1
|
Imchen T, Tilvi S, Singh KS, Thakur N. Allelochemicals from the seaweeds and their bioprospecting potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5387-5401. [PMID: 38396154 DOI: 10.1007/s00210-024-03002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Allelochemicals are secondary metabolites which function as a natural protection against grazing activities by algae and higher plants. They are one of the major metabolites engaged in the interactions of organisms. The chemically mediated interactions between organisms significantly influence the functioning of the ecosystems. Most of these compounds are secondary metabolites comprising sterols, terpenes, and polyphenols. These compounds not only play a defensive role, but also exhibit biological activities such as antioxidants, anti-cancer, anti-diabetes, anti-inflammation, and anti-microbial properties. This review article discusses the current understanding of the allelochemicals of seaweeds and their bioprospecting potential that can bring benefit to humanity. Specifically, the bioactive substances having specific health benefits associated with the consumption or application of seaweed-derived compounds. The properties of such allelochemicals can have implications for bioprospecting pharmaceutical, nutraceutical and cosmetic applications.
Collapse
Affiliation(s)
- Temjensangba Imchen
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| | - Supriya Tilvi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Keisham Sarjit Singh
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004
| | - Narsinh Thakur
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Panaji, Goa, India, 403004.
| |
Collapse
|
2
|
Tsuruda S, Sato T, Aoyama H, Sirimangkalakitti N, Fujimura S, Arisawa M, Murai K. Total Synthesis and Antibacterial Activity of Marine Tris-indole Alkaloid Tulongicin A. JOURNAL OF NATURAL PRODUCTS 2024; 87:1556-1562. [PMID: 38758599 DOI: 10.1021/acs.jnatprod.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Bis-indole alkaloids from marine sponges are an intriguing class of natural products with a variety of activities. However, only a preliminary biological study of tulongicin A (5), a related previously isolated marine tris-indole alkaloid, has been conducted. In this study, we accomplished the first asymmetric total synthesis of 5 via the construction of an imidazoline-linked bis-indolylmethane skeleton using a Friedel-Crafts-type reaction. Our synthesis enabled a detailed study of the antibacterial profile of 5. Compound 5 displayed bactericidal activity against Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) strains.
Collapse
Affiliation(s)
- Shuji Tsuruda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takumi Sato
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Shigeru Fujimura
- Division of Clinical Infectious Diseases & Chemotherapy, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Yang Y, Wu S, Zhao C, He H, Wu Z, Zhang J, Song R. Design, Synthesis, and Insecticidal Activity of Pyridino[1,2- a]pyrimidines Containing Indole Moeites at the 1-Position. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11331-11340. [PMID: 38721769 DOI: 10.1021/acs.jafc.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Research on mesoionic structures in pesticide design has gained significant attention in recent years. However, the 1-position of pyridino[1,2-a]pyrimidine is usually designed with 2-chlorothiazole, 2-chloropyridine, or cyano moieties commonly found in neonicotinoid insecticides. In order to enrich the available pharmacophore library, here, we disclose a series of new pyridino[1,2-a]pyrimidine mesoionics bearing indole-containing substituents at the 1-position. Most of these target compounds are confirmed to have good insecticidal activity against aphids through bioevaluation. In addition, a three-dimensional structure-activity relationship model is established to allow access to optimal compound F45 with an LC50 value of 2.97 mg/L. This value is comparable to the property achieved by the positive control triflumezopyrim (LC50 = 2.94 mg/L). Proteomics and molecular docking analysis suggest that compound F45 has the potential to modulate the functioning of the aphid nervous system through its interaction with neuronal nicotinic acetylcholine receptors. This study expands the existing pharmacophore library for the future development of new mesoionic insecticides based on 1-position modifications of the pyridino[1,2-a]pyrimidine scaffold.
Collapse
Affiliation(s)
- Yichen Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Shang Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Chunni Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hongfu He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zengxue Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jian Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Runjiang Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
4
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
5
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Sun H, Sun K, Sun J. Recent Advances of Marine Natural Indole Products in Chemical and Biological Aspects. Molecules 2023; 28:molecules28052204. [PMID: 36903451 PMCID: PMC10005763 DOI: 10.3390/molecules28052204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ocean has always been one of the important sources of natural products. In recent years, many natural products with different structures and biological activities have been obtained, and their value has been clearly recognized. Researchers have been deeply engaged in the field of separation and extraction, derivative synthesis, structural studies, biological evaluation, and other fields of research for marine natural products. Thus, a series of marine indole natural products which have structural and biological prospect have caught our eyes. In this review, we summarize some of these marine indole natural products with relatively good pharmacological activity and research value, and discuss issues concerning chemistry, pharmacological activity, biological evaluation, and synthesis, including monomeric indoles, indole peptides, bis-indoles, and annelated indoles. Most of the compounds have cytotoxic, antiviral, antifungal, or anti-inflammatory activities.
Collapse
Affiliation(s)
- Haoyi Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Kangping Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jingyong Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan 250117, China
- Key Laboratory for Rare & Uncommon Discases of Shandong Province, Jinan 250117, China
- Correspondence: ; Tel.: +86-531-59567209
| |
Collapse
|
7
|
Rocha DHA, Pinto DCGA, Silva AMS. Macroalgae Specialized Metabolites: Evidence for Their Anti-Inflammatory Health Benefits. Mar Drugs 2022; 20:md20120789. [PMID: 36547936 PMCID: PMC9783307 DOI: 10.3390/md20120789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammation is an organism's response to chemical or physical injury. It is split into acute and chronic inflammation and is the last, most significant cause of death worldwide. Nowadays, according to the World Health Organization (WHO), the greatest threat to human health is chronic disease. Worldwide, three out of five people die from chronic inflammatory diseases such as stroke, chronic respiratory diseases, heart disorders, and cancer. Nowadays, anti-inflammatory drugs (steroidal and non-steroidal, enzyme inhibitors that are essential in the inflammatory process, and receptor antagonists, among others) have been considered as promising treatments to be explored. However, there remains a significant proportion of patients who show poor or incomplete responses to these treatments or experience associated severe side effects. Seaweeds represent a valuable resource of bioactive compounds associated with anti-inflammatory effects and offer great potential for the development of new anti-inflammatory drugs. This review presents an overview of specialized metabolites isolated from seaweeds with in situ and in vivo anti-inflammatory properties. Phlorotannins, carotenoids, sterols, alkaloids, and polyunsaturated fatty acids present significant anti-inflammatory effects given that some of them are involved directly or indirectly in several inflammatory pathways. The majority of the isolated compounds inhibit the pro-inflammatory mediators/cytokines. Studies have suggested an excellent selectivity of chromene nucleus towards inducible pro-inflammatory COX-2 than its constitutive isoform COX-1. Additional research is needed to understand the mechanisms of action of seaweed's compounds in inflammation, given the production of sustainable and healthier anti-inflammatory agents.
Collapse
|
8
|
Bai G, Yang Y, Wang X, Wu J, Wang H, Ye X, Bao X. DBU Promoted Polysubstituted Arene Formation via a Michael Addition/Cyclization/Elimination Cascade Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238167. [PMID: 36500260 PMCID: PMC9738611 DOI: 10.3390/molecules27238167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
The straightforward construction of polysubstituted arenes is essential in both synthetic chemistry and medicinal chemistry. Herein, we reported a DBU promoted Michael addition/cyclization/elimination cascade reaction between vinylogous malononitrile derivatives and chlorinated nitrostyrenes for the synthesis of polysubstituted arenes. The method features mild reaction conditions, wide substrate scope and high yield. Interestingly, preliminary study of the enantioselective version of this cascade was conducted to give chiral biaryl atropisomers with up to 40% ee through center-to-axial chirality transfer strategy.
Collapse
Affiliation(s)
- Guishun Bai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiamin Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| |
Collapse
|
9
|
Niri DR, Sayahi MH, Behrouz S, Moazzam A, Mojtabavi S, Faramarzi MA, Larijani B, Rastegar H, Mohammadi-Khanaposhtani M, Mahdavi M. Design, synthesis, in vitro, and in silico biological evaluations of coumarin-indole hybrids as new anti-α-glucosidase agents. BMC Chem 2022; 16:84. [PMID: 36329490 PMCID: PMC9635080 DOI: 10.1186/s13065-022-00882-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND A series of coumarin-indole hybrids was synthesized as the new α-glucosidase inhibitors. The title hybrids were considered as α-glucosidase inhibitors because had two active pharmacophores against α-glucosidase: coumarin and indole. METHODS The thirteen various derivatives 4a-m were synthesized, purified, and fully characterized. These compounds were evaluated against α-glucosidase in vitro and in silico. In silico pharmacokinetic studies of the most potent compounds were also performed. RESULTS Most of the title compounds exhibited high anti-α-glucosidase activity in comparison to standard drug acarbose. In particular, the phenoxy derivative 4d namely 3-((1H-indol-3-yl)(3-phenoxyphenyl)methyl)-4-hydroxy-2H-chromen-2-one showed promising activity. This compound is a competitive inhibitor against α-glucosidase and showed the lowest binding energy at the α-glucosidase active site in comparison to other potent synthesized compounds and acarbose. CONCLUSION Compound 4d can be a lead compound for further structural development to obtain effective and potent α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Davood Rezapour Niri
- grid.444860.a0000 0004 0600 0546Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mohammad Hosein Sayahi
- grid.412462.70000 0000 8810 3346Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Somayeh Behrouz
- grid.444860.a0000 0004 0600 0546Medicinal Chemistry Research Laboratory, Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Ali Moazzam
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- grid.411705.60000 0001 0166 0922Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran ,grid.411495.c0000 0004 0421 4102Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Mahdavi
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Erol E, Orhan MD, Avsar T, Akdemir A, Okudan ES, Alim Toraman GO, Topcu G. Anti-SARS-CoV-2 and cytotoxic activity of two marine alkaloids from green alga Caulerpa cylindracea Sonder in the Dardanelles. RSC Adv 2022; 12:29983-29990. [PMID: 36321101 PMCID: PMC9580487 DOI: 10.1039/d2ra03358e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Caulerpa cylindracea Sonder is a green alga belonging to the Caulerpaceae family. This is the first chemical investigation of C. cylindracea in the Dardanelles which resulted in the isolation of four compounds, caulerpin (1), monomethyl caulerpinate (2), beta-sitosterol (3), and palmitic acid (4). Their structures were elucidated by spectroscopic analyses including 1D- and 2D NMR and mass. The isolated compounds 1 and 2 were tested against the SARS-CoV-2 viral targets spike protein and main protease (3CL) enzyme, and both compounds significantly inhibit the interaction of spike protein and ACE2, while the main protease activity was not significantly reduced. Docking studies suggested that compounds 1 and 2 may bind to the ACE2 binding pocket on spike, and compound 2 may also bind to an allosteric site on spike. As such, these compounds may inhibit the spike-ACE2 complex formation competitively and/or allosterically and have the potential to be used against SARS-CoV-2 virus infection. In addition, compounds 1 and 2 showed at least two-fold higher cytotoxicity against breast cancer cell lines MCF7 and MDA-MB-231 compared to the CCD fibroblast control cell line.
Collapse
Affiliation(s)
- Ebru Erol
- Dept. of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University Istanbul Turkey
| | - Muge Didem Orhan
- Bahcesehir University, Health Sciences Institute, Neuroscience Laboratory Istanbul Turkey
| | - Timucin Avsar
- Bahcesehir University, Health Sciences Institute, Neuroscience Laboratory Istanbul Turkey
- Bahcesehir University, School of Medicine, Department of Medical Biology Istanbul Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Lab., Dept. of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University Istanbul Turkey
| | - Emine Sukran Okudan
- Faculty of Aquatic Sciences and Fisheries, Akdeniz University Antalya Turkey
| | | | - Gulacti Topcu
- Dept. of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University Istanbul Turkey
- Drug Application & Research Center, Bezmialem Vakif University Istanbul Turkey
| |
Collapse
|
11
|
A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022; 11:foods11182832. [PMID: 36140958 PMCID: PMC9498133 DOI: 10.3390/foods11182832] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Caulerpa lentillifera is a type of green seaweed widely consumed as a fresh vegetable, specifically in Southeast Asia. Interestingly, this green seaweed has recently gained popularity in the food sector. Over the last two decades, many studies have reported that C. lentillifera is rich in polyunsaturated fatty acids, minerals, vitamins, and bioactive compounds that contribute many health benefits. On the other hand, there is currently hardly any article dedicated specifically to C. lentillifera regarding nutritional composition and recent advancements in its potential health benefits. Hence, this study will summarise the findings on the nutritional content of C. lentillifera and compile recently discovered beneficial properties throughout the past decade. From the data compiled in this review paper, it can be concluded that the nutrient and phytochemical profile of C. lentillifera differs from one region to another depending on various external factors. As a result, this paper will offer researchers the groundwork to develop food products based on C. lentillifera. The authors of this paper are hopeful that a more systematic review could be done in the future as currently, existing data is still scarce.
Collapse
|
12
|
Chen Y, Yang J, Zuo Y, Zhang C, Pu Y, Ren Q, Li X, Huang Y, Huang H, Yang H, You O, Xia X, Lu A, Shi S, Deng Y, Lu J. Voacamine is a novel inhibitor of EGFR exerting oncogenic activity against colorectal cancer through the mitochondrial pathway. Pharmacol Res 2022; 184:106415. [PMID: 36029932 DOI: 10.1016/j.phrs.2022.106415] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
Colorectal cancer (CRC), among the most aggressive and prevailing neoplasms, is primarily treated with chemotherapy. Voacamine (VOA), a novel bisindole natural product, possesses a variety of conspicuous pharmacological activities. Within the current research, we evaluated in vitro and in vivo the anticancer efficacy of VOA against CRC and its potential mechanisms. Our results illustrated that VOA concentrationdependently suppressed the proliferation and migration of CT26 and HCT116 cells as correspondingly indicated by IC50 values of 1.38 ± 0.09 μM and 4.10 ± 0.14 μM. Furthermore, treatment of VOA also suppressed tumor cell colony formation, escalated the late-stage apoptosis rate of tumor cells, and evoked cell cycle of CT26 and HCT116 cells arrest inhibition in G2-M and G0-G1 phases, respectively. Meanwhile, VOA markedly disrupted the mitochondrial membrane potential eliciting mitochondrial dysfunction, decreased ATP production, and intermediated an enhanced accumulation of intracellular reactive oxygen species with a concentration-dependent pattern, accompanied by elevated expression levels of pro-apoptotic related protein Bax, Cyt-C, cleaved caspases 3/8/9 and by diminished Bcl-2, Bid, PRAP and caspases 3/8/9 expression. Further mechanistic studies revealed VOA treatment suppressed the EGFR/PI3K/Akt pathway with the evidence of the decreased phosphorylation proteins of EGFR, PI3K, Akt, and downstream proteins of p-mTOR, p-NF-kB, and p-P70S6. Additionally, molecular dynamics simulations further displayed VOA could enter the EGFR pocket followed by multiple mutual interaction effects. Interestingly, the EGFR activator (NSC228155) could slack the inhibitory capability of VOA on the EGFR/PI3K/Akt pathway as well as VOA-induced impairment of mitochondrial function. Finally, administration of VOA (15, 30 mg/kg every 2 days, i.p., for 16 days) in CT26 syngeneic mice dose-dependently suppressed the neoplastic development without appreciable organ toxicities. Taken together, our study demonstrated that VOA may be a prospective therapeutic agent for the treatment of CRC.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jirui Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yiru Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qing Ren
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong Special Administrative Region of China
| | - Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunqian Huang
- Department of Nursing, Xindu District People's Hospital of Chengdu, Chengdu 610500, China
| | - Hui Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huan Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ouyang You
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xila Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
13
|
Permatasari HK, Nurkolis F, Hardinsyah H, Taslim NA, Sabrina N, Ibrahim FM, Visnu J, Kumalawati DA, Febriana SA, Sudargo T, Tanner MJ, Kurniatanty I, Yusuf VM, Rompies R, Bahar MR, Holipah H, Mayulu N. Metabolomic Assay, Computational Screening, and Pharmacological Evaluation of Caulerpa racemosa as an Anti-obesity With Anti-aging by Altering Lipid Profile and Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-α Levels. Front Nutr 2022; 9:939073. [PMID: 35911110 PMCID: PMC9330592 DOI: 10.3389/fnut.2022.939073] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Obesity is associated with an accelerated aging process, which prevents healthy aging. Both obesity and aging were manifested in the peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) level. These studies fulfill the scientific gap in assembled pharmacological activity assay of Caulerpa racemosa done in a previous preclinical trial. Six major compounds from sea grape (C. racemosa) extract were evaluated using an in silico approach against human pancreatic lipase, a-glucosidase, and a-amylase to predict prospective anti-obesity candidates. The lipase inhibitory activity of the extract reached 90.30 ± 0.40%, 1.75% lower than orlistat. The a-amylase inhibitory assay of the extract was 84.07 ± 5.28%, while the inhibitory activity against a-glucosidase was 81.67 ± 1.54%; both were lower than acarbose. We observe the effect of C. racemosa extract as anti-obesity with anti-aging by evaluating the obesity parameters in the human body for a 4-week period. There was a significant decrease in blood glucose, total cholesterol, low-density lipoprotein (LDL), triglycerides (TG), waist circumference, waist-hip ratio, and body weight (p < 0.05); PGC-1α and high-density lipoprotein (HDL) increased significantly (p = 0.000), in Group B when compared with Group A. Our study revealed that sea grape extract is a potent anti-obesity with an anti-aging reagent that does not produce any significant adverse effects.
Collapse
Affiliation(s)
- Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia
| | | | - Nurpudji Astuti Taslim
- Department of Clinical Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nindy Sabrina
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Faisal Maulana Ibrahim
- Pharmaceutical Analysis and Medicinal Chemistry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Jodi Visnu
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dian Aruni Kumalawati
- Department of Biological Sciences, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia
| | - Sri Awalia Febriana
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toto Sudargo
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Melvin Junior Tanner
- Department of Nutrition, Faculty of Public Health, University of Indonesia, Depok, Indonesia
| | - Isma Kurniatanty
- Department of Biological Sciences, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia
| | | | - Ronald Rompies
- Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | | | - Holipah Holipah
- Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Nelly Mayulu
- Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| |
Collapse
|
14
|
I2/PhI(OAc)2-assisted oxidative C-H amination protocols toward metal-free pragmatic synthesis of pyrrolo[2,3-b]indoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [PMCID: PMC8993490 DOI: 10.1016/j.jscs.2022.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, Indole-based-oxadiazole (1A-17A) compounds were successfully synthesized. The structures of all synthesized compounds were fully characterized by different sophisticated spectroscopic techniques such 1H NMR, 13C NMR, and HREI-MS. Further, the synthesized compounds were explored to investigate their broad-spectrum antibacterial and antibiofilm potential against multidrug resistant Pseudomonas aeruginosa (MDR-PA) and methicillin resistant Staphylococcus aureus (MRSA). The compounds possessed a broad spectrum of antibacterial activity having MIC values of values 1–8 mg/ml against the tested microorganisms. Compound A6 and A7 shows maximum antibacterial activity against MDR-PA, whereas A6, A7 and A11 shows highest activity against MRSA. Furthermore, antibiofilm assay shows that A6, A7 and A11 showed maximum inhibition of biofilm formation and it was found that at 4 mg/ml; A6, A7 and A11 inhibit MRSA biofilm formation by 81.1, 77.5 and 75.9%, respectively; whereas in case of P. aeruginosa; A6 and A7 showed maximum biofilm inhibition and inhibit biofilm formation by 81.5 and 73.7%, respectively. Molecular docking study showed that compounds A6, A7, A8, A10, and A11 had high binding affinity to bacterial peptidoglycan, indicating their potential inhibitory activity against tested bacteria, whereas A6 and A11 were found to be the most effective inhibitors of SARS CoV-2 main protease (3CLpro), with a binding affinity of − 7.78 kcal/mol. Furthermore, SwissADME and pkCSM-pharmacokinetics online tools was applied to calculate the ADME/Tox profile of the synthesized compounds and the toxicity of these chemicals was found to be low. The Lipinski, Veber, Ghose, and Consensus LogP criteria were also used to predict drug-likeness levels of the compounds. Our findings imply that the synthesized compounds could be a useful for the preventing and treating biofilm-related microbial infection as well as SARS-CoV2 infections.
Collapse
|
16
|
Burattini S, Battistelli M, Verboni M, Falcieri E, Faenza I, Lucarini S, Salucci S. Morpho‐functional analyses reveal that changes in the chemical structure of a marine bisindole alkaloid alter the cytotoxic effect of its derivatives. Microsc Res Tech 2022; 85:2381-2389. [DOI: 10.1002/jemt.24092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Sabrina Burattini
- Department of Biomolecular Sciences (DISB) University of Urbino Carlo Bo Urbino Italy
| | - Michela Battistelli
- Department of Biomolecular Sciences (DISB) University of Urbino Carlo Bo Urbino Italy
| | - Michele Verboni
- Department of Biomolecular Sciences (DISB) University of Urbino Carlo Bo Urbino Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences (DISB) University of Urbino Carlo Bo Urbino Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM) University of Bologna Bologna Italy
| | - Simone Lucarini
- Department of Biomolecular Sciences (DISB) University of Urbino Carlo Bo Urbino Italy
| | - Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM) University of Bologna Bologna Italy
| |
Collapse
|
17
|
Kung HC, Liang KY, Mutuku JK, Huang BW, Chang-Chien GP. Separation and purification of caulerpin from algal Caulerpa racemosa by simulated moving bed chromatography. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Abdelrheem DA, Abd El-Mageed HR, Mohamed HS, Rahman AA, Elsayed KNM, Ahmed SA. Bis-indole alkaloid caulerpin from a new source Sargassum platycarpum: isolation, characterization, in vitro anticancer activity, binding with nucleobases by DFT calculations and MD simulation. J Biomol Struct Dyn 2021; 39:5137-5147. [PMID: 32579063 DOI: 10.1080/07391102.2020.1784285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/14/2020] [Indexed: 12/23/2022]
Abstract
Caulerpin, a bis-indole alkaloid is isolated from a new source Sargassum platycarpum, brown alga (family Sargassaceae) for the first time. The structure of caulerpin was characterized by IR, H1NMR, C13 NMR, HSQC, HMBC, EI-MS spectroscopy. Antifungal results suggest that caulerpin has been inhibited Cryptococcus neoformas (12 mm) and Candida albicans (7 mm) than other microbes. In vitro anticancer activity of caulerpin has been explored by cell viability assay against new human cancer cell line (liver-HepG2). The results show that caulerpin has low IC50 value (24.6 ± 2.1 µg/mL) against HepG-2. Based on the least toxic activity of caulerpin, these results encourage for future in vivo anticancer study. The binding of caulerpin molecule with the two nucleobases (T/U) bases has been studied by DFT methods. According to the AIM analysis, there are two types of interactions between caulerpin and T/U bases partially covalent partially electrostatic and electrostatic in gas and water phases. Based on NBO analysis, the charges were transferred from the lone-pair (n) in orbitals of O atoms of caulerpin to the σ* orbitals of T/U bases atoms. ΔEbin in the state of caulerpin-T bases complexes are lower than those in the caulerpin-U bases complexes in both gas and water phase. MD simulation supported that caulerpin-T/U bases complexes are stable in presence of explicit water phase. Thus, the findings of our study will be useful for giving an insight into the caulerpin/bases complexes that could be helpful in future experimental studies to develop the performance of caulerpin molecules as natural candidate drug. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Doaa A Abdelrheem
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - H R Abd El-Mageed
- Micro-analysis and Environmental Research and Community Services Center, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hussein S Mohamed
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, Egypt
| | - Aziz A Rahman
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Khaled N M Elsayed
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sayed A Ahmed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
19
|
Alghazeer R, Azwai S, Garbaj AM, Amr A, Elghmasi S, Sidati M, Yudiati E, Kubbat MG, Eskandrani AA, Shamlan G, Alansari WS. Alkaloids Rich Extracts from Brown Algae Against Multidrug-Resistant Bacteria by Distinctive Mode of Action. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05592-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Alsufyani TA, Saad HA, Al-otaibi AA. Synthesis of Some New Polycyclic Heterocyclic Compounds of Anticipated Biological Activity. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617666200207105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel polyheterocyclic nitrogen systems such as 2-amino-1H-pyrazolo[5',1':3,4][1,2,4]-
triazino[5,6-b]indole-3-carbonitrile 2, which has been synthesized for the first time in the present work,
is considered as starting material for the synthesis of more novel polyheterocyclic systems with five
fused rings and sometimes eight fused rings via heterocyclization with α,β-bifunctional reagents under
different conditions. The formed structures of the products were established from their correct elemental
analysis and spectral data. Some of the compounds were evaluated for their antimicrobial
activity using the Agar Well Diffusion method. Compounds 2, 4, 5, 6, 8 were found to be biologically
active (Supplementary information).
Collapse
Affiliation(s)
| | - Hosam A. Saad
- Chemistry Department, Faculty of Science, Taif University, Taif 21974,Saudi Arabia
| | - Asmaa A.A. Al-otaibi
- Chemistry Department, Faculty of Science, Taif University, Taif 21974,Saudi Arabia
| |
Collapse
|
21
|
Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: insights from molecular docking study. Struct Chem 2021; 32:1415-1430. [PMID: 33437137 PMCID: PMC7791912 DOI: 10.1007/s11224-020-01723-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/29/2020] [Indexed: 11/14/2022]
Abstract
Recently, the SARS-CoV-2 (COVID-19) pandemic virus has been spreading throughout the world. Until now, no certified drugs have been discovered to efficiently inhibit the virus. The scientists are struggling to find new safe bioactive inhibitors of this deadly virus. In this study, we aim to find antagonists that may inhibit the activity of the three major viral targets: SARS-CoV-2 3-chymotrypsin-like protease (6LU7), SARS-CoV-2 spike protein (6VYB), and a host target human angiotensin-converting enzyme 2 (ACE2) receptor (1R42), which is the entry point for the viral encounter, were studied with the prospects of identifying significant drug candidate(s) against COVID-19 infection. Then, the protein stability produced score of less than 0.6 for all residues of all studied receptors. This confirmed that these receptors are extremely stable proteins, so it is very difficult to unstable the stability of these proteins through utilizing individual drugs. Hence, we studied the combination and tricombination therapy between bioactive compounds which have the best binding affinity and some antiviral drugs like chloroquine, hydroxychloroquine, azithromycin, simeprevir, baloxavir, lopinavir, and favipiravir to show the effect of combination and tricombination therapy to disrupt the stability of the three major viral targets that are mentioned previously. Also, ADMET study suggested that most of all studied bioactive compounds are safe and nontoxic compounds. All results confirmed that caulerpin can be utilized as a combination and tricombination therapy along with the studied antiviral drugs for disrupting the stability of the three major viral receptors (6LU7, 6VYB, and 1R42).
Collapse
|
22
|
Caulerpa lentillifera (Sea Grapes) Improves Cardiovascular and Metabolic Health of Rats with Diet-Induced Metabolic Syndrome. Metabolites 2020; 10:metabo10120500. [PMID: 33297424 PMCID: PMC7762211 DOI: 10.3390/metabo10120500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023] Open
Abstract
Caulerpa lentillifera (sea grapes) is widely consumed in South-East Asia as a low-energy food with high contents of vitamins and minerals. This study investigated dried sea grapes containing 16.6% insoluble fibre commercially produced in Vietnam as an intervention. We hypothesised that insoluble fibre is the primary metabolite that will reverse diet-induced metabolic syndrome. Male Wistar rats (n = 48) were randomly allocated to four groups in a 16 week protocol. Two groups were fed either corn starch (C) or high-carbohydrate, high-fat (H) diets for the full 16 weeks. The other two groups received C and H diets for eight weeks and then received C. lentillifera added to these diets for the final eight weeks (CCL and HCL, respectively). High-carbohydrate, high-fat diet-fed rats developed obesity, hypertension, dyslipidaemia, fatty liver disease and increased left ventricular collagen deposition. C. lentillifera supplementation in HCL rats decreased body weight, systolic blood pressure, plasma concentrations of total cholesterol and non-esterified fatty acids, inflammatory cells in heart and liver, and visceral adiposity. The Firmicutes to Bacteroidetes ratio decreased in the gut microbiota of HCL rats. Therefore, C. lentillifera attenuated cardiovascular and metabolic symptoms of metabolic syndrome in rats, possibly by preventing infiltration of inflammatory cells together with modulating gut microbiota.
Collapse
|
23
|
Er(OTf)3-catalyzed approach to 3-alkenylindoles through regioselective addition of ynamides and indoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Abdelrheem DA, Ahmed SA, Abd El-Mageed HR, Mohamed HS, Rahman AA, Elsayed KNM, Ahmed SA. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1373-1386. [PMID: 32998618 PMCID: PMC7544954 DOI: 10.1080/10934529.2020.1826192] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/24/2023]
Abstract
This work aimed at evaluating the inhibitory effect of ten natural bioactive compounds (1-10) as potential inhibitors of SARS-CoV-2-3CL main protease (PDB ID: 6LU7) and SARS-CoV main proteases (PDB IDs: 2GTB and 3TNT) by molecular docking analysis. The inhibitory effect of all studied compounds was studied with compared to some proposed antiviral drugs which currently used in COVID-19 treatment such as chloroquine, hydroxychloroquine, azithromycin, remdesivir, baloxvir, lopinavir, and favipiravir. Homology modeling and sequence alignment was computed to evaluate the similarity between the SARS-CoV-2-3CL main protease and other SARS-CoV receptors. ADMET properties of all studied compounds were computed and reported. Also, molecular dynamic (MD) simulation was performed on the compound which has the highest binding affinity inside 6LU7 obtained from molecular docking analysis to study it is stability inside receptor in explicit water solvent. Based on molecular docking analysis, we found that caulerpin has the highest binding affinity inside all studied receptors compared to other bioactive compounds and studied drugs. Our homology modeling and sequence alignment showed that SARS-CoV main protease (PDB ID: 3TNT) shares high similarity with 3CLpro (96.00%). Also, ADMET properties confirmed that caulerpin obeys Lipinski's rule and passes ADMET property, which make it a promising compound to act as a new safe natural drug against SARS-CoV-2-3CL main protease. Finally, MD simulation confirmed that the complex formed between caulerpin and 3CLpro is stable in water explicit and had no major effect on the flexibility of the protein throughout the simulations and provided a suitable basis for our study. Also, binding free energy between caulerpin and 6LU7 confirmed the efficacy of the caulerpin molecule against SARS-CoV-2 main protease. So, this study suggested that caulerpin could be used as a potential candidate in COVID-19 treatment.
Collapse
Affiliation(s)
- Doaa A. Abdelrheem
- Department of Chemistry, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| | - Shimaa A. Ahmed
- Department of Chemistry, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| | - H. R. Abd El-Mageed
- Micro-Analysis and Environmental Research and
Community Services Center, Faculty of Science, Beni-Suef University,
Beni-Suef, Egypt
| | - Hussein S. Mohamed
- Research Institute of Medicinal and Aromatic
Plants (RIMAP), Beni-Suef University, Beni-Suef,
Egypt
| | - Aziz A. Rahman
- Department of Pharmacy, University of
Rajshahi, Rajshahi, Bangladesh
| | - Khaled N. M. Elsayed
- Department of Botany, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| | - Sayed A. Ahmed
- Department of Chemistry, Faculty of Science,
Beni-Suef University, Beni-Suef,
Egypt
| |
Collapse
|
25
|
Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta. Mar Drugs 2020; 18:md18100493. [PMID: 32993146 PMCID: PMC7601752 DOI: 10.3390/md18100493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
For a long time, algal chemistry from terrestrial to marine or freshwater bodies, especially chlorophytes, has fascinated numerous investigators to develop new drugs in the nutraceutical and pharmaceutical industries. As such, chlorophytes comprise a diverse structural class of secondary metabolites, having functional groups that are specific to a particular source. All bioactive compounds of chlorophyte are of great interest due to their supplemental/nutritional/pharmacological activities. In this review, a detailed description of the chemical diversity of compounds encompassing alkaloids, terpenes, steroids, fatty acids and glycerides, their subclasses and their structures are discussed. These promising natural products have efficiency in developing new drugs necessary in the treatment of various deadly pathologies (cancer, HIV, SARS-CoV-2, several inflammations, etc.). Marine chlorophyte, therefore, is portrayed as a pivotal treasure in the case of drugs having marine provenience. It is a domain of research expected to probe novel pharmaceutically or nutraceutically important secondary metabolites resulting from marine Chlorophyta. In this regard, our review aims to compile the isolated secondary metabolites having diverse chemical structures from chlorophytes (like Caulerpa ssp., Ulva ssp., Tydemania ssp., Penicillus ssp., Codium ssp., Capsosiphon ssp., Avrainvillea ssp.), their biological properties, applications and possible mode of action.
Collapse
|
26
|
Landi S, Esposito S. Bioinformatic Characterization of Sulfotransferase Provides New Insights for the Exploitation of Sulfated Polysaccharides in Caulerpa. Int J Mol Sci 2020; 21:ijms21186681. [PMID: 32932673 PMCID: PMC7554865 DOI: 10.3390/ijms21186681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Caulerpa is an unusual algal genus from Caulerpaceae (Chlorophyta, Bryopsidales). Species from this family produce a wide range of metabolites suitable for biotechnology applications. Among these, sulfated polysaccharides (SPs) are often highly desirable for pharmaceutical and nutraceutical applications. Here, we provide a classification of sulfotransferases from Caulerpa; these important enzymes catalyze the nodal step for the biosynthesis of SPs. For this, we performed phylogenetic, genomic, expression analyses and prediction of the protein structure on sulfotransferases from Caulerpa. Sequences, domains and structures of sulfotransferases generally shared common characteristics with other plants and algae. However, we found an extensive duplication of sulfotransferase gene family, which is unique among the green algae. Expression analysis revealed specific transcript abundance in the pinnae and rachis of the alga. The unique genomic features could be utilized for the production of complex SPs, which require multiple and specific sulfation reactions. The expansion of this gene family in Caulerpaceae would have resulted in a number of proteins characterizing the unique SPs found in these algae. We provide a putative biosynthetic pathway of SPs, indicating the unique characteristics of this pathway in Caulerpa species. These data may help in the future selection of Caulerpa species for both commercial applications and genetic studies to improve the synthesis of valuable products from Caulerpa.
Collapse
|
27
|
Eldehna WM, Hassan GS, Al-Rashood ST, Alkahtani HM, A. Almehizia A, Al-Ansary GH. Marine-Inspired Bis-indoles Possessing Antiproliferative Activity against Breast Cancer; Design, Synthesis, and Biological Evaluation. Mar Drugs 2020; 18:E190. [PMID: 32252280 PMCID: PMC7230731 DOI: 10.3390/md18040190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022] Open
Abstract
Diverse indoles and bis-indoles extracted from marine sources have been identified as promising anticancer leads. Herein, we designed and synthesized novel bis-indole series 7a-f and 9a-h as Topsentin and Nortopsentin analogs. Our design is based on replacing the heterocyclic spacer in the natural leads by a more flexible hydrazide linker while sparing the two peripheral indole rings. All the synthesized bis-indoles were examined for their antiproliferative action against human breast cancer (MCF-7 and MDA-MB-231) cell lines. The most potent congeners 7e and 9a against MCF-7 cells (IC50 = 0.44 ± 0.01 and 1.28 ± 0.04 μM, respectively) induced apoptosis in MCF-7 cells (23.7-, and 16.8-fold increase in the total apoptosis percentage) as evident by the externalization of plasma membrane phosphatidylserine detected by Annexin V-FITC/PI assay. This evidence was supported by the Bax/Bcl-2 ratio augmentation (18.65- and 11.1-fold compared to control) with a concomitant increase in the level of caspase-3 (11.7- and 9.5-fold) and p53 (15.4- and 11.75-fold). Both compounds arrested the cell cycle mainly in the G2/M phase. Furthermore, 7e and 9a displayed good selectivity toward tumor cells (S.I. = 38.7 and 18.3), upon testing of their cytotoxicity toward non-tumorigenic breast MCF-10A cells. Finally, compounds 7a, 7b, 7d, 7e, and 9a were examined for their plausible CDK2 inhibitory action. The obtained results (% inhibition range: 16%-58%) unveiled incompetence of the target bis-indoles to inhibit CDK2 significantly. Collectively, these results suggested that herein reported bis-indoles are good lead compounds for further optimization and development as potential efficient anti-breast cancer drugs.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| | - Ghada S. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Ghada H. Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo P.O. Box 11566, Egypt;
- Department of Pharmaceutical Chemistry, Pharmacy Program, Batterejee Medical College, Jeddah P.O. Box 6231, Saudi Arabia
| |
Collapse
|
28
|
Kawde AN, Taha M, Alansari RS, Almandil NB, Anouar EH, Uddin N, Rahim F, Chigurupati S, Nawaz M, Hayat S, Ibrahim M, Elakurthy PK, Vijayan V, Morsy M, Ibrahim H, Baig N, Khan KM. Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. Int J Biol Macromol 2020; 154:217-232. [PMID: 32173438 DOI: 10.1016/j.ijbiomac.2020.03.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
α-Glucosidase and α-amylase are enzymes which are associated with diabetic II. These enzymes break macromolecules of sugar into monosugar molecules which is soluble in body, hence increase the sugar level in blood. There is need to develop economical and save inhibitors to prevent them from breaking sugar macromolecules to soluble molecules which will control the level of sugar in blood. Therefore, we synthesized indole-based derivatives (1-18) and evaluated as dual inhibitor for α-glucosidase and α-amylase. These chemical scaffolds were built with variation in aryl ring which were found active with good to moderate activity for α-glucosidase having IC50 value ranging from 13.99 ± 0.10 to 59.09 ± 0.30 μM when compared with standard acarbose with IC50 of 11.29 ± 0.10 μM; for α-amylase IC50 value ranging from 13.14 ± 0.10 to 58.99 ± 0.30 μM when compared with the standard acarbose with IC50 of 11.12 ± 0.10 μM. Structure activity relationship (SAR) has been established for all compounds. Enzymatic kinetic study and molecular docking study have been carried out to investigate the binding interactions α-glucosidase and α-amylase enzyme.
Collapse
Affiliation(s)
- Abdel-Nasser Kawde
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Raneem Saud Alansari
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noor Barak Almandil
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nizam Uddin
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shawkat Hayat
- Department of Chemistry, Hazara University, Mansehra 21300, Khyber Pakhtunkhwa, Pakistan
| | - Mohamad Ibrahim
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | | | | | - Mohamed Morsy
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hossieny Ibrahim
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Nadeem Baig
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
29
|
Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Mar Drugs 2020; 18:md18030147. [PMID: 32121638 PMCID: PMC7142576 DOI: 10.3390/md18030147] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Alkaloids are nitrogenous compounds with various biological activities. Alkaloids with anti-inflammatory activity are commonly found in terrestrial plants, but there are few records of the identification and characterization of the activity of these compounds in marine organisms such as fungi, bacteria, sponges, ascidians, and cnidarians. Seaweed are a source of several already elucidated bioactive compounds, but few studies have described and characterized the activity of seaweed alkaloids with anti-inflammatory properties. In this review, we have gathered the current knowledge about marine alkaloids with anti-inflammatory activity and suggest future perspectives for the study and bioprospecting of these compounds.
Collapse
Affiliation(s)
| | | | - Janeusa T. Souto
- Correspondence: ; Tel.: +55-84-99908-7027; Fax: +55-84-3215-3311
| |
Collapse
|
30
|
Chen X, Qiu G, Liu R, Chen D, Chen Z. Divergent oriented synthesis (DOS) of aza-heterocyclic amides through palladium-catalyzed ketenimination of 2-iodo-N-(propa-1,2-dien-1-yl)anilines. Org Chem Front 2020. [DOI: 10.1039/c9qo01451a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A palladium-catalyzed tandem reaction of N-(2-iodophenyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide with isocyanide is described to divergently produce aza-heterocyclic amides.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Renzhi Liu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Dianpeng Chen
- Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| |
Collapse
|
31
|
Wei HZ, Yu LZ, Shi M. Lewis or Brønsted acid-catalysed reaction of propargylic alcohol-tethered alkylidenecyclopropanes with indoles and pyrroles for the preparation of polycyclic compounds tethered with indole or pyrrole motif. Org Biomol Chem 2020; 18:135-139. [DOI: 10.1039/c9ob02211b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a facile synthetic method to access the cyclopenta[b]naphthalene skeleton from Lewis or Brønsted acid-catalysed propargylic alcohol-tethered alkylidenecyclopropanes with indole and pyrrole derivatives.
Collapse
Affiliation(s)
- Hao-Zhao Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Liu-Zhu Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
32
|
Shi M, Cheng T, Zou H, Zhang N, Huang J, Xian M. The Preparation and Biomedical Application of Biopolyesters. Mini Rev Med Chem 2019; 20:331-340. [PMID: 31644401 DOI: 10.2174/1389557519666191015211156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022]
Abstract
Biopolyesters represent a large family that can be obtained by polymerization of variable bio-derived hydroxyalkanoic acids. The monomer composition, molecular weight of the biopolyesters can affect the properties and applications of the polyesters. The majority of biopolyesters can either be biosynthesized from natural biofeedstocks or semi-synthesized (biopreparation of monomers followed by the chemical polymerization of the monomers). With the fast development of synthetic biology and biosynthesis techniques, the biosynthesis of unnatural biopolyesters (like lactate containing and aromatic biopolyesters) with improved performance and function has been a tendency. The presence of novel preparation methods, novel monomer composition has also significantly affected the properties, functions and applications of the biopolyesters. Due to the properties of biodegradability and biocompatibility, biopolyesters have great potential in biomedical applications (as implanting or covering biomaterials, drug carriers). Moreover, biopolyesters can be fused with other functional ingredients to achieve novel applications or improved functions. This study summarizes and compares the updated preparation methods of representative biopolyesters, also introduces the current status and future trends of their applications in biomedical fields.
Collapse
Affiliation(s)
- Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,Department of Chemical and Biological Engineering, Sir Robert Hadfield Building, The University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Tao Cheng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.,State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Nan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingling Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
33
|
Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity. Mar Drugs 2018; 16:md16110410. [PMID: 30373208 PMCID: PMC6266495 DOI: 10.3390/md16110410] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
Isolation, finding or discovery of novel anticancer agents is very important for cancer treatment, and seaweeds are one of the largest producers of chemically active metabolites with valuable cytotoxic properties, and therefore can be used as new chemotherapeutic agents or source of inspiration to develop new ones. Identification of the more potent and selective anticancer components isolated from brown, green and red seaweeds, as well as studies of their mode of action is very attractive and constitute a small but relevant progress for pharmacological applications. Several researchers have carried out in vitro and in vivo studies in various cell lines and have disclosed the active metabolites among the terpenoids, including carotenoids, polyphenols and alkaloids that can be found in seaweeds. In this review the type of metabolites and their cytotoxic or antiproliferative effects will be discussed additionally their mode of action, structure-activity relationship and selectivity will also be revealed. The diterpene dictyolactone, the sterol cholest-5-en-3β,7α-diol and the halogenated monoterpene halomon are among the reported compounds, the ones that present sub-micromolar cytotoxicity. Additionally, one dimeric sesquiterpene of the cyclolaurane-type, three bromophenols and one halogenated monoterpene should be emphasized because they exhibit half maximal inhibitory concentration (IC50) values between 1–5 µM against several cell lines.
Collapse
|