1
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
2
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Murison V, Hérault J, Schoefs B, Marchand J, Ulmann L. Bioinformatics-Based Screening Approach for the Identification and Characterization of Lipolytic Enzymes from the Marine Diatom Phaeodactylum tricornutum. Mar Drugs 2023; 21:md21020125. [PMID: 36827166 PMCID: PMC9964374 DOI: 10.3390/md21020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial step to understanding the catabolic processes. In this study, an in silico screening of the genome of Phaeodactylum tricornutum led to the identification of 57 putative triacylglycerol lipases (EC 3.1.1.3) grouped in 4 families. Further analysis revealed the presence of conserved domains and catalytic residues of lipases. Physico-chemical characteristics and subcellular localization predictions highlighted that a majority of these putative proteins are hydrophilic and cytosolic, suggesting they could be recruited to lipid droplets directly from the cytosol. Among the 57 identified putative proteins, three lipases were identified as possibly involved in lipophagy due to a potential vacuolar localization. The expression of the mRNA corresponding to the 57 proteins was then searched in 3 transcriptomic datasets obtained under nitrogen starvation. Nine genes were highly regulated and were considered as encoding enzymes with a probable important function in lipid catabolism. A tertiary structure prediction of these nine candidates yielded eight functional 3D models. Among those, two downregulated enzymes, Phatr3_J54974 and Phatr3_EG00720, were highlighted as good targets for future functional genomics and purification studies to investigate their role in lipid degradation.
Collapse
Affiliation(s)
- Victor Murison
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Benoît Schoefs
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Justine Marchand
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Lionel Ulmann
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
- Correspondence:
| |
Collapse
|
4
|
Wu S, Wu Y, Chen J, Zhuang P, Zhang Y, Jiao J. Lifelong docosahexaenoic acid intervention ameliorates aging in the telomere-DNA-mitochondria axis in telomerase-deficient mice. J Nutr Biochem 2023; 112:109202. [PMID: 36347449 DOI: 10.1016/j.jnutbio.2022.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/03/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple age-related diseases are associated with telomere length. Telomerase is intimately related to inflammation and oxidative stress, but whether the underlying function of n-3 PUFAs on telomere maintenance is based on telomerase activation or related mechanisms remains unclear. Herein, we utilized late-generation (G4) telomerase-deficient (Terc-/-) mice to perform a lifelong docosahexaenoic acid (DHA) intervention to determine the potential of DHA in telomere maintenance and health promotion. Unfortunately, DHA failed to prolong mouse longevity in either intrinsic or premature aging. However, intriguingly, lifelong dietary DHA intervention slowed the aging phenotypes and profoundly attenuated telomere attrition in blood leukocytes and multiple tissues, consistent with decreased β-galactosidase activity and other senescence hallmarks with no observed sex differences. Notably, DHA intervention alleviated telomere attrition-induced γ-H2AX accumulation dependent on poly (ADP-ribose) polymerase 1 (PARP1) recruitment, and further regulated mitochondrial dysfunction critically involved in the DNA damage response. Together with the improvement of mitochondria function, the blocked reactive oxygen species (ROS) accumulation and suppression of the nuclear factor-κB (NF-κB)/nucleotide-binding domain-like receptor protein 3 (NLRP3)/caspase-1 pathways partially indicated anti-oxidative and anti-inflammatory effects of DHA. These data revealed a regulatory paradigm involving DHA in the telomere-DNA-mitochondria feedback loop mediated by DNA damage response and inflammation in alleviating senescence, which may hold potential as a translatable intervention in telomere-related diseases during aging.
Collapse
Affiliation(s)
- Shanyun Wu
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P R China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Jingnan Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Pan Zhuang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, P R China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P R China; Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P R China.
| |
Collapse
|
5
|
Contribution of n-3 Long-Chain Polyunsaturated Fatty Acids to the Prevention of Breast Cancer Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137936. [PMID: 35805595 PMCID: PMC9265492 DOI: 10.3390/ijerph19137936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023]
Abstract
Nowadays, diet and breast cancer are studied at different levels, particularly in tumor prevention and progression. Thus, the molecular mechanisms leading to better knowledge are deciphered with a higher precision. Among the molecules implicated in a preventive and anti-progressive way, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs) are good candidates. These molecules, like docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, are generally found in marine material, such as fat fishes or microalgae. EPA and DHA act as anti-proliferative, anti-invasive, and anti-angiogenic molecules in breast cancer cell lines, as well as in in vivo studies. A better characterization of the cellular and molecular pathways involving the action of these fatty acids is essential to have a realistic image of the therapeutic avenues envisaged behind their use. This need is reinforced by the increase in the number of clinical trials involving more and more n-3 LC-PUFAs, and this, in various pathologies ranging from obesity to a multitude of cancers. The objective of this review is, therefore, to highlight the new elements showing the preventive and beneficial effects of n-3 LC-PUFAs against the development and progression of breast cancer.
Collapse
|
6
|
Transcriptomic Response of Breast Cancer Cells MDA-MB-231 to Docosahexaenoic Acid: Downregulation of Lipid and Cholesterol Metabolism Genes and Upregulation of Genes of the Pro-Apoptotic ER-Stress Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103746. [PMID: 32466294 PMCID: PMC7277693 DOI: 10.3390/ijerph17103746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable efforts in prevention and therapy, breast cancer remains a major public health concern worldwide. Numerous studies using breast cancer cell lines have shown the antiproliferative and pro-apoptotic effects of docosahexaenoic acid (DHA). Some studies have also demonstrated the inhibitory effect of DHA on the migration and invasion of breast cancer cells, making DHA a potential anti-metastatic agent. Thus, DHA has shown its potential as a chemotherapeutic adjuvant. However, the molecular mechanisms triggering DHA effects remain unclear, and the aim of this study was to provide a transcriptomic basis for further cellular and molecular investigations. Therefore, MDA-MB-231 cells were treated with 100 µM DHA for 12 h or 24 h before RNA-seq analysis. The results show the great impact of DHA-treatment on the transcriptome, especially after 24 h of treatment. The impact of DHA is particularly visible in genes involved in the cholesterol biosynthesis pathway that is strongly downregulated, and the endoplasmic reticulum (ER)-stress response that is, conversely, upregulated. This ER-stress and unfolded protein response could explain the pro-apoptotic effect of DHA. The expression of genes related to migration and invasion (especially SERPINE1, PLAT, and MMP11) is also impacted by DHA. In conclusion, this transcriptomic analysis supports the antiproliferative, pro-apoptotic and anti-invasive effects of DHA, and provides new avenues for understanding its molecular mechanisms.
Collapse
|
7
|
Chu WL, Phang SM. Bioactive Compounds from Microalgae and Their Potential Applications as Pharmaceuticals and Nutraceuticals. GRAND CHALLENGES IN ALGAE BIOTECHNOLOGY 2019. [DOI: 10.1007/978-3-030-25233-5_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Kapase VU, Nesamma AA, Jutur PP. Identification and characterization of candidates involved in production of OMEGAs in microalgae: a gene mining and phylogenomic approach. Prep Biochem Biotechnol 2018; 48:619-628. [PMID: 29932840 DOI: 10.1080/10826068.2018.1476886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Optimizing the production of the high-value renewables such as OMEGAs through pathway engineering requires an in-depth understanding of the structure-function relationship of genes involved in the OMEGA biosynthetic pathways. In this preliminary study, our rationale is to identify and characterize the ∼221 putative genes involved in production of OMEGAs using bioinformatic analysis from the Streptophyte (plants), Chlorophyte (green algae), Rhodophyta (red algae), and Bacillariophyta (diatoms) lineages based on their phylogenomic profiling, conserved motif/domain organization and physico-chemical properties. The MEME suite predicted 12 distinct protein domains, which are conserved among these putative genes. The phylogenomic analysis of the putative candidate genes [such as FAD2 (delta-12 desaturase); ECR (enoyl-CoA reductase); FAD2 (delta-12 desaturase); ACOT (acyl CoA thioesterase); ECH (enoyl-CoA hydratase); and ACAT (acetyl-CoA acyltransferase)] with similar domains and motif patterns were remarkably well conserved. Furthermore, the subcellular network prediction of OMEGA biosynthetic pathway genes revealed a unique interaction between the light-dependent chlorophyll biosynthesis and glycerol-3-phosphate dehydrogenase, which predicts a major cross-talk between the key essential pathways. Such bioinformatic analysis will provide insights in finding the key regulatory genes to optimize the productivity of OMEGAs in microalgal cell factories.
Collapse
Affiliation(s)
- Vikas U Kapase
- a Omics of Algae Group, Integrative Biology , International Centre for Genetic Engineering and Biotechnology , New Delhi , India
| | - Asha A Nesamma
- a Omics of Algae Group, Integrative Biology , International Centre for Genetic Engineering and Biotechnology , New Delhi , India
| | - Pannaga P Jutur
- a Omics of Algae Group, Integrative Biology , International Centre for Genetic Engineering and Biotechnology , New Delhi , India
| |
Collapse
|
9
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|