1
|
Gunkel P, Iino H, Krull S, Cordes VC. An evolutionarily conserved bimodular domain anchors ZC3HC1 and its yeast homologue Pml39p to the nuclear basket. Mol Biol Cell 2023; 34:ar40. [PMID: 36857168 PMCID: PMC10162418 DOI: 10.1091/mbc.e22-09-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The proteins ZC3HC1 and TPR are structural components of the nuclear basket (NB), a fibrillar structure attached to the nucleoplasmic side of the nuclear pore complex (NPC). ZC3HC1 initially binds to the NB in a TPR-dependent manner and can subsequently recruit additional TPR polypeptides to this structure. Here, we examined the molecular properties of ZC3HC1 that enable its initial binding to the NB and TPR. We report the identification and definition of a nuclear basket-interaction domain (NuBaID) of HsZC3HC1 that comprises two similarly built modules, both essential for binding the NB-resident TPR. We show that such a bimodular construction is evolutionarily conserved, which we further investigated in Dictyostelium discoideum and Saccharomyces cerevisiae. Presenting ScPml39p as the ZC3HC1 homologue in budding yeast, we show that the bimodular NuBaID of Pml39p is essential for binding to the yeast NB and its TPR homologues ScMlp1p and ScMlp2p, and we further demonstrate that Pml39p enables linkage between subpopulations of Mlp1p. We eventually delineate the common NuBaID of the human, amoebic, and yeast homologue as the defining structural entity of a unique protein not found in all but likely present in most taxa of the eukaryotic realm.
Collapse
Affiliation(s)
- Philip Gunkel
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Haruki Iino
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Sandra Krull
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Volker C. Cordes
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Jia T, Ma Y, Qin F, Han F, Zhang C. Brain proteome-wide association study linking-genes in multiple sclerosis pathogenesis. Ann Clin Transl Neurol 2022; 10:58-69. [PMID: 36475386 PMCID: PMC9852387 DOI: 10.1002/acn3.51699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To identify genes that confer MS risk via the alteration of cis-regulated protein abundance and verify their aberrant expression in human brain. METHODS Utilizing a two-stage proteome-wide association study (PWAS) design, MS GWAS data (N = 41,505) was respectively integrated with two distinct human brain proteomes from the dorsolateral prefrontal cortex, including ROSMAP (N = 376) in the discovery stage and Banner (N = 152) in the confirmation stage. In the following, Bayesian colocalization analysis was conducted for GWAS and protein quantitative trait loci signals to prioritize candidate genes. Differential expression analysis was then used to verify the dysregulation of risk genes in white matter and gray matter for evidence at the transcription level. RESULTS A total of 51 genes whose protein abundance had association with the MS risk were identified, of which 18 genes overlapped in the discovery and confirmation PWAS. Bayesian colocalization indicated six causal genes with genetic risk variants for the MS risk. The differential expression analysis of SHMT1 (PFDR = 4.82 × 10-2 ), FAM120B (PFDR = 8.13 × 10-4 ) in white matter and ICA1L (PFDR = 3.44 × 10-2 ) in gray matter confirmed the dysregulation at the transcription level. Further investigation of expression found SHMT1 significantly up-regulated in white matter lesion, and FAM120B up-regulated in both white matter lesion and normal appearing white matter. ICA1L was down-regulated in both gray matter lesion and normal appearing gray matter. INTERPRETATION Dysregulation of SHMT1, FAM120B and ICA1L may confer MS risk. Our findings shed new light on the pathogenesis of MS and prioritized promising targets for future therapy research.
Collapse
Affiliation(s)
- Tingting Jia
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yanni Ma
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Fengqin Qin
- Department of Neurologythe 3rd Affiliated Hospital of Chengdu Medical CollegeChengduSichuanChina
| | - Feng Han
- Department of Emergency MedicineHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Karimi Y, Sehati F, Sarreshtedari A, Mirzad M, Khalili Y, Kiani R, Taheri Bajgan E, Hosseini Moghadam M, Mehrvarz F, Bakhshandeh H, Parham M, Malakootian M, Sadeghipour P. Endothelial nitric oxide synthase Asp298Glu (894G/T) gene polymorphism as a possible risk factor for the coronary slow flow phenomenon among Iranians. BMC Cardiovasc Disord 2022; 22:300. [PMID: 35773625 PMCID: PMC9248196 DOI: 10.1186/s12872-022-02736-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mounting evidence indicates an association between endothelial dysfunction and the coronary slow flow phenomenon (CSFP). In the present study, we aimed to evaluate the possible role of endothelial nitric oxide synthase (eNOS) 894G/T and interleukin-1β (IL-1β) 315C/T polymorphisms as possible risk factors for CSFP. Methods This prospective study enrolled patients with CSFP and individuals with normal coronary arteries. Genotypes were assessed using regular polymerase chain reaction and direct Sanger-sequencing techniques. Results The study population consisted of 267 individuals: 180 patients with CSFP (49 women [27.2%]) at a median age of 55 (48–62) years and 87 controls with normal coronary arteries (56 women [64.4%]) at a median age of 47 (41–58) years. The allelic distribution of eNOS 894G/T was significantly associated with CSFP (odds ratio [OR], 1.58; 95% confidence interval (CI), 1.04–2.42; P = 0.03). This polymorphism increased the risk of CSFP under the dominant model (OR 1.73; 95% CI I.02–2.95; P = 0.04). However, the allelic frequencies (1.05; 95% CI 0.68–1.59; P = 0.83) and genotypic frequencies (0.88; 95% CI 0.52–1.49; P = 0.63) of the IL-1β 315C/T polymorphism were not associated with the incidence of CSFP in the Iranian population. Conclusions The CSFP and control groups were statistically different regarding the eNOS 894G/T polymorphism. Our findings also demonstrated that the IL-1β 315C/T polymorphism was not a risk factor for CSFP. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02736-0.
Collapse
Affiliation(s)
- Yeganeh Karimi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sehati
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sarreshtedari
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Mirzad
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Khalili
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Ave, Niyayesh Blvd, Tehran, 1996911101, Iran
| | - Reza Kiani
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Ave, Niyayesh Blvd, Tehran, 1996911101, Iran
| | - Elham Taheri Bajgan
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Ave, Niyayesh Blvd, Tehran, 1996911101, Iran
| | - Farzaneh Mehrvarz
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hooman Bakhshandeh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Parham
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Ave, Niyayesh Blvd, Tehran, 1996911101, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Ave, Niyayesh Blvd, Tehran, 1996911101, Iran.
| | - Parham Sadeghipour
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Ave, Niyayesh Blvd, Tehran, 1996911101, Iran. .,Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Vali-Asr Ave, Niyayesh Blvd, Tehran, 1996911101, Iran.
| |
Collapse
|
4
|
Ou YN, Yang YX, Deng YT, Zhang C, Hu H, Wu BS, Liu Y, Wang YJ, Zhu Y, Suckling J, Tan L, Yu JT. Identification of novel drug targets for Alzheimer's disease by integrating genetics and proteomes from brain and blood. Mol Psychiatry 2021; 26:6065-6073. [PMID: 34381170 DOI: 10.1038/s41380-021-01251-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Genome-wide association studies (GWASs) have discovered numerous risk genes for Alzheimer's disease (AD), but how these genes confer AD risk is challenging to decipher. To efficiently transform genetic associations into drug targets for AD, we employed an integrative analytical pipeline using proteomes in the brain and blood by systematically applying proteome-wide association study (PWAS), Mendelian randomization (MR) and Bayesian colocalization. Collectively, we identified the brain protein abundance of 7 genes (ACE, ICA1L, TOM1L2, SNX32, EPHX2, CTSH, and RTFDC1) are causal in AD (P < 0.05/proteins identified for PWAS and MR; PPH4 >80% for Bayesian colocalization). The proteins encoded by these genes were mainly expressed on the surface of glutamatergic neurons and astrocytes. Of them, ACE with its protein abundance was also identified in significant association with AD on the blood-based studies and showed significance at the transcriptomic level. SNX32 was also found to be associated with AD at the blood transcriptomic level. Collectively, our current study results on genetic, proteomic, and transcriptomic approaches has identified compelling genes, which may provide important leads to design future functional studies and potential drug targets for AD.
Collapse
Affiliation(s)
- Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Masud R, Khan AUH, Anjum AF, Jawwad G, Azeem Z, Baqai HZ, Hashmi SN. The Connotation of Variances in the Risk Predictors, Medications, Homocysteine, and Homocysteine Pathway Gene Polymorphisms with CVA/Stroke. Glob Med Genet 2020; 7:113-120. [PMID: 33693444 PMCID: PMC7938795 DOI: 10.1055/s-0041-1722884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cerebrovascular accidents (CVAs) are vascular multifactorial, multigenic ailments with intricate genetic, environmental risk influences. The present study aimed to establish affiliation of CVAs/stroke with blood parameters, differences in prescribed drugs consumption, and with differences in homocysteine pathway genes polymorphisms. The participants in study included controls n = 251, transient ischemic attack (TIA) patients n = 16, and stroke cases n = 122, respectively, (total participants, n = 389). The analyzed single nucleotide polymorphisms (SNPs) included C677T(rs1801133), A1298C(rs1801131) of methylene tetrahydrofolate reductase ( MTHFR ), A2756G(rs1805087) of methyl tetrahydrofolate homocysteine methyltransferase/methionine synthase ( MS ), and the A192G(rs662) of paraoxonase 1( PON1 ) genes, all validated by tetra-primer allele refractory mutation system polymerase chain reaction (T-ARMS-PCR). The insertion deletion (I/D; rs4646994) polymorphism in angiotensin converting enzyme ( ACE ) gene was analyzed using routine PCR. All studied traits were scrutinized through analysis of variance (ANOVA), and later through regression analysis. Through ANOVA and multiple comparison, there was association of CVA with serum homocysteine, cholesterol, and with diastolic blood pressure readings. When data was subjected to regression, serum homocysteine and diastolic blood pressure (significant through ANOVA), as well as two additional traits, high-density lipoproteins (HDL), and rs1801133 MTHFR SNP sustained statistical significance and noteworthy odds in relation to CVA and stroke. The ailments affecting cerebral vasculature are mutifactorial, whereby genes, proteins, and environmental cues all exert cumulative effects enhancing CVA risk. The current study emphasizes that SNPs and variation in circulating biomarkers can be used for screening purposes and for reviewing their effects in stroke/CVA-linked risk progression.
Collapse
Affiliation(s)
- Rizwan Masud
- Department of Physiology, CMH Kharian Medical College, Kharian, Pakistan
| | - Aleem Ul Haq Khan
- Department of Biochemistry, CMH Kharian Medical College, Kharian, Pakistan
| | - Aiman Farogh Anjum
- Department of Physiology, CMH Kharian Medical College, Kharian, Pakistan
| | - Ghazala Jawwad
- Department of Physiology, Rawal Institute of Health Sciences, Islamabad, Pakistan
| | - Zahid Azeem
- Department of Biochemistry, AJ&K Medical College, Muzaffarabad, AJ&K, Pakistan
| | | | | |
Collapse
|
6
|
Wolfien M, Klatt D, Salybekov AA, Ii M, Komatsu-Horii M, Gaebel R, Philippou-Massier J, Schrinner E, Akimaru H, Akimaru E, David R, Garbade J, Gummert J, Haverich A, Hennig H, Iwasaki H, Kaminski A, Kawamoto A, Klopsch C, Kowallick JT, Krebs S, Nesteruk J, Reichenspurner H, Ritter C, Stamm C, Tani-Yokoyama A, Blum H, Wolkenhauer O, Schambach A, Asahara T, Steinhoff G. Hematopoietic stem-cell senescence and myocardial repair - Coronary artery disease genotype/phenotype analysis of post-MI myocardial regeneration response induced by CABG/CD133+ bone marrow hematopoietic stem cell treatment in RCT PERFECT Phase 3. EBioMedicine 2020; 57:102862. [PMID: 32629392 PMCID: PMC7339012 DOI: 10.1016/j.ebiom.2020.102862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
Background Bone marrow stem cell clonal dysfunction by somatic mutation is suspected to affect post-infarction myocardial regeneration after coronary bypass surgery (CABG). Methods Transcriptome and variant expression analysis was studied in the phase 3 PERFECT trial post myocardial infarction CABG and CD133+ bone marrow derived hematopoetic stem cells showing difference in left ventricular ejection fraction (∆LVEF) myocardial regeneration Responders (n=14; ∆LVEF +16% day 180/0) and Non-responders (n=9; ∆LVEF -1.1% day 180/0). Subsequently, the findings have been validated in an independent patient cohort (n=14) as well as in two preclinical mouse models investigating SH2B3/LNK antisense or knockout deficient conditions. Findings 1. Clinical: R differed from NR in a total of 161 genes in differential expression (n=23, q<0•05) and 872 genes in coexpression analysis (n=23, q<0•05). Machine Learning clustering analysis revealed distinct RvsNR preoperative gene-expression signatures in peripheral blood acorrelated to SH2B3 (p<0.05). Mutation analysis revealed increased specific variants in RvsNR. (R: 48 genes; NR: 224 genes). 2. Preclinical:SH2B3/LNK-silenced hematopoietic stem cell (HSC) clones displayed significant overgrowth of myeloid and immune cells in bone marrow, peripheral blood, and tissue at day 160 after competitive bone-marrow transplantation into mice. SH2B3/LNK−/− mice demonstrated enhanced cardiac repair through augmenting the kinetics of bone marrow-derived endothelial progenitor cells, increased capillary density in ischemic myocardium, and reduced left ventricular fibrosis with preserved cardiac function. 3. Validation: Evaluation analysis in 14 additional patients revealed 85% RvsNR (12/14 patients) prediction accuracy for the identified biomarker signature. Interpretation Myocardial repair is affected by HSC gene response and somatic mutation. Machine Learning can be utilized to identify and predict pathological HSC response. Funding German Ministry of Research and Education (BMBF): Reference and Translation Center for Cardiac Stem Cell Therapy - FKZ0312138A and FKZ031L0106C, German Ministry of Research and Education (BMBF): Collaborative research center - DFG:SFB738 and Center of Excellence - DFG:EC-REBIRTH), European Social Fonds: ESF/IV-WM-B34-0011/08, ESF/IV-WM-B34-0030/10, and Miltenyi Biotec GmbH, Bergisch-Gladbach, Germany. Japanese Ministry of Health : Health and Labour Sciences Research Grant (H14-trans-001, H17-trans-002) Trial registration ClinicalTrials.gov NCT00950274
Collapse
Affiliation(s)
- Markus Wolfien
- Department of Systems Biology and Bioinformatics, University Rostock, Institute of Computer Science, Ulmenstrasse 69, 18057 Rostock, Germany.
| | - Denise Klatt
- Hannover Medical School, Institute of Experimental Hematology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Amankeldi A Salybekov
- Department of Advanced Medicine Science, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143, Japan
| | - Masaaki Ii
- Nanobridge, LLC. 1-3-5-202, Sawaragi-Nishi Ibaraki Osaka 567-0868, Japan.
| | - Miki Komatsu-Horii
- Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Ralf Gaebel
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Julia Philippou-Massier
- Ludwig-Maximilians-Universität München, LAFUGA Genomics, Gene Center, Feodor-Lynen-Strasse 25, 81377 Muenchen, Germany.
| | - Eric Schrinner
- University Medical Center Goettingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | - Hiroshi Akimaru
- Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Erika Akimaru
- Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Robert David
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Jens Garbade
- Department of Cardiac Surgery, Heart Center University Medicine Leipzig, Strümpellstrasse 39, 04289 Leipzig, Germany.
| | - Jan Gummert
- Heart and diabetes center North Rhine Westfalia, University hospital of the Ruhr university Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany.
| | - Axel Haverich
- Medical school Hannover, Department of heart-, thoracic- and vascular surgery, Carl Neuberg Strasse 1, 30625 Hannover, Germany.
| | - Holger Hennig
- Department of Systems Biology and Bioinformatics, University Rostock, Institute of Computer Science, Ulmenstrasse 69, 18057 Rostock, Germany.
| | - Hiroto Iwasaki
- Department of cardiothoracic surgery, Osaka city university, 1-4-3, Asahimachi, Abeno. Osaka, 545-8585. Japan.
| | - Alexander Kaminski
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Atsuhiko Kawamoto
- Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Christian Klopsch
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Johannes T Kowallick
- University Medical Center Goettingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | - Stefan Krebs
- Ludwig-Maximilians-Universität München, LAFUGA Genomics, Gene Center, Feodor-Lynen-Strasse 25, 81377 Muenchen, Germany.
| | - Julia Nesteruk
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Hermann Reichenspurner
- Department of Cardiac and Vascular Surgery, University heart center Hamburg, Martinistraße. 52, 20246 Hamburg, Germany.
| | - Christian Ritter
- University Medical Center Goettingen, Institute for Diagnostic and Interventional Radiology, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | - Christof Stamm
- German Heart Center Berlin, Department of Heart-, Thoracic- and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Ayumi Tani-Yokoyama
- Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Helmut Blum
- Ludwig-Maximilians-Universität München, LAFUGA Genomics, Gene Center, Feodor-Lynen-Strasse 25, 81377 Muenchen, Germany.
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University Rostock, Institute of Computer Science, Ulmenstrasse 69, 18057 Rostock, Germany.
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | - Takayuki Asahara
- Department of Advanced Medicine Science, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143, Japan.
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy, Department Life, Light and Matter and Department of cardiac surgery, University Medicine Rostock, Schillingallee 35, 18055 Rostock, Germany.
| |
Collapse
|