and TGFβ-independent settings in proliferating cells and postmitotic neurons. Accumulating evidence suggests that SnoN plays a dual role as a corepressor or coactivator of TGFβ-induced transcription. Accordingly, SnoN exerts oncogenic or tumor-suppressive effects in epithelial tissues. At the cellular level, SnoN antagonizes or mediates the ability of TGFβ to induce cell cycle arrest in a cell-type specific manner. SnoN also exerts key effects on epithelial-mesenchymal transition (EMT), with implications in cancer biology. Recent studies have expanded SnoN functions to postmitotic neurons, where SnoN orchestrates key aspects of neuronal development in the mammalian brain, from axon growth and branching to neuronal migration and positioning. In this review, we will highlight our understanding of SnoN biology at the crossroads of cancer biology and neurobiology.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
43
|
Helbing CC, Wagner MJ, Pettem K, Johnston J, Heimeier RA, Veldhoen N, Jirik FR, Shi YB, Browder LW. Modulation of thyroid hormone-dependent gene expression in Xenopus laevis by INhibitor of Growth (ING) proteins. PLoS One 2011; 6:e28658. [PMID: 22163049 PMCID: PMC3230625 DOI: 10.1371/journal.pone.0028658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/12/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND INhibitor of Growth (ING) proteins belong to a large family of plant homeodomain finger-containing proteins important in epigenetic regulation and carcinogenesis. We have previously shown that ING1 and ING2 expression is regulated by thyroid hormone (TH) during metamorphosis of the Xenopus laevis tadpole. The present study investigates the possibility that ING proteins modulate TH action. METHODOLOGY/PRINCIPAL FINDINGS Tadpoles expressing a Xenopus ING2 transgene (Trans(ING2)) were significantly smaller than tadpoles not expressing the transgene (Trans(GFP)). When exposed to 10 nM 3,5,3'-triiodothyronine (T(3)), premetamorphic Trans(ING2) tadpoles exhibited a greater reduction in tail, head, and brain areas, and a protrusion of the lower jaw than T(3)-treated Trans(GFP) tadpoles. Quantitative real time polymerase chain reaction (QPCR) demonstrated elevated TH receptor β (TRβ) and TH/bZIP transcript levels in Trans(ING2) tadpole tails compared to Trans(GFP) tadpoles while TRα mRNAs were unaffected. In contrast, no difference in TRα, TRβ or insulin-like growth factor (IGF2) mRNA abundance was observed in the brain between Trans(ING2) and Trans(GFP) tadpoles. All of these transcripts, except for TRα mRNA in the brain, were inducible by the hormone in both tissues. Oocyte transcription assays indicated that ING proteins enhanced TR-dependent, T(3)-induced TRβ gene promoter activity. Examination of endogenous T(3)-responsive promoters (TRβ and TH/bZIP) in the tail by chromatin immunoprecipitation assays showed that ING proteins were recruited to TRE-containing regions in T(3)-dependent and independent ways, respectively. Moreover, ING and TR proteins coimmunoprecipitated from tail protein homogenates derived from metamorphic climax animals. CONCLUSIONS/SIGNIFICANCE We show for the first time that ING proteins modulate TH-dependent responses, thus revealing a novel role for ING proteins in hormone signaling. This has important implications for understanding hormone influenced disease states and suggests that the induction of ING proteins may facilitate TR function during metamorphosis in a tissue-specific manner.
Collapse
Affiliation(s)
- Caren C. Helbing
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| | - Mary J. Wagner
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Katherine Pettem
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jill Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Rachel A. Heimeier
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nik Veldhoen
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Frank R. Jirik
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leon W. Browder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
44
|
Xie S, Jakoncic J, Qian C. UHRF1 double tudor domain and the adjacent PHD finger act together to recognize K9me3-containing histone H3 tail. J Mol Biol 2011; 415:318-28. [PMID: 22100450 DOI: 10.1016/j.jmb.2011.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/03/2011] [Accepted: 11/07/2011] [Indexed: 11/19/2022]
Abstract
Human multi-domain-containing protein UHRF1 has recently been extensively characterized as a key epigenetic regulator for maintaining DNA methylation patterns. UHRF1 SRA domain preferentially binds to hemimethylated CpG sites, and double Tudor domain has been implicated in recognizing H3K9me3 mark, but the role of the adjacent PHD finger remains unclear. Here, we report the high-resolution crystal structure of UHRF1 PHD finger in complex with N-terminal tail of histone H3. We found that the preceding zinc-Cys4 knuckle is indispensable for the PHD finger of UHRF1 to recognize the first four unmodified residues of histone H3 N-terminal tail. Quantitative binding studies indicated that UHRF1 PHD finger (including the preceding zinc-Cys4 knuckle) acts together with the adjacent double Tudor domain to specifically recognize the H3K9me3 mark. Combinatorial recognition of H3K9me3-containing histone H3 tail by UHRF1 PHD finger and double Tudor domain may play a role in establishing and maintaining histone H3K9 methylation patterns during the cell cycle.
Collapse
Affiliation(s)
- Si Xie
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
45
|
Jarillo JA, Piñeiro M. Timing is everything in plant development. The central role of floral repressors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:364-78. [PMID: 21889042 DOI: 10.1016/j.plantsci.2011.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 05/07/2023]
Abstract
Progress in understanding the molecular basis of flowering time control has revealed that floral repressors play a central role in modulating the floral transition and are essential to prevent the precocious onset of flowering. A number of cellular processes including chromatin remodeling, selective protein degradation, and transcriptional regulation mediated by transcription factors are involved in repressing the initiation of flowering. Floral repressors interact at different levels with floral inductive pathways and prevent the premature onset of flowering that could impact negatively on the reproductive success of plants. Despite recent advances, further studies will be needed to understand how the interactions between floral repressors and the regulatory networks involved in the control of flowering time have evolved in different species. Recent data suggest that a diversity of regulatory proteins act as central floral repressors in different plants, and even in those species where regulatory modules are conserved new elements that modulate the function of these pathways have been recruited to mediate specific adaptive responses. The development of genomic tools and predictive models that can integrate large datasets related to the flowering behavior of plant species will facilitate the characterization of the repressor mechanisms underlying flowering responses, a trait with implications in the yield of crop species. In a scenario of global climate change, an in depth understanding of these gene circuits will be essential for the development of crop varieties with improved yield.
Collapse
Affiliation(s)
- Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Madrid, Spain
| | | |
Collapse
|
46
|
Ludwig S, Klitzsch A, Baniahmad A. The ING tumor suppressors in cellular senescence and chromatin. Cell Biosci 2011; 1:25. [PMID: 21767350 PMCID: PMC3154856 DOI: 10.1186/2045-3701-1-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/18/2011] [Indexed: 12/19/2022] Open
Abstract
The Inhibitor of Growth (ING) proteins represent a type II tumor suppressor family comprising five conserved genes, ING1 to ING5. While ING1, ING2 and ING3 proteins are stable components of the mSIN3a-HDAC complexes, the association of ING1, ING4 and ING5 with HAT protein complexes was also reported. Among these the ING1 and ING2 have been analyzed more deeply. Similar to other tumor suppressor factors the ING proteins are also involved in many cellular pathways linked to cancer and cell proliferation such as cell cycle regulation, cellular senescence, DNA repair, apoptosis, inhibition of angiogenesis and modulation of chromatin. A common structural feature of ING factors is the conserved plant homeodomain (PHD), which can bind directly to the histone mark trimethylated lysine of histone H3 (H3K4me3). PHD mutants lose the ability to undergo cellular senescence linking chromatin mark recognition with cellular senescence. ING1 and ING2 are localized in the cell nucleus and associated with chromatin modifying enzymes, linking tumor suppression directly to chromatin regulation. In line with this, the expression of ING1 in tumors is aberrant or identified point mutations are mostly localized in the PHD finger and affect histone binding. Interestingly, ING1 protein levels increase in replicative senescent cells, latter representing an efficient pathway to inhibit cancer proliferation. In association with this, suppression of p33ING1 expression prolongs replicative life span and is also sufficient to bypass oncogene-induced senescence. Recent analyses of ING1- and ING2-deficient mice confirm a tumor suppressive role of ING1 and ING2 and also indicate an essential role of ING2 in meiosis. Here we summarize the activity of ING1 and ING2 as tumor suppressors, chromatin factors and in development.
Collapse
Affiliation(s)
- Susann Ludwig
- Institute of Human Genetics, Jena University Hospital, D-07743 Jena, Germany.
| | | | | |
Collapse
|
47
|
Abstract
Chromatin is not an inert structure, but rather an instructive DNA scaffold that can respond to external cues to regulate the many uses of DNA. A principle component of chromatin that plays a key role in this regulation is the modification of histones. There is an ever-growing list of these modifications and the complexity of their action is only just beginning to be understood. However, it is clear that histone modifications play fundamental roles in most biological processes that are involved in the manipulation and expression of DNA. Here, we describe the known histone modifications, define where they are found genomically and discuss some of their functional consequences, concentrating mostly on transcription where the majority of characterisation has taken place.
Collapse
|
48
|
Abad M, Moreno A, Palacios A, Narita M, Blanco F, Moreno-Bueno G, Narita M, Palmero I. The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. Aging Cell 2011; 10:158-71. [PMID: 21078114 DOI: 10.1111/j.1474-9726.2010.00651.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an effective tumor-suppressive mechanism that causes a stable proliferative arrest in cells with potentially oncogenic alterations. Here, we have investigated the role of the p33ING1 tumor suppressor in the regulation of cellular senescence in human primary fibroblasts. We show that p33ING1 triggers a senescent phenotype in a p53-dependent fashion. Also, endogenous p33ING1 protein accumulates in chromatin in oncogene-senescent fibroblasts and its silencing by RNA interference impairs senescence triggered by oncogenes. Notably, the ability to induce senescence is lost in a mutant version of p33ING1 present in human tumors. Using specific point mutants, we further show that recognition of the chromatin mark H3K4me3 is essential for induction of senescence by p33ING1. Finally, we demonstrate that ING1-induced senescence is associated to a specific genetic signature with a strong representation of chemokine and cytokine signaling factors, which significantly overlaps with that of oncogene-induced senescence. In summary, our results identify ING1 as a critical epigenetic regulator of cellular senescence in human fibroblasts and highlight its role in control of gene expression in the context of this tumor-protective response.
Collapse
Affiliation(s)
- María Abad
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pot I, Ikeuchi Y, Bonni A, Bonni S. SnoN: bridging neurobiology and cancer biology. Curr Mol Med 2011; 10:667-73. [PMID: 20712586 DOI: 10.2174/156652410792630616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/12/2010] [Indexed: 01/05/2023]
Abstract
The transcriptional regulator SnoN has been the subject of growing interest due to its diverse functions in normal and pathological settings. A large body of evidence has established a fundamental role for SnoN as a modulator of signaling and responses by the transforming growth beta (TGFbeta) family of cytokines, though how SnoN regulates TGFbeta responses remains incompletely understood. In accordance with the critical and complex roles of TGFbeta in tumorigenesis and metastasis, SnoN may act as a tumor promoter or suppressor depending on the stage and type of cancer. Beyond its role in cancer, SnoN has also been implicated in the control of axon morphogenesis in postmitotic neurons in the mammalian brain. Remarkably, signaling pathways that control SnoN functions in the divergent cycling cells and postmitotic neurons appear to be conserved. Identification of novel SnoN regulatory and effector mechanisms holds the promise of advances at the interface of cancer biology and neurobiology.
Collapse
Affiliation(s)
- I Pot
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Alberta, T2N 4N1 Canada
| | | | | | | |
Collapse
|
50
|
Kleine-Kohlbrecher D, Christensen J, Vandamme J, Abarrategui I, Bak M, Tommerup N, Shi X, Gozani O, Rappsilber J, Salcini AE, Helin K. A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol Cell 2010; 38:165-78. [PMID: 20346720 PMCID: PMC2989439 DOI: 10.1016/j.molcel.2010.03.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 02/07/2010] [Accepted: 03/09/2010] [Indexed: 01/15/2023]
Abstract
X-linked mental retardation (XLMR) is an inherited disorder that mostly affects males and is caused by mutations in genes located on the X chromosome. Here, we show that the XLMR protein PHF8 and a C. elegans homolog F29B9.2 catalyze demethylation of di- and monomethylated lysine 9 of histone H3 (H3K9me2/me1). The PHD domain of PHF8 binds to H3K4me3 and colocalizes with H3K4me3 at transcription initiation sites. Furthermore, PHF8 interacts with another XMLR protein, ZNF711, which binds to a subset of PHF8 target genes, including the XLMR gene JARID1C. Of interest, the C. elegans PHF8 homolog is highly expressed in neurons, and mutant animals show impaired locomotion. Taken together, our results functionally link the XLMR gene PHF8 to two other XLMR genes, ZNF711 and JARID1C, indicating that MR genes may be functionally linked in pathways, causing the complex phenotypes observed in patients developing MR.
Collapse
Affiliation(s)
- Daniela Kleine-Kohlbrecher
- Biotech Research and Innovation Centre (BRIC), Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|