1
|
Zhu X, Jia Z, Zhou Y, Wu J, Cao M, Hu C, Yu L, Chen Z. Current advances in the pain treatment and mechanisms of Traditional Chinese Medicine. Phytother Res 2024. [PMID: 39031847 DOI: 10.1002/ptr.8259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 07/22/2024]
Abstract
Traditional Chinese Medicine (TCM), as a unique medical model in China, has been shown to be effective in the treatment of many diseases. It has been proven that TCM can increase the pain threshold, increase the level of endorphins and enkephalins in the body, and reduce the body's response to adverse stimuli. In recent years, TCM scholars have made valuable explorations in the field of pain treatment, using methods such as internal and external application of TCM and acupuncture to carry out research on pain treatment and have achieved more satisfactory results. TCM treats pain in a variety of ways, and with the discovery of a variety of potential bioactive substances for pain treatment. With the new progress in the research of other TCM treatment methods for pain, TCM will have greater potential in the clinical application of pain.
Collapse
Affiliation(s)
- Xiaoli Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuolin Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mayijie Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjiang Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingying Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Hernández M, Areche C, Castañeta G, Rojas D, Varas MA, Marcoleta AE, Chávez FP. Dictyostelium discoideum-assisted pharmacognosy of plant resources for discovering antivirulence molecules targeting Klebsiella pneumoniae. Nat Prod Res 2024:1-8. [PMID: 38829280 DOI: 10.1080/14786419.2024.2360166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic-resistant bacterial strains represents an important challenge for global health, underscoring the critical need for innovative strategies to confront this threat. Natural products and their derivatives have emerged as a promising reservoir for drug discovery. The social amoeba Dictyostelium discoideum is a potent model organism in this effort. Employing this invertebrate model, we introduce a novel perspective to investigate natural plant extracts in search of molecules with potential antivirulence activity. Our work established an easy-scalable developmental assay targeting a virulent strain of Klebsiella pneumoniae, with Helenium aromaticum as the representative plant. The main objective was to identify tentative compounds from the Helenium aromaticum extract that attenuate the virulence of K. pneumoniae virulence without inducing cytotoxic effects on amoeba cells. Notably, the methanolic root extract of H. aromaticum fulfilled these prerequisites compared to the dichloromethane extract. Using UHPLC Q/Orbitrap/ESI/MS/MS, 63 compounds were tentatively identified in both extracts, 47 in the methanolic and 29 in the dichloromethane, with 13 compounds in common. This research underscores the potential of employing D. discoideum-assisted pharmacognosy to discover new antivirulence agents against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Marcos Hernández
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Grover Castañeta
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Rojas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena A Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Ghosh PK, Rao MJ, Putta CL, Ray S, Rengan AK. Telomerase: a nexus between cancer nanotherapy and circadian rhythm. Biomater Sci 2024; 12:2259-2281. [PMID: 38596876 DOI: 10.1039/d4bm00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer represents a complex disease category defined by the unregulated proliferation and dissemination of anomalous cells within the human body. According to the GLOBOCAN 2020 report, the year 2020 witnessed the diagnosis of approximately 19.3 million new cases of cancer and 10.0 million individuals succumbed to the disease. A typical cell eventually becomes cancerous because of a long-term buildup of genetic instability and replicative immortality. Telomerase is a crucial regulator of cancer progression as it induces replicative immortality. In cancer cells, telomerase inhibits apoptosis by elongating the length of the telomeric region, which usually protects the genome from shortening. Many nanoparticles are documented as being available for detecting the presence of telomerase, and many were used as delivery systems to transport drugs. Furthermore, telomere homeostasis is regulated by the circadian time-keeping machinery, leading to 24-hour rhythms in telomerase activity and TERT mRNA expression in mammals. This review provides a comprehensive discussion of various kinds of nanoparticles used in telomerase detection, inhibition, and multiple drug-related pathways, as well as enlightens an imperative association between circadian rhythm and telomerase activity from the perspective of nanoparticle-based anticancer therapeutics.
Collapse
Affiliation(s)
- Pramit Kumar Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Maddila Jagapathi Rao
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Chandra Lekha Putta
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology (IIT), Hyderabad, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, India.
| |
Collapse
|
4
|
Akay N, Şanal KO. Can Topical Agents (Arnica and Mucopolysaccharide Polysulfate) Reduce Postoperative Pain, Edema and Trismus Following Mandibular Third Molar Surgery? J Oral Maxillofac Surg 2024; 82:113-121. [PMID: 37913818 DOI: 10.1016/j.joms.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/26/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Postoperative supplemental maintenance following mandibular third molar surgery remains an area of interest. PURPOSE Topical agents can modulate inflammatory processes. The aim of the present study was to determine if topical application of arnica or mucopolysaccharide polysulfate (MPSP) reduces pain, trismus, and edema following the removal of impacted mandibular third molars. MATERIALS AND METHODS A single center randomized controlled clinical trial was conducted. The patients were randomized into three groups: the control group (standard therapy [ST]: antibiotic + nonsteroidal anti-inflammatory drugs twice a day), the arnica group (arnica + ST), and the MPSP group (MPSP + ST). The patients' pain, trismus, and edema values were measured preoperatively and on postoperative days 1, 3, 5, and 10. Sex, age, and operation time were also included. Analyses included descriptive statistics, analysis of variance, post hoc tests, and determinations of intraclass correlation coefficients. Statistical significance was set at P < .05. RESULTS Sixty patients with a mean age of 26.98 ± 10.88 years were included in the study; 55% were females and 45% were males. The mean operation time was 23.8 ± 3.27 minutes. According to the visual analogue scale scores (in centimeter units), the arnica and MPSP groups felt less pain than the control group until day 5 (0.6 ± 0.88, 3.75 ± 1.16, 4.75 ± 1.29, and 1.05 ± 1.10, respectively, for the arnica group; 0.35 ± 0.59, 3.25 ± 1.62, 5.0 ± 1.65, and 1.50 ± 1.32 for the MPSP group; and 1.30 ± 1.17, 5.75 ± 1.37, 7.05 ± 1.10, and 3.15 ± 1.53 for the control group; P < .05). The trismus was lower on days 1, 3, and 5 in the arnica group (-8.05 ± 2.82, -12.15 ± 3.1, and -2.15 ± 1.81, respectively) than in the control group (-12 ± 3.82, -15.65 ± 4.81, and -4±2.81, respectively) (P < .05). The edema was lower on days 1 and 3 in the MPSP group (0.95 ± 2.2 and 1.75 ± 3.7, respectively) than in the control group (2.45 ± 0.9 and 3.6 ± 0.8, respectively) (P < .05). Arnica and MPSP had similar pain-relieving action, but arnica was more effective at reducing trismus, while MPSP was more effective at reducing edema. CONCLUSIONS Topical application of arnica or MPSP may have a beneficial effect on relieving pain 5 days after surgery, but arnica was also effective at reducing trismus, while MPSP was also effective at reducing edema. Both arnica and MPSP reduced postoperative sequelae.
Collapse
Affiliation(s)
- Neşet Akay
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Bolu Abant Izzet Baysal University, Faculty of Dentistry, Bolu, Turkey
| | - Koray Onur Şanal
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Bolu Abant Izzet Baysal University, Faculty of Dentistry, Bolu, Turkey.
| |
Collapse
|
5
|
He HW, Xu D, Wu KH, Lu ZY, Liu X, Xu G. Discovery of novel salicylaldehyde derivatives incorporating an α-methylene-γ-butyrolactone moiety as fungicidal agents. PEST MANAGEMENT SCIENCE 2023; 79:5015-5028. [PMID: 37544900 DOI: 10.1002/ps.7703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Plant diseases caused by phytopathogenic fungi and oomycetes pose a serious threat to ensuring crop yield and quality. Finding novel fungicidal candidates based on natural products is one of the critical methods for developing effective and environmentally friendly pesticides. In this study, a series of salicylaldehyde derivatives containing an α-methylene-γ-butyrolactone moiety were designed, synthesized, and their fungicidal activities were evaluated. RESULTS The bioassay studies indicated that compound C3 displayed an excellent in vitro activity against Rhizoctonia solani with a half-maximal effective concentration (EC50 ) value of 0.65 μg/mL, higher than that of pyraclostrobin (EC50 = 1.44 μg/mL) and comparable to that of carbendazim (EC50 = 0.33 μg/mL). For Valsa mali and Phytophthora capsici, compound C3 also showed good fungicidal activities with EC50 values of 0.91 and 1.33 μg/mL, respectively. In addition, compound C3 exhibited promising protective in vivo activity against R. solani (84.1%) at 100 μg/mL, which was better than that of pyraclostrobin (78.4%). The pot experiment displayed that compound C3 had 74.8% protective efficacy against R. solani at 200 μg/mL, which was comparable to that of validamycin (78.2%). The antifungal mode of action research indicated that compound C3 could change the mycelial morphology and ultrastructure, increase cell membrane permeability, affect respiratory metabolism by binding to complex III, and inhibit the germination and formation of sclerotia, thereby effectively controlling the disease. CONCLUSION The present study provides support for the application of these salicylaldehyde derivatives as promising potential pesticides with remarkable and broad-spectrum fungicidal activities against phytopathogenic fungi and oomycetes in crop protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hong-Wei He
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Ke-Huan Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zheng-Yi Lu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, China
| |
Collapse
|
6
|
Egbuna C, Patrick‐Iwuanyanwu KC, Onyeike EN, Khan J, Palai S, Patel SB, Parmar VK, Kushwaha G, Singh O, Jeevanandam J, Kumarasamy S, Uche CZ, Narayanan M, Rudrapal M, Odoh U, Chikeokwu I, Găman M, Saravanan K, Ifemeje JC, Ezzat SM, Olisah MC, Chikwendu CJ, Adedokun KA, Imodoye SO, Bello IO, Twinomuhwezi H, Awuchi CG. Phytochemicals and bioactive compounds effective against acute myeloid leukemia: A systematic review. Food Sci Nutr 2023; 11:4191-4210. [PMID: 37457145 PMCID: PMC10345688 DOI: 10.1002/fsn3.3420] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kingsley C. Patrick‐Iwuanyanwu
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Eugene N. Onyeike
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl MajmaahSaudi Arabia
| | - Santwana Palai
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal HusbandryOUATOdishaBhubaneswarIndia
| | - Sandip B. Patel
- Department of PharmacologyL.M. College of Pharmacy, NavrangpuraAhmedabadIndia
| | | | - Garima Kushwaha
- Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia
| | - Omkar Singh
- Department of Chemical EngineeringIndian Institute of Technology MadrasChennaiIndia
| | - Jaison Jeevanandam
- CQM—Centro de Química da MadeiraUniversidade da Madeira, Campus da PenteadaFunchalPortugal
| | | | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaEnuguNsukkaNigeria
| | - Mathiyazhagan Narayanan
- Division of Research and InnovationDepartment of Biotecnology, Saveetha School of Engineering SIMATSTamil NaduChennaiIndia
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical SciencesVignan’s Foundation for Science, Technology & ResearchGunturIndia
| | - Uchenna Odoh
- Department of Pharmacognosy and Environmental Medicines, Faculty of Pharmaceutical SciencesUniversity of NigeriaNsukkaNigeria
| | - Ikenna Chikeokwu
- Department of PharmacognosyEnugu State University of Science and Technology (ESUT)Agbani Enugu StateEnuguNigeria
| | - Mihnea‐Alexandru Găman
- Faculty of Medicine"Carol Davila" University of Medicine and PharmacyBucharestRomania
- Department of HematologyCenter of Hematology and Bone Marrow TransplantationBucharestRomania
| | - Kaliyaperumal Saravanan
- PG and Research Department of ZoologyNehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University)Tamil NaduTiruchirappalliIndia
| | - Jonathan C. Ifemeje
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt
- Department of Pharmacognosy, Faculty of PharmacyOctober University for Modern Sciences and Arts (MSA)GizaEgypt
| | - Michael C. Olisah
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesChukwuemeka Odumegwu Ojukwu University, Uli CampusAnambraNigeria
| | - Chukwudi Jude Chikwendu
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kamoru A. Adedokun
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterNew YorkBuffaloUSA
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahUtahSalt Lake CityUSA
| | - Ibrahim O. Bello
- Department of Biological SciencesSouthern Illinois University EdwardsvilleIllinoisEdwardsvilleUSA
| | - Hannington Twinomuhwezi
- Department of ChemistryKyambogo University, KyambogoKampalaUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| | | |
Collapse
|
7
|
Parafiniuk A, Kromer K, Fleszar MG, Kreitschitz A, Wiśniewski J, Gamian A. Localization of Sesquiterpene Lactones Biosynthesis in Flowers of Arnica Taxa. Molecules 2023; 28:molecules28114379. [PMID: 37298857 DOI: 10.3390/molecules28114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Arnica montana is a valuable plant with high demand on the pharmaceutical and cosmetic market due to the presence of helenalin (H) and 11α, 13-dihydrohelenalin (DH) sesquiterpene lactones (SLs), with many applications and anti-inflammatory, anti-tumor, analgesic and other properties. Despite the great importance of these compounds for the protection of the plant and their medicinal value, the content of these lactones and the profile of the compounds present within individual elements of florets and flower heads have not been studied so far, and attempts to localize these compounds in flower tissues have also not been conducted. The three studied Arnica taxa synthesize SLs only in the aerial parts of plants, and the highest content of these substances was found in A. montana cv. Arbo; it was lower in wild species, and a very small amount of H was produced by A. chamissonis. Analysis of dissected fragments of whole inflorescences revealed a specific distribution pattern of these compounds. The lactones content in single florets increased from the top of the corolla to the ovary, with the pappus calyx being a significant source of their production. Histochemical tests for terpenes and methylene ketones indicated the colocalization of lactones with inulin vacuoles.
Collapse
Affiliation(s)
- Agata Parafiniuk
- Laboratory of Tissue Cultures, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Krystyna Kromer
- Laboratory of Tissue Cultures, Botanical Garden, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland
| | - Mariusz G Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Agnieszka Kreitschitz
- Department of Plant Development Biology, Faculty of Biological Sciences, University of Wroclaw, ul. Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
8
|
Mazur M, Zych KM, Obmińska-Mrukowicz B, Pawlak A. Microbial Transformations of Halolactones and Evaluation of Their Antiproliferative Activity. Int J Mol Sci 2023; 24:ijms24087587. [PMID: 37108750 PMCID: PMC10144491 DOI: 10.3390/ijms24087587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The microbial transformations of lactones with a halogenoethylocyclohexane moiety were performed in a filamentous fungi culture. The selected, effective biocatalyst for this process was the Absidia glauca AM177 strain. The lactones were transformed into the hydroxy derivative, regardless of the type of halogen atom in the substrate structure. For all lactones, the antiproliferative activity was determined toward several cancer cell lines. The antiproliferative potential of halolactones was much broader than that observed for the hydroxyderivative. According to the presented results, the most potent was chlorolactone, which exhibited significant activity toward the T-cell lymphoma line (CL-1) cell line. The hydroxyderivative obtained through biotransformation was not previously described in the literature.
Collapse
Affiliation(s)
- Marcelina Mazur
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Karolina Maria Zych
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| |
Collapse
|
9
|
Sakamoto K, Watanabe C, Masutani T, Hirasawa A, Wakamatsu K, Iddamalgoda A, Kakumu Y, Yamauchi K, Mitsunaga T. Arnica montana L. extract containing 6-O-methacryloylhelenalin and 6-O-isobutyrylhelenalin accelerates growth and differentiation of human subcutaneous preadipocytes and leads volumizing of skin. Int J Cosmet Sci 2023; 45:1-13. [PMID: 35984685 DOI: 10.1111/ics.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE An important factor in the aging of the face is a reduction in the volume of adipose tissue. This reduction in adipose tissue contributes to decreased skin elasticity, which is also part of the aging process. Overall, these lead to wrinkle formation. Fat injection is a common means of addressing this issue and is used to reduce the effects of aging on the face and to increase the fullness of the lips and breasts. However, fat injection is an invasive surgical procedure. This study aimed to discover novel cosmetic ingredients that increase the volume of subcutaneous (pre)adipocytes to create the appearance of more youthful skin. METHODS We focused on the number of subcutaneous preadipocytes and the accumulation of lipid droplets. To discover natural ingredients that increase both of these, extracts of 380 natural products were prepared and screened for their effects on both growth and differentiation (i.e., lipid droplet accumulation) of human subcutaneous preadipocytes. One extract was found to have the desired effects, and this was further studied to determine the active compounds. We then evaluated its efficacy in a human clinical study. RESULTS We found that Arnica montana L. flower extract (AFE) accelerates both the growth and the differentiation of human subcutaneous preadipocytes. AFE was found to significantly increase the volume of adipocyte spheroids. The active compounds 6-O-methacryloylhelenalin and 6-O-isobutyrylhelenalin were found to be responsible for the effects of AFE on preadipocytes. In a human clinical study, gels containing 1% AFE successfully enhanced the volume of the lips and face with reduction of wrinkles with no adverse reactions. CONCLUSION This is the first report to demonstrate that AFE and the included compounds, 6-O-methacryloylhelenalin and 6-O-isobutyrylhelenalin, act on preadipocytes. AFE would be ideal for use in products that plump the face to reduce wrinkles and create a more youthful appearance.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Chiharu Watanabe
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Teruaki Masutani
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Asuka Hirasawa
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | - Kanae Wakamatsu
- Research & Development Department, Ichimaru Pharcos Co., Ltd., Gifu, Japan
| | | | - Yuya Kakumu
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Kosei Yamauchi
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Tohru Mitsunaga
- Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| |
Collapse
|
10
|
Liu YQ, Zhou GB. Promising anticancer activities and mechanisms of action of active compounds from the medicinal herb Centipeda minima (L.) A. Braun & Asch. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154397. [PMID: 36084403 DOI: 10.1016/j.phymed.2022.154397] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Centipeda minima (L.) A. Braun & Asch (C. minima) has been used as a traditional Chinese herbal medicine to treat multiple diseases, including sinusitis, rhinitis, headache, and allergy. To date, the anticancer properties of C. minima have drawn considerable attention owing to the anticancer potential of C. minima extracts, the identification of active components, and the elucidation of underlying molecular mechanisms. However, the anticancer properties and significance of active components in C. minima have rarely been summarized. PURPOSE This review presents a comprehensive summary of the anticancer properties exhibited by active components of C. minima. METHODS An extensive search for published articles on the anticancer activities and active components of C. minima was performed using Web of Science, PubMed, Science Direct, and Google Scholar. RESULTS C. minima extracts exhibited both anticancer and chemosensitizing effects. Phytochemical studies have identified the active anticancer components of C. minima extracts. Sesquiterpene lactones, such as 6-O-angeloylplenolin (6-OAP, or brevilin A) and arnicolide D, have similar structures and anticancer mechanisms. As the most abundant sesquiterpene lactone in C. minima, 6-OAP exhibits anticancer activities mainly by targeting Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase and signal transducers and activators of transcription 3 (STAT3). Clinical trials have assessed the potential of 6-OAP in patients with vertex balding and alopecia areata, given its effect on JAK-STATs signaling. Chlorogenic acid, a representative organic acid in C. minima, reportedly possesses anticancer potential and inhibits tumor growth by affecting tumor microenvironment and has been approved for phase II clinical trials in patients with glioma in China. CONCLUSION In the present review, we highlight intriguing anticancer properties mediated by active compounds isolated from C. minima extracts, particularly sesquiterpene lactones, which might provide clues for developing novel anticancer drugs. Relevant clinical trials on chlorogenic acid and 6-OAP can promote anticancer clinical applications. Therefore, it is worth comprehensively elucidating underlying anticancer mechanisms and conducting clinical trials on C. minima and its active components.
Collapse
Affiliation(s)
- Yong-Qiang Liu
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education; Research Center of Chinese Herbal Resources Science and Engineering, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
11
|
Antimicrobial Activity of Lactones. Antibiotics (Basel) 2022; 11:antibiotics11101327. [PMID: 36289985 PMCID: PMC9598898 DOI: 10.3390/antibiotics11101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
The development of bacterial resistance to antibiotics and the consequent lack of effective therapy is one of the biggest problems in modern medicine. A consequence of these processes is an urgent need to continuously design and develop novel antimicrobial agents. Among the compounds showing antimicrobial potential, lactones are a group to explore. For centuries, their antimicrobial activities have been used in folk medicine. Currently, novel lactone compounds are continuously described in the literature. Some of those structures exhibit high antimicrobial potential and some are an inspiration for design and synthesis of future drugs. This paper describes recent developments on antimicrobial lactones with smaller ring sizes, up to seven membered ε-lactones. Their isolation from natural sources, chemical synthesis, synergistic activity with antibiotics, and effects on quorum sensing are presented herein.
Collapse
|
12
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
13
|
Žitek T, Postružnik V, Knez Ž, Golle A, Dariš B, Knez Marevci M. Arnica Montana L. Supercritical Extraction Optimization for Antibiotic and Anticancer Activity. Front Bioeng Biotechnol 2022; 10:897185. [PMID: 35620474 PMCID: PMC9127360 DOI: 10.3389/fbioe.2022.897185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Arnica montana L. flower heads are known for their antioxidant, antimicrobial, and anticancer activity. The aim of this work was to optimize the process of supercritical CO2 extraction, to achieve high extraction yield and high content of biologically active components, and to confirm the antimicrobial and anticancer activity of the extract. The influence of pressure and temperature on the total phenolic content, antioxidant activity, and proanthocyanidin content was evaluated. The pressure and temperature were found to be interdependent. A temperature of 60°C and a pressure of 30 MPa resulted in a high extraction yield, antioxidant activity and phenolic content. The content of proanthocyanidins was highest at a pressure between 18 and 24 MPa. The extracts inhibited three different microorganisms successfully; Staphylococcus aureus, Escherichia coli and Candida albicans, at concentrations ranging from 0.1 to 5.16 mg/ml and showed anticancer activity decrease up to 85% at a concentration of 0.5 mg/ml.
Collapse
Affiliation(s)
- Taja Žitek
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia
| | - Vesna Postružnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Andrej Golle
- National Laboratory for Health, Environment, and Food, Maribor, Slovenia
| | - Barbara Dariš
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Knez Marevci
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engi-neering, University of Maribor, Maribor, Slovenia
| |
Collapse
|
14
|
Syed N, Singh S, Chaturvedi S, Nannaware AD, Khare SK, Rout PK. Production of lactones for flavoring and pharmacological purposes from unsaturated lipids: an industrial perspective. Crit Rev Food Sci Nutr 2022; 63:10047-10078. [PMID: 35531939 DOI: 10.1080/10408398.2022.2068124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enantiomeric pure and natural (+)-Lactones (C ≤ 14) with aromas obtained from fruits and milk are considered flavoring compounds. The flavoring value is related to the lactones' ring size and chain length, which blend in varying concentrations to produce different stone-fruit flavors. The nature-identical and enantiomeric pure (+)-lactones are only produced through whole-cell biotransformation of yeast. The industrially important γ-decalactone and δ-decalactone are produced by a four-step aerobic-oxidation of ricinoleic acid (RA) following the lactonization mechanism. Recently, metabolic engineering strategies have opened up new possibilities for increasing productivity. Another strategy for increasing yield is to immobilize the RA and remove lactones from the broth regularly. Besides flavor impact, γ-, δ-, ε-, ω-lactones of the carbon chain (C8-C12), the macro-lactones and their derivatives are vital in pharmaceuticals and healthcare. These analogues are isolated from natural sources or commercially produced via biotransformation and chemical synthesis processes for medicinal use or as active pharmaceutical ingredients. The various approaches to biotransformation have been discussed in this review to generate more prospects from a commercial point of view. Finally, this work will be regarded as a magical brick capable of containing both traditional and genetic engineering technology while contributing to a wide range of commercial applications.
Collapse
Affiliation(s)
- Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, New Delhi, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, Uttar Pradesh, India
| |
Collapse
|
15
|
Schmidt TJ, Klempnauer KH. Natural Products with Antitumor Potential Targeting the MYB-C/EBPβ-p300 Transcription Module. Molecules 2022; 27:molecules27072077. [PMID: 35408476 PMCID: PMC9000602 DOI: 10.3390/molecules27072077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
The transcription factor MYB is expressed predominantly in hematopoietic progenitor cells, where it plays an essential role in the development of most lineages of the hematopoietic system. In the myeloid lineage, MYB is known to cooperate with members of the CCAAT box/enhancer binding protein (C/EBP) family of transcription factors. MYB and C/EBPs interact with the co-activator p300 or its paralog CREB-binding protein (CBP), to form a transcriptional module involved in myeloid-specific gene expression. Recent work has demonstrated that MYB is involved in the development of human leukemia, especially in acute T-cell leukemia (T-ALL) and acute myeloid leukemia (AML). Chemical entities that inhibit the transcriptional activity of the MYB-C/EBPβ-p300 transcription module may therefore be of use as potential anti-tumour drugs. In searching for small molecule inhibitors, studies from our group over the last 10 years have identified natural products belonging to different structural classes, including various sesquiterpene lactones, a steroid lactone, quinone methide triterpenes and naphthoquinones that interfere with the activity of this transcriptional module in different ways. This review gives a comprehensive overview on the various classes of inhibitors and the inhibitory mechanisms by which they affect the MYB-C/EBPβ-p300 transcriptional module as a potential anti-tumor target. We also focus on the current knowledge on structure-activity relationships underlying these biological effects and on the potential of these compounds for further development.
Collapse
Affiliation(s)
- Thomas J. Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, PharmaCampus-Corrensstraße 48, D-48149 Munster, Germany
- Correspondence: (T.J.S.); (K.-H.K.)
| | - Karl-Heinz Klempnauer
- Institute of Biochemistry, University of Münster, Corrensstraße 36, D-48149 Munster, Germany
- Correspondence: (T.J.S.); (K.-H.K.)
| |
Collapse
|
16
|
Greinwald A, Hartmann M, Heilmann J, Heinrich M, Luick R, Reif A. Soil and Vegetation Drive Sesquiterpene Lactone Content and Profile in Arnica montana L. Flower Heads From Apuseni-Mountains, Romania. FRONTIERS IN PLANT SCIENCE 2022; 13:813939. [PMID: 35154225 PMCID: PMC8832060 DOI: 10.3389/fpls.2022.813939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Arnica montana L. (AM, Asteraceae) is a perennial, herbaceous vascular plant species of commercial importance. The flower heads' pharmacological properties are attributed mainly to sesquiterpene lactones (SLs), with phenolic acids and flavonoids also considered of relevance. The botanical drug is still partly collected in different European mountain regions. The SL content can be influenced by genetic factors and environmental conditions (altitude, temperature and rainfall). Surprisingly, the influence of the soil on SL-content have rarely been investigated. However, the soil determines the occurrence, distribution and overall fitness of AM. Equally, environmental factors are crucial determinants for the biosynthesis and fluctuations in plant secondary metabolites. Therefore, different abiotic (pH, C/N ratio, base saturation, cation exchange capacity) and biotic (species richness, vegetation cover) parameters need to be assessed as potential drivers of the variable content of AM's secondary metabolites. Consequently, we developed an in situ experimental design aiming to cover a wide range of soil pH conditions. We detected and investigated different AM populations growing in grassland on acidic soils, on siliceous as well as calcareous geologies within the same geographical region and altitudinal belt. The total SL content and most single SL contents of the AM flower heads differed significantly between the two geologies. AM flower heads of plants growing on loam on limestone showed a significant higher total SL content than the flower heads of plants growing in siliceous grasslands. Furthermore, the SL contents were significantly correlated with geobotanical species richness and vegetation cover pointing toward an effect of species interactions on the production of SLs. Moreover, the ratios of the main SLs helenalin to dihydrohelenalin esters were significantly correlated to environmental parameters indicating that SL composition might be a function of habitat conditions. The findings of this study shed light upon the often ignored, complex interactions between environmental conditions and plant secondary metabolites. We highlight the importance of both abiotic and biotic habitat parameters for SLs in AM.
Collapse
Affiliation(s)
- Anja Greinwald
- Nature Conservation, University of Applied Forest Science, Rottenburg, Germany
- Vegetation Science, University of Freiburg, Freiburg, Germany
| | - Martin Hartmann
- Pharmaceutical Biology, University of Regensburg, Regensburg, Germany
| | - Jörg Heilmann
- Pharmaceutical Biology, University of Regensburg, Regensburg, Germany
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, University College London (UCL) School of Pharmacy, London, United Kingdom
| | - Rainer Luick
- Nature Conservation, University of Applied Forest Science, Rottenburg, Germany
| | - Albert Reif
- Vegetation Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Šadibolová M, Juvonen RO, Auriola S, Boušová I. In vitro metabolism of helenalin and its inhibitory effect on human cytochrome P450 activity. Arch Toxicol 2022; 96:793-808. [PMID: 34989853 DOI: 10.1007/s00204-021-03218-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 µM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 µM. Helenalin inhibited CYP3A4 (IC50 = 18.7 µM) and CYP3A5 (IC50 = 62.6 µM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 µM, KI = 6.7 µM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.
Collapse
Affiliation(s)
- Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Mun H, Townley HE. Mechanism of Action of the Sesquiterpene Compound Helenalin in Rhabdomyosarcoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14121258. [PMID: 34959659 PMCID: PMC8703838 DOI: 10.3390/ph14121258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in paediatric patients. Relapsed or refractory RMS shows very low 5-year survival rates, which urgently necessitates new chemotherapy agents. Herein, the sesquiterpene lactone, helenalin, was investigated as a new potential therapeutic agent against the embryonal RMS (eRMS) and alveolar RMS (aRMS) cells. We have evaluated in vitro antiproliferative efficacy of helenalin on RMS cells by the MTT and wound healing assay, and estimated several cell death pathways by flow cytometry, confocal microscopy and immunoblotting. It was shown that helenalin was able to increase reactive oxygen species levels, decrease mitochondrial membrane potential, trigger endoplasmic reticulum stress and deactivate the NF-κB pathway. Confirmation was obtained through the use of antagonistic compounds which alleviated the effects of helenalin in the corresponding pathways. Our findings demonstrate that oxidative stress is the pivotal mechanism of action of helenalin in promoting RMS cell death in vitro.
Collapse
Affiliation(s)
- Hakmin Mun
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Helen Elizabeth Townley
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: ; Tel.: +44-01865283792
| |
Collapse
|
19
|
Anticancer Targets and Signaling Pathways Activated by Britannin and Related Pseudoguaianolide Sesquiterpene Lactones. Biomedicines 2021; 9:biomedicines9101325. [PMID: 34680439 PMCID: PMC8533303 DOI: 10.3390/biomedicines9101325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed. Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural product. The present review recapitulates the anticancer effects of BRT, some central concerns with SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.
Collapse
|
20
|
|
21
|
Ismail FMD, Nahar L, Sarker SD. Application of INADEQUATE NMR techniques for directly tracing out the carbon skeleton of a natural product. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:7-23. [PMID: 32671944 DOI: 10.1002/pca.2976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Nuclear magnetic resonance (NMR) measurement of 1 JCC coupling by two-dimensional (2D) INADEQUATE (incredible natural abundance double quantum transfer experiment), which is a special case of double-quantum (DQ) spectroscopy that offers unambiguous determination of 13 C-13 C spin-spin connectivities through the DQ transitions of the spin system, is especially suited to solving structures rich in quaternary carbons and poor in hydrogen content (Crews rule). OBJECTIVE To review published literature on the application of NMR methods to determine structure in the liquid-state, which specifically considers the interaction of a pair of carbon-13 (13 C) nuclei adjacent to one another, to allow direct tracing out of contiguous carbon connectivity using 2D INADEQUATE. METHODOLOGY A comprehensive literature search was implemented with various databases: Web of Knowledge, PubMed and SciFinder, and other relevant published materials including published monographs. The keywords used, in various combinations, with INADEQUATE being present in all combinations, in the search were 2D NMR, 1 JCC coupling, natural product, structure elucidation, 13 C-13 C connectivity, cryoprobe and CASE (computer-assisted structure elucidation)/PANACEA (protons and nitrogen and carbon et alia). RESULTS The 2D INADEQUATE continues to solve "intractable" problems in natural product chemistry, and using milligram quantities with cryoprobe techniques combined with CASE/PANACEA experiments can increase machine time efficiency. The 13 C-13 C-based structural elucidation by dissolution single-scan dynamic nuclear polarisation NMR can overcome disadvantages of 13 C insensitivity at natural abundance. Selected examples have demonstrated the trajectory of INADEQUATE spectroscopy from structural determination to clarification of metabolomics analysis and use of DFT (density functional theory) and coupling constants to clarify the connectivity, hybridisation and stereochemistry within natural products. CONCLUSIONS Somewhat neglected over the years because of perceived lack of sensitivity, the 2D INADEQUATE NMR technique has re-emerged as a useful tool for solving natural products structures, which are rich in quaternary carbons and poor in hydrogen content.
Collapse
Affiliation(s)
- Fyaz M D Ismail
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, Merseyside, L3 3AF, UK
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, Merseyside, L3 3AF, UK
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, Merseyside, L3 3AF, UK
| |
Collapse
|
22
|
Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed Pharmacother 2020; 125:109955. [PMID: 32014691 DOI: 10.1016/j.biopha.2020.109955] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
Costunolide (COS) and dehydrocostus lactone (DEH) are two natural sesquiterpene lactones with potential antitcancer activity against a range of cancer cell types both in vitro and in vivo, particularly for breast cancer and leukemia. There are many researches that have been taken to characterize these pathways and to reveal their anticancer mechanisms of action of COS and DEH. However, while there is a great deal of evidence detailing the effects of COS and DEH on considerable signaling pathways and cellular functions, a global view of their mechanism of action remains elusive. This review systematically summarizes the antitumor activity and mechanism of COS and DEH in the recent reports, and discusses the effect of the key active part (α-methylene-γ-butyrolactone) of COS and DEH against cancer. Moreover, we also discuss the antineoplastic activity of COS and DEH derivatives to improve the cytotoxicity and safety index. We believe this review can provide a systemic reference to develop COS and DEH as anticancer agents.
Collapse
|
23
|
Salin AV, Islamov DR. Phosphine-catalyzed Michael additions to α-methylene-γ-butyrolactones. Org Biomol Chem 2019; 17:7293-7299. [PMID: 31328762 DOI: 10.1039/c9ob01401b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The highly efficient addition of phosphorus and carbon pronucleophiles to α-methylene-γ-butyrolactones (tulipalin A and arglabin) under n-Bu3P catalysis is reported. Kinetic experiments indicate that the unprecedentedly high reactivity of α-methylene-γ-butyrolactones results from the rigid s-cis geometry of the 1-oxa-1,3-butadiene moiety that favors generation of zwitterionic intermediate stabilized by interaction between the phosphonium center and adjacent carbonyl oxygen. The presented strategy offers an economical and practical method for functionalization of natural biologically active α-methylene-γ-butyrolactones with high levels of chemo- and stereoselectivity.
Collapse
Affiliation(s)
- Alexey V Salin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street 18, Kazan, 420008, Russian Federation.
| | | |
Collapse
|
24
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
25
|
Barik CK, Tessensohn ME, Webster RD, Leong WK. Group VIII carbamoyl complexes as catalysts for alkyne hydrocarboxylation and electrochemical proton reduction. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|