1
|
Feng L, Shi L, Lu YF, Wang B, Tang T, Fu WM, He W, Li G, Zhang JF. Linc-ROR Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Functioning as a Competing Endogenous RNA for miR-138 and miR-145. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 11:345-353. [PMID: 29858070 PMCID: PMC5992460 DOI: 10.1016/j.omtn.2018.03.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs (lncRNAs), which serve as important and powerful regulators of various biological activities, have gained widespread attention in recent years. Emerging evidence has shown that some lncRNAs play important regulatory roles in osteoblast differentiation of mesenchymal stem cells (MSCs), suggesting a potential therapeutic strategy for bone fracture. As a recently identified lncRNA, linc-ROR was reported to mediate the reprogramming ability of differentiated cells into induced pluripotent stem cells (iPSCs) and human embryonic stem cells (ESCs) self-renewal. However, other functions of linc-ROR remain elusive. In this study, linc-ROR was found to be upregulated during osteogenesis of human bone-marrow-derived MSCs. Ectopic expression of linc-ROR significantly accelerated, whereas knockdown of linc-ROR suppressed, osteoblast differentiation. Using bioinformatic prediction and luciferase reporter assays, we demonstrated that linc-ROR functioned as a microRNA (miRNA) sponge for miR-138 and miR-145, both of which were negative regulators of osteogenesis. Further investigations revealed that linc-ROR antagonized the functions of these two miRNAs and led to the de-repression of their shared target ZEB2, which eventually activated Wnt/β-catenin pathway and hence potentiated osteogenesis. Taken together, linc-ROR modulated osteoblast differentiation by acting as a competing endogenous RNA (ceRNA), which may shed light on the functional characterization of lncRNAs in coordinating osteogenesis.
Collapse
Affiliation(s)
- Lu Feng
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Liu Shi
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Ying-Fei Lu
- Central Laboratory, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wei-Ming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei He
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Chen YM, Li H, Fan Y, Zhang QJ, Li X, Wu LJ, Chen ZJ, Zhu C, Qian LM. Identification of differentially expressed lncRNAs involved in transient regeneration of the neonatal C57BL/6J mouse heart by next-generation high-throughput RNA sequencing. Oncotarget 2018; 8:28052-28062. [PMID: 28427208 PMCID: PMC5438630 DOI: 10.18632/oncotarget.15887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/20/2017] [Indexed: 02/01/2023] Open
Abstract
Previous studies have shown that mammalian cardiac tissue has a regenerative capacity. Remarkably, neonatal mice can regenerate their cardiac tissue for up to 6 days after birth, but this capacity is lost by day 7. In this study, we aimed to explore the expression pattern of long noncoding RNA (lncRNA) during this period and examine the mechanisms underlying this process. We found that 685 lncRNAs and 1833 mRNAs were differentially expressed at P1 and P7 by the next-generation high-throughput RNA sequencing. The coding genes associated with differentially expressed lncRNAs were mainly involved in metabolic processes and cell proliferation, and also were potentially associated with several key regeneration signalling pathways, including PI3K-Akt, MAPK, Hippo and Wnt. In addition, we identified some correlated targets of highly-dysregulated lncRNAs such as Igfbp3, Trnp1, Itgb6, and Pim3 by the coding-noncoding gene co-expression network. These data may offer a reference resource for further investigation about the mechanisms by which lncRNAs regulate cardiac regeneration.
Collapse
Affiliation(s)
- Yu-Mei Chen
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hua Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yi Fan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qi-Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Xing Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Li-Jie Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Zi-Jie Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Chun Zhu
- Department of Pediatrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P. R. China
| | - Ling-Mei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| |
Collapse
|
3
|
Zhou J, Xiang W, Li S, Hu Q, Peng T, Chen L, Ming Y. Association between long non-coding RNAs expression and pathogenesis and progression of gliomas. Oncol Lett 2018. [PMID: 29541171 PMCID: PMC5835862 DOI: 10.3892/ol.2018.7875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The incidence rate of gliomas is the highest among primary brain tumors. Although the understanding of the molecular pathology of glioma has improved during the previous two decades, effective therapies are not yet available to treat these tumors. Previous studies have indicated that long non-coding RNAs (lncRNAs) have a close association with glioma, suggesting that lncRNAs may be potential targets for the development of novel treatments for glioma. The present review summarized the latest studies on the dysregulation of lncRNAs in glioma, and discussed their potential use in the diagnosis, prognosis and therapies of glioma. The emergence of lncRNAs has revealed an additional facet to glioma oncogenesis. An improved understanding of their functions is important to advance lncRNA-based diagnosis, prognosis and therapeutic interventions of glioma.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shenjie Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Hu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
4
|
Han D, Gao Q, Cao F. Long noncoding RNAs (LncRNAs) - The dawning of a new treatment for cardiac hypertrophy and heart failure. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2078-2084. [PMID: 28259753 DOI: 10.1016/j.bbadis.2017.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) represent a category of noncoding RNAs with the potential for genetic and epigenetic regulations. As important regulators of gene expression, increasing evidence has proven that lncRNAs play a significant regulatory role in various cardiovascular pathologies. In particular, lncRNAs have been proved to be participating in gene regulatory mechanisms involved in heart growth and development that can be exploited to repair the injured adult heart. Furthermore, lncRNAs have been revealed as possible therapeutic targets for heart failure with different causes and in different stages. In the journey from a healthy heart to heart failure, lncRNAs have been shown to participate in almost every landmark of heart failure pathogenesis including ischemic injury, cardiac hypertrophy, and cardiac fibrosis. Furthermore, the manipulation of lncRNAs palliates the progression of heart failure by attenuating ischemic heart injury, cardiac hypertrophy and cardiac fibrosis, as well as facilitating heart regeneration and therapeutic angiogenesis. This review will highlight recent updates regarding the involvement of lncRNAs in cardiac hypertrophy and heart failure and their potential as novel therapeutic targets. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Dong Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Quansheng Gao
- Laboratory of the Animal Center, Academy of Military Medical Sciences, Beijing 100850, China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
5
|
Han Y, Xu H, Cheng J, Zhang Y, Gao C, Fan T, Peng B, Li B, Liu L, Cheng Z. Downregulation of long non-coding RNA H19 promotes P19CL6 cells proliferation and inhibits apoptosis during late-stage cardiac differentiation via miR-19b-modulated Sox6. Cell Biosci 2016; 6:58. [PMID: 27895893 PMCID: PMC5120414 DOI: 10.1186/s13578-016-0123-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Background Regulating cardiac differentiation to maintain normal heart development and function is very important. At present, biological functions of H19 in cardiac differentiation is not completely clear. Methods To explore the functional effect of H19 during cardiac differentiation. Expression levels of early cardiac-specific markers Nkx-2.5 and GATA4, cardiac contractile protein genes α-MHC and MLC-2v were determined by qRT-PCR and western lot. The levels of lncRNA H19 and miR-19b were detected by qRT-PCR. We further predicted the binding sequence of H19 and miR-19b by online softwares starBase v2.0 and TargetScan. The biological functions of H19 and Sox6 were evaluated by CCK-8 kit, cell cycle and apoptosis assay and caspase-3 activity. Results The expression levels of α-MHC, MLC-2v and H19 were upregulated, and miR-19b was downregulated significantly in mouse P19CL6 cells at the late stage of cardiac differentiation. Biological function analysis showed that knockdown of H19 promoted cell proliferation and inhibits cell apoptosis. H19 suppressed miR-19b expression and miR-19b targeted Sox6, which inhibited cell proliferation and promoted apoptosis in P19CL6 cells during late-stage cardiac differentiation. Importantly, Sox6 overexpression could reverse the positive effects of H19 knockdown on P19CL6 cells. Conclusion Downregulation of H19 promoted cell proliferation and inhibited cell apoptosis during late-stage cardiac differentiation by regulating the negative role of miR-19b in Sox6 expression, which suggested that the manipulation of H19 expression could serve as a potential strategy for heart disease.
Collapse
Affiliation(s)
- Yu Han
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Hongdang Xu
- Department of Cardiology, Henan Province People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Jiangtao Cheng
- Department of Cardiology, Henan Province People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Yanwei Zhang
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Chuanyu Gao
- Department of Cardiology, Henan Province People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Taibing Fan
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Bangtian Peng
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Bin Li
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Lin Liu
- Department of Ultrasonography, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, Henan Province People's Hospital, Zhengzhou, 450003 China
| |
Collapse
|
6
|
Hou J, Zhou C, Long H, Zheng S, Guo T, Wu Q, Wu H, Zhong T, Wang T. Long noncoding RNAs: Novel molecules in cardiovascular biology, disease and regeneration. Exp Mol Pathol 2016; 100:493-501. [PMID: 27180105 DOI: 10.1016/j.yexmp.2016.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
Remarkable breakthroughs made in genomic technologies have facilitated the discovery of thousands of novel transcripts that do not template protein synthesis. Numerous RNAs termed as long noncoding RNAs (lncRNAs) generated from this pervasive transcription function vividly in gene regulatory networks and a variety of biological and cellular processes. Here, we make a brief description of the known and putative functions of lncRNAs in cardiovascular biology and disease. The association between lncRNAs and stem cells mediated cardiomyocytes differentiation and neovascularization is discussed then. It will provide a new clue for further studies on these novel molecules in cardiovascular disease and bring bright prospects for their future applications in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Tao L, Bei Y, Zhou Y, Xiao J, Li X. Non-coding RNAs in cardiac regeneration. Oncotarget 2015; 6:42613-22. [PMID: 26462179 PMCID: PMC4767457 DOI: 10.18632/oncotarget.6073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Developing new therapeutic strategies which could enhance cardiomyocyte regenerative capacity is of significant clinical importance. Though promising, methods to promote cardiac regeneration have had limited success due to the weak regenerative capacity of the adult mammalian heart. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs) and long non-coding RNAs (lncRNAs), are functional RNA molecules without a protein coding function that have been reported to engage in cardiac regeneration and repair. In light of current regenerative strategies, the regulatory effects of ncRNAs can be categorized as follows: cardiac proliferation, cardiac differentiation, cardiac survival and cardiac reprogramming. miR-590, miR-199a, miR-17-92 cluster, miR302-367 cluster and miR-222 have been reported to promote cardiomyocyte proliferation while miR-1 and miR-133 suppress that. miR-499 and miR-1 promote the differentiation of cardiac progenitors into cardiomyocyte while miR-133 and H19 inhibit that. miR-21, miR-24, miR-221, miR-199a and miR-155 improve cardiac survival while miR-34a, miR-1 and miR-320 exhibit opposite effects. miR-1, miR-133, miR-208 and miR-499 are capable of reprogramming fibroblasts to cardiomyocyte-like cells and miR-284, miR-302, miR-93 , miR-106b and lncRNA-ST8SIA3 are able to enhace cardiac reprogramming. Exploring non-coding RNA-based methods to enhance cardiac regeneration would be instrumental for devising new effective therapies against cardiovascular diseases.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Long Non-Coding RNAs: The Key Players in Glioma Pathogenesis. Cancers (Basel) 2015; 7:1406-24. [PMID: 26230711 PMCID: PMC4586776 DOI: 10.3390/cancers7030843] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) represent a novel class of RNAs with no functional protein-coding ability, yet it has become increasingly clear that interactions between lncRNAs with other molecules are responsible for important gene regulatory functions in various contexts. Given their relatively high expressions in the brain, lncRNAs are now thought to play important roles in normal brain development as well as diverse disease processes including gliomagenesis. Intriguingly, certain lncRNAs are closely associated with the initiation, differentiation, progression, recurrence and stem-like characteristics in glioma, and may therefore be exploited for the purposes of sub-classification, diagnosis and prognosis. LncRNAs may also serve as potential therapeutic targets as well as a novel biomarkers in the treatment of glioma. In this article, the functional aspects of lncRNAs, particularly within the central nervous system (CNS), will be briefly discussed, followed by highlights of the important roles of lncRNAs in mediating critical steps during glioma development. In addition, the key lncRNA players and their possible mechanistic pathways associated with gliomagenesis will be addressed.
Collapse
|
9
|
Zhang X, Kiang KM, Zhang GP, Leung GK. Long Non-Coding RNAs Dysregulation and Function in Glioblastoma Stem Cells. Noncoding RNA 2015; 1:69-86. [PMID: 29861416 PMCID: PMC5932540 DOI: 10.3390/ncrna1010069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/28/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common form of primary brain tumor, is highly resistant to current treatment paradigms and has a high rate of recurrence. Recent advances in the field of tumor-initiating cells suggest that glioblastoma stem cells (GSCs) may be responsible for GBM's rapid progression, treatment resistance, tumor recurrence and ultimately poor clinical prognosis. Understanding the biologically significant pathways that mediate GSC-specific characteristics offers promises in the development of novel biomarkers and therapeutics. Long non-coding RNAs (lncRNAs) have been increasingly implicated in the regulation of cancer cell biological behavior through various mechanisms. Initial studies strongly suggested that lncRNA expressions are highly dysregulated in GSCs and may play important roles in determining malignant phenotypes in GBM. Here, we review available evidence on aberrantly expressed lncRNAs identified by high throughput microarray profiling studies in GSCs. We also explore the potential functional pathways by analyzing their interactive proteins and miRNAs, with a view to shed lights on how this novel class of molecular candidates may mediate GSC maintenance and differentiation.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Karrie Meiyee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Grace Pingde Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Gilberto Kakit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Yu Y, Gao Q, Zhao HC, Li R, Gao JM, Ding T, Bao SY, Zhao Y, Sun XF, Fan Y, Qiao J. Ascorbic acid improves pluripotency of human parthenogenetic embryonic stem cells through modifying imprinted gene expression in the Dlk1-Dio3 region. Stem Cell Res Ther 2015; 6:69. [PMID: 25879223 PMCID: PMC4425892 DOI: 10.1186/s13287-015-0054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 10/29/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Human parthenogenetic embryonic stem cells (hpESCs) are generated from artificially activated oocytes, however, the issue of whether hpESCs have equivalent differentiation ability to human fertilized embryonic stem cells remains controversial. Methods hpESCs were injected into male severe combined immunodeficiency (SCID) mice and the efficiency of teratoma formation was calculated. Then the gene expression and methylation modification were detected by real time-PCR and bisulfate methods. Results Comparison of five hpESCs with different differentiation abilities revealed that levels of paternal genes in the Dlk1-Dio3 region on chromosome 14 in the hpESCs with high differentiation potential are enhanced, but strictly methylated and silenced in the hpESCs with lower differentiation potential. Treatment with ascorbic acid, rescued their ability to support teratoma formation and altered the expression profiles of paternally expressed genes in hpESCs that could not form teratoma easily. No differences in the expression of other imprinting genes were evident between hpESCs with higher and lower differentiation potential, except for those in the Dlk1-Dio3 region. Conclusions The Dlk1-Dio3 imprinting gene cluster distinguishes the differentiation ability of hpESCs. Moreover, modification by ascorbic acid may facilitate application of hpESCs to clinical settings in the future by enhancing their pluripotency. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0054-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Qian Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Hong-cui Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Rong Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jiang-man Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Ting Ding
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Si-yu Bao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Xiao-fang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
11
|
Bauderlique-Le Roy H, Vennin C, Brocqueville G, Spruyt N, Adriaenssens E, Bourette RP. Enrichment of Human Stem-Like Prostate Cells with s-SHIP Promoter Activity Uncovers a Role in Stemness for the Long Noncoding RNA H19. Stem Cells Dev 2015; 24:1252-62. [PMID: 25567531 DOI: 10.1089/scd.2014.0386] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding normal and cancer stem cells should provide insights into the origin of prostate cancer and their mechanisms of resistance to current treatment strategies. In this study, we isolated and characterized stem-like cells present in the immortalized human prostate cell line, RWPE-1. We used a reporter system with green fluorescent protein (GFP) driven by the promoter of s-SHIP (for stem-SH2-domain-containing 5'-inositol phosphatase) whose stem cell-specific expression has been previously shown. We observed that s-SHIP-GFP-expressing RWPE-1 cells showed stem cell characteristics such as increased expression of stem cell surface markers (CD44, CD166, TROP2) and pluripotency transcription factors (Oct4, Sox2), and enhanced sphere-forming capacity and resistance to arsenite-induced cell death. Concomitant increased expression of the long noncoding RNA H19 was observed, which prompted us to investigate a putative role in stemness for this oncofetal gene. Targeted suppression of H19 with siRNA decreased Oct4 and Sox2 gene expression and colony-forming potential in RWPE-1 cells. Conversely, overexpression of H19 significantly increased gene expression of these two transcription factors and the sphere-forming capacity of RWPE-1 cells. Analysis of H19 expression in various prostate and mammary human cell lines revealed similarities with Sox2 expression, suggesting that a functional relationship may exist between H19 and Sox2. Collectively, we provide the first evidence that s-SHIP-GFP promoter reporter offers a unique marker for the enrichment of human stem-like cell populations and highlight a role in stemness for the long noncoding RNA H19.
Collapse
Affiliation(s)
- Hélène Bauderlique-Le Roy
- 1 UMR 8161 CNRS, Institut de Biologie de Lille, SIRIC ONCOLille, Institut Pasteur de Lille , Lille, France
| | | | | | | | | | | |
Collapse
|