1
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Bellanger T, da Silva Barreira D, Wien F, Delarue P, Senet P, Rieu A, Neiers F, Varela PF, Combet S, Weidmann S. Significant influence of four highly conserved amino-acids in lipochaperon-active sHsps on the structure and functions of the Lo18 protein. Sci Rep 2023; 13:19036. [PMID: 37923897 PMCID: PMC10624808 DOI: 10.1038/s41598-023-46306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
To cope with environmental stresses, bacteria have developed different strategies, including the production of small heat shock proteins (sHSP). All sHSPs are described for their role as molecular chaperones. Some of them, like the Lo18 protein synthesized by Oenococcus oeni, also have the particularity of acting as a lipochaperon to maintain membrane fluidity in its optimal state following cellular stresses. Lipochaperon activity is poorly characterized and very little information is available on the domains or amino-acids key to this activity. The aim in this paper is to investigate the importance at the protein structure and function level of four highly conserved residues in sHSP exhibiting lipochaperon activity. Thus, by combining in silico, in vitro and in vivo approaches the importance of three amino-acids present in the core of the protein was shown to maintain both the structure of Lo18 and its functions.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - David da Silva Barreira
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France
| | - Patrice Delarue
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, 21078, Dijon, France
| | - Patrick Senet
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université de Bourgogne Franche-Comté, 21078, Dijon, France
| | - Aurélie Rieu
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France
| | - Fabrice Neiers
- Laboratory: Flavour Perception: Molecular Mechanisms (Flavours), INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, 21000, Dijon, France
| | - Paloma Fernández Varela
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette CEDEX, France
| | - Stéphanie Weidmann
- Procédés Alimentaires et Microbiologiques (PAM), AgroSup Dijon, PAM UMR A 02.102, Laboratoire VAlMiS-IUVV, Dijon, France.
| |
Collapse
|
3
|
Bellanger T, Weidmann S. Is the lipochaperone activity of sHSP a key to the stress response encoded in its primary sequence? Cell Stress Chaperones 2023; 28:21-33. [PMID: 36367671 PMCID: PMC9877275 DOI: 10.1007/s12192-022-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Several strategies have been put in place by organisms to adapt to their environment. One of these strategies is the production of stress proteins such as sHSPs, which have been widely described over the last 30 years for their role as molecular chaperones. Some sHSPs have, in addition, the particularity to exert a lipochaperone role by interacting with membrane lipids to maintain an optimal membrane fluidity. However, the mechanisms involved in this sHSP-lipid interaction remain poorly understood and described rather sporadically in the literature. This review gathers the information concerning the structure and function of these proteins available in the literature in order to highlight the mechanism involved in this interaction. In addition, analysis of primary sequence data of sHSPs available in database shows that sHSPs can interact with lipids via certain amino acid residues present on some β sheets of these proteins. These residues could have a key role in the structure and/or oligomerization dynamics of sHPSs, which is certainly essential for interaction with membrane lipids and consequently for maintaining optimal cell membrane fluidity.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Stéphanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
4
|
Zeng J, He SL, Li LJ, Wang C. Hsp90 up-regulates PD-L1 to promote HPV-positive cervical cancer via HER2/PI3K/AKT pathway. Mol Med 2021; 27:130. [PMID: 34666670 PMCID: PMC8524852 DOI: 10.1186/s10020-021-00384-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND HPV16 is the predominant cancer-causing strain that is responsible for over 50% of all cervical cancers. In this study, we aim to investigate the therapeutic effect of heat shock protein 90 (Hsp90) knockdown on HPV16+ cervical cancer progression and the underlying mechanism. METHODS The transcript and protein expression of Hsp90 in normal cervical and HPV16+ cervical cancer tissues and cell lines were detected by qRT-PCR, immunohistochemistry staining and Western blot. Hsp90 knockdown clones were established using HPV16+ cervical cancer cell line Caski and SiHa cells. The effect of Hsp90 knockdown on HER2/PI3K/AKT pathway and PD-L1 expression was characterized using qRT-PCR and Western blot analysis. Cell proliferation and migration were determined using MTT and transwell assays. Using mouse xenograft tumor model, the impact of Hsp90 knockdown and PD-L1 overexpression on tumor progression was evaluated. RESULTS Hsp90 expression was up-regulated in HPV16+ cervical cancer tissues and cells. Knockdown of Hsp90 inhibited proliferation and migration of Caski and SiHa cells. PD-L1 expression in cervical cancer tissues was positively correlated with Hsp90 expression, and Hsp90 regulated PD-L1 expression via HER2/PI3K/AKT signaling pathway. The results of mouse xenograft tumor model demonstrated Hsp90 knockdown suppressed tumor formation and overexpression of PD-L1 simultaneously eliminated the cancer-suppressive effect of Hsp90 knockdown. CONCLUSION In this study, we demonstrated a promising tumor-suppressive effect of Hsp90 knockdown in HPV16+ cervical cancers, and investigated the underlying molecular pathway. Our results suggested that Hsp90 knockdown holds great therapeutic potential in treating HPV16+ cervical cancers.
Collapse
Affiliation(s)
- Jie Zeng
- Pharmacy Intravenous Admixture Services, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Si-Li He
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan Province, People's Republic of China
| | - Li-Jie Li
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan Province, People's Republic of China
| | - Chen Wang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
5
|
Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:301326. [PMID: 26167482 PMCID: PMC4488524 DOI: 10.1155/2015/301326] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.
Collapse
|