1
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Gao Y, Wang R, Zhang L, Fan Y, Luan J, Liu Z, Yuan C. Oral administration of hyaluronic acid to improve skin conditions via a randomized double-blind clinical test. Skin Res Technol 2023; 29:e13531. [PMID: 38009035 PMCID: PMC10661223 DOI: 10.1111/srt.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE To evaluate the impact of oral intake of Hyaluronic Acid (HA) on skin health. BACKGROUND HA, an endogenous substance in the human body, plays a key role in skin health. However, its concentration in the skin decreases significantly with age. Previous studies suggested that oral intake of HA can supplement the body's HA level, but did not reveal the effects on different age groups and skin types. METHODS A double-blind, randomized clinical trial with 129 female participants, covering young and elderly groups and differnet skin types, was conducted to assess the efficacy of orally administered HA on skin health. RESULTS Oral administration of HA significantly promoted skin hydration after 2-8 weeks among both young and elderly groups. Skin tone improvement was observed after 4-8 weeks, while an increase in epidermal thickness was noted after 12 weeks. CONCLUSION This study provides direct evidence supporting the clinical efficacy of oral intake of HA in promoting skin health.
Collapse
Affiliation(s)
- Yan‐Rui Gao
- Department of Skin & Cosmetic ResearchShanghai Skin Disease HospitalSkin Disease Hospital of Tongji UniversityShanghaiChina
| | - Rui‐Ping Wang
- Clinical Research CenterShanghai Skin Disease HospitalSkin Disease Hospital of Tongji UniversityShanghaiChina
| | - Lu Zhang
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Yuan Fan
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Jin Luan
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Zhe Liu
- Bloomage Biotech Co., LtdJinanShandongChina
| | - Chao Yuan
- Department of Skin & Cosmetic ResearchShanghai Skin Disease HospitalSkin Disease Hospital of Tongji UniversityShanghaiChina
| |
Collapse
|
3
|
Kotulkar M, Robarts DR, Lin-Rahardja K, McQuillan T, Surgnier J, Tague SE, Czerwinski M, Dennis KL, Pritchard MT. Hyaluronan synthesis inhibition normalizes ethanol-enhanced hepatic stellate cell activation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1544-1559. [PMID: 37332093 DOI: 10.1111/acer.15127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Chronic ethanol overconsumption promotes alcohol-associated liver disease (ALD), characterized by hepatocyte injury, inflammation, hepatic stellate cell (HSC) activation, and fibrosis. Hyaluronan (HA) concentration is greater in livers and blood from advanced ALD patients than patients with advanced non-ALD. In the liver, HSCs are the major HA producers. The relationship between ethanol, HA, and HSC activation is incompletely understood. Thus, here, we tested the hypothesis that ethanol enhances HSC activation in a HA-dependent manner. METHODS Liver tissue microarrays (TMAs) containing steatotic livers from donors with or without a history of alcohol consumption were used to measure HA and collagen content. Mice were fed a moderate (2%, v/v) ethanol-containing diet or pair-fed control diet for 2 days, after which they were given a single carbon tetrachloride (CCl4 ) injection. To inhibit HA synthesis, we provided 4-methylumbelliferone (4MU) daily. We used LX2 cells, a human HSC cell line, to determine the impact ethanol had on LPS responses, with or without concurrent 4MU exposure. RESULTS CCl4 induced liver injury, but it did not differ between ethanol or control diet fed mice with or without 4MU treatment. Ethanol feeding enhanced CCl4 -induced hepatic HA content, which was paralleled by HA synthase (Has)2 transcript abundance; 4MU treatment normalized both. Consistently, HSC activation, assessed by measuring αSMA mRNA and protein, was induced by CCl4 exposure, enhanced by ethanol feeding, and normalized by 4MU. Hepatic transcripts, but not protein, for Ccl2 were enhanced by ethanol feeding and normalized by 4MU exposure. Finally, ethanol-exposed LX2 cells made more LPS-stimulated CCL2 mRNA and protein than cells not exposed to ethanol; 4MU prevented this. CONCLUSION These data show that ethanol augments HSC activation through HA synthesis and enhances hepatic profibrogenic features. Therefore, targeting HSC HA production could potentially attenuate liver disease in ALD patients.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kristi Lin-Rahardja
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tara McQuillan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jordan Surgnier
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sarah E Tague
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Katie L Dennis
- Department of Pathology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- The Liver Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Sun X, Harris EN. New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2020; 318:C1200-C1213. [PMID: 32374676 DOI: 10.1152/ajpcell.00062.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The liver is the central metabolic hub for carbohydrate, lipid, and protein metabolism. It is composed of four major types of cells, including hepatocytes, endothelial cells (ECs), Kupffer cells, and stellate cells. Hepatic ECs are highly heterogeneous in both mice and humans, representing the second largest population of cells in liver. The majority of them line hepatic sinusoids known as liver sinusoidal ECs (LSECs). The structure and biology of LSECs and their roles in physiology and liver disease were reviewed recently. Here, we do not give a comprehensive review of LSEC structure, function, or pathophysiology. Instead, we focus on the recent progress in LSEC research and other hepatic ECs in physiology and nonalcoholic fatty liver disease and other hepatic fibrosis-related conditions. We discuss several current areas of interest, including capillarization, scavenger function, autophagy, cellular senescence, paracrine effects, and mechanotransduction. In addition, we summarize the strengths and weaknesses of evidence for the potential role of endothelial-to-mesenchymal transition in liver fibrosis.
Collapse
Affiliation(s)
- Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, Lincoln, Nebraska.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska.,Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, Lincoln, Nebraska.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska.,Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
5
|
Abstract
Chronic fatty liver disease is common worldwide. This disease is a spectrum of disease states, ranging from simple steatosis (fat accumulation) to inflammation, and eventually to fibrosis and cirrhosis if untreated. The fibrotic stage of chronic liver disease is primarily characterized by robust accumulation of extracellular matrix (ECM) proteins (collagens) that ultimately impairs the function of the organ. The role of the ECM in early stages of chronic liver disease is less well-understood, but recent research has demonstrated that several changes in the hepatic ECM in prefibrotic liver disease are not only present but may also contribute to disease progression. The purpose of this review is to summarize the established and proposed changes to the hepatic ECM that may contribute to inflammation during earlier stages of disease development, and to discuss potential mechanisms by which these changes may mediate the progression of the disease.
Collapse
Affiliation(s)
- Christine E. Dolin
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Ricard-Blum S, Miele AE. Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Semin Cell Dev Biol 2020; 101:161-169. [DOI: 10.1016/j.semcdb.2019.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
|
7
|
Paredes J, Shiovitz DA, Andarawis-Puri N. Uncorrelated healing response of tendon and ear injuries in MRL highlight a role for the local tendon environment in driving scarless healing. Connect Tissue Res 2018; 59:472-482. [PMID: 29929396 PMCID: PMC6175637 DOI: 10.1080/03008207.2018.1485665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Tendon tears are common injuries that heal with scar formation. Interestingly, MRL/MpJ mice heal without scar in several tissues, including tendon. Most hypotheses regarding scarless healing implicate the systemic environment. However, the tissue-specificity of this regenerative response and our previous findings showing regeneration of sub-rupture tendon injuries, which lack an overt systemic response, motivate a tissue-driven hypothesis. Our objective is to investigate the potential of the local tendon environment in driving scarless healing (1) by comparing the systemic response and the healing capacity associated with ear and tendon injuries in MRL/MpJ mice, and (2) by comparing intrinsic healing properties between MRL/MpJ and normal healer C57Bl/6 tendons. METHODS We examined the systemic inflammatory and local structural environments of ear and tendon punch injuries in MRL/MpJ and C57Bl/6 mice. Systemic differences were analyzed to assess effects of different injuries on the inflammatory response. Correlations were assessed between MRL/MpJ ear and tendon injuries to compare the extent of healing between regenerative tissues. RESULTS Analysis showed similarities between the systemic environment in MRL/MpJ post ear or tendon injuries. However, comparable inflammatory responses did not translate into analogous healing between tissues, suggesting that the systemic environment is not the driver of regeneration. Supporting the regenerative role of the local environment, healing MRL/MpJ tendons exhibited improved matrix and cell alignment and a distinct composition of growth factors and Hyaluronan from C57Bl/6. CONCLUSION These findings support the tissue-driven hypothesis for MRL/MpJ tendon regeneration and motivate further investigation regarding specific roles of extracellular factors in scarless healing.
Collapse
Affiliation(s)
- Juan Paredes
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David A. Shiovitz
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
8
|
Abstract
The liver is an essential organ for nutrient and drug metabolism - possessing the remarkable ability to sense environmental and metabolic stimuli and provide an optimally adaptive response. Early growth response 1 (Egr1), an immediate early transcriptional factor which acts as a coordinator of the complex response to stress, is induced during liver injury and controls the expression of a wide range of genes involved in metabolism, cell proliferation, and role of Egr1 in liver injury and repair, deficiency of Egr1 delays liver regeneration process. The known upstream regulators of Egr1 include, but are not limited to, growth factors (e.g. transforming growth factor β1, platelet-derived growth factor, epidermal growth factor, hepatocyte growth factor), nuclear receptors (e.g. hepatocyte nuclear factor 4α, small heterodimer partner, peroxisome proliferator-activated receptor-γ), and other transcription factors (e.g. Sp1, E2F transcription factor 1). Research efforts using various animal models such as fatty liver, liver injury, and liver fibrosis contribute greatly to the elucidation of Egr1 function in the liver. Hepatocellular carcinoma (HCC) represents the second leading cause of cancer mortality worldwide due to the heterogeneity and the late stage at which cancer is generally diagnosed. Recent studies highlight the involvement of Egr1 in HCC development. The purpose of this review is to summarize current studies pertaining to the role of Egr1 in liver metabolism and liver diseases including liver cancer.
Collapse
Affiliation(s)
- Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
Natarajan V, Harris EN, Kidambi S. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4097205. [PMID: 28293634 PMCID: PMC5331310 DOI: 10.1155/2017/4097205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis.
Collapse
Affiliation(s)
- Vaishaali Natarajan
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Center for the Prevention of Obesity Diseases, University of Nebraska, Lincoln, NE, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, USA
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Yagi LH, Watanuki LM, Isaac C, Gemperli R, Nakamura YM, Ladeira PRS. Human fetal wound healing: a review of molecular and cellular aspects. EUROPEAN JOURNAL OF PLASTIC SURGERY 2016. [DOI: 10.1007/s00238-016-1201-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Steatohepatitis. Gastroenterology 2016; 150:1769-77. [PMID: 26928243 PMCID: PMC4887389 DOI: 10.1053/j.gastro.2016.02.066] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/30/2016] [Accepted: 02/18/2016] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a necro-inflammatory response that ensues when hepatocytes are injured by lipids (lipotoxicity). NASH is a potential outcome of nonalcoholic fatty liver (NAFL), a condition that occurs when lipids accumulate in hepatocytes. NASH may be reversible, but it can also result in cirrhosis and primary liver cancer. We are beginning to learn about the mechanisms of progression of NAFL and NASH. NAFL does not inevitably lead to NASH because NAFL is a heterogeneous condition. This heterogeneity exists because different types of lipids with different cytotoxic potential accumulate in the NAFL, and individuals with NAFL differ in their ability to defend against lipotoxicity. There are no tests that reliably predict which patients with NAFL will develop lipotoxicity. However, NASH encompasses the spectrum of wound-healing responses induced by lipotoxic hepatocytes. Differences in these wound-healing responses among individuals determine whether lipotoxic livers regenerate, leading to stabilization or resolution of NASH, or develop progressive scarring, cirrhosis, and possibly liver cancer. We review concepts that are central to the pathogenesis of NASH.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|