1
|
Taghe S, Mirzaeei S, Pakdaman N, Kazemi A, Nokhodchi A. Macrolide-loaded nanofibrous inserts with polycaprolactone and cellulose acetate base for sustained ocular delivery: Pharmacokinetic study in Rabbit's eye. Int J Pharm 2024; 665:124699. [PMID: 39270760 DOI: 10.1016/j.ijpharm.2024.124699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The present study aimed to prepare nanofibrous inserts for sustained ocular drug delivery of Azithromycin (AZM) toward conquering the obstacles of conventional topical drug delivery. Nanofibers were fabricated by electrospinning using polycaprolactone (PCL) and cellulose acetate (CA) which are biocompatible and biodegradable polymers. Prepared nanofibers were evaluated in terms of physicochemical, morphological properties, pharmacokinetic study and ocular irritation. SEM images revealed average diameters of about 160 nm and 190 nm for CA and PCL nanofibers, respectively. These ocular drug delivery systems were strong, flexible, and stable under humid and dry conditions. Quantification was performed using microbiological assay by M. luteus as a microorganism. While PCL-based nanofibrous inserts released AZM in a two-step manner initiated by a burst release via Peppas kinetical model, CA-based inserts showed a gradual release profile without any burst release which followed the first-order model. Results showed that these inserts were non-cytotoxic and non-irritating. The nanofibers showed antibacterial efficacy against Escherichia coli and Staphylococcus aureus. In addition, according to a pharmacokinetic study in Rabbit's Eye, a higher Cmax and lower Tmax were achieved by PCL nanofibers compared to CA-based ones. The pharmacokinetic study of nanofibers in rabbit eyes showed that all formulations were able to maintain the effective concentration of AZM for about 6 days. In conclusion, the prepared nanofibers can be effectively utilized for prolonged ocular delivery of AZM in the treatment of conjunctival infections.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Negin Pakdaman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aliakbar Kazemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
2
|
Kaurav H, Tripathi M, Kaur SD, Bansal A, Kapoor DN, Sheth S. Emerging Trends in Bilosomes as Therapeutic Drug Delivery Systems. Pharmaceutics 2024; 16:697. [PMID: 38931820 PMCID: PMC11206586 DOI: 10.3390/pharmaceutics16060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, there has been a notable surge in the utilization of stabilized bile acid liposomes, chemical conjugates, complexes, mixed micelles, and other drug delivery systems derived from bile acids, often referred to as bilosomes. The molecular structure and interactions of these amphiphilic compounds provide a distinctive and captivating subject for investigation. The enhanced stability of new generation bilosomes inside the gastrointestinal system results in the prevention of drug degradation and an improvement in mucosal penetration. These characteristics render bilosomes to be a prospective nanocarrier for pharmaceutical administration, prompting researchers to investigate their potential in other domains. This review paper discusses bilosomes that have emerged as a viable modality in the realm of drug delivery and have significant promise for use across several domains. Moreover, this underscores the need for additional investigation and advancement in order to comprehensively comprehend the prospective uses of bilosomes and their effectiveness in the field of pharmaceutical administration. This review study explores the current scholarly attention on bilosomes as prospective carriers for drug delivery. Therapeutic areas where bilosomes have shown outstanding performance in terms of drug delivery are outlined in the graphical abstract.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Meenakshi Tripathi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Simran Deep Kaur
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company plc, Allegan, MI 49010, USA;
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, P.O. Box 9, Solan 173229, Himachal Pradesh, India; (H.K.); (M.T.); (D.N.K.)
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
3
|
Nemr AA, El-Mahrouk GM, Badie HA. Enhancement of ocular anti-glaucomic activity of agomelatine through fabrication of hyaluronic acid modified-elastosomes: formulation, statistical optimisation , in vitro characterisation, histopathological study, and in vivo assessment. J Microencapsul 2023; 40:423-441. [PMID: 37192318 DOI: 10.1080/02652048.2023.2215326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
AIM The aim of this manuscript was to fabricate agomelatine (AGM) loaded elastosomes to improve its corneal permeation and ocular bioavailability. AGM is a biopharmaceutical classification system (BCS) class II with low water solubility and high membrane permeability. It has a potent agonistic action on melatonin receptors, so it is used for glaucoma treatment. METHODS Elastosomes were made using modified ethanol injection technique according to a 22 × 41 full factorial design. The chosen factors were: edge activators (EAs) type, surfactant percent (SAA %w/w), and cholesterol:surfactant ratio (CH:SAA ratio). The studied responses were encapsulation efficiency percent (EE%), mean diameter, polydispersity index (PDI), zeta potential (ZP), percentage of drug released after two hours (Q2h%), and 24 hours (Q24h%). RESULTS The optimum formula with the desirability of 0.752 was composed of Brij98 as EA type, 15%w/w SAA%, and 1:1 CH:SAA ratio. It revealed EE% of 73.22%w/v and mean diameter, PDI, ZP, Q2h%, and Q24h% values of 484.25 nm, 0.31, -30.75 mV, 32.7%w/v, and 75.6%w/v, respectively. It demonstrated acceptable stability for three months and superior elasticity than its conventional liposome. The histopathological study ensured the tolerability of its ophthalmic application. Also, it was proven to be safe from the results of the pH and refractive index tests. The in vivo pharmacodynamic parameters of the optimum formula revealed dominance in a maximum % decrease in intraocular pressure (IOP), the area under the IOP response curve, and mean residence time with the value of 82.73%w/v, 820.69%h, and 13.98 h compared to that of the AGM solution (35.92%w/v, 181.30%h, and 7.52 h). CONCLUSIONS Elastosomes can be a promising option to improve AGM ocular bioavailability.
Collapse
Affiliation(s)
- Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Galal Mohamed El-Mahrouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Hany Abdo Badie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Formulation development and evaluation of therapeutic contact lens loaded with ganciclovir. Int Ophthalmol 2023:10.1007/s10792-022-02618-6. [PMID: 36593425 DOI: 10.1007/s10792-022-02618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE In the present investigation ganciclovir (GAN) loaded microparticles dispersed in hydrogel-based contact lenses were fabricated, characterized and evaluated for eye irritation. METHODS GAN-Hydroxy Propyl Methyl Cellulose (HPMC) microparticles were prepared by solvent evaporation method and evaluated for entrapment efficiency, drug content and drug release. The Polyhydroxyethylmethacrylate (pHEMA) contact lenses were synthesized by free radical polymerization reaction using crosslinkers like ethylene glycoldimethacrylate and photoinitiator such as IRGACURE 1173®, in UVB light, λ 365 nm. The GAN-HPMC microparticles when incorporated into the premonomer mixture and polymerized together give rise to a particle dispersion system in the hydrogel contact lenses. The contact lenses were studied for surface morphology, transmittance, swelling, drug release, Na+ion permeability and hens egg test chorioallantoic membrane assay (HETCAM). RESULTS Hydrogel contact lens exhibited satisfactory surface morphology, transmittance, swelling, Na+ion permeability (3.72 × 106 mm2/min) and a release of 48 h suggesting a potential for prolonged ocular drug delivery. Furthermore, HETCAM exhibited no signs of ocular irritation. CONCLUSION The developed delivery platform is a promising alternative to conventional dosage forms like eye drops, suspensions and ointments due to its increase in the residence time attributed to its prolonged release profile.
Collapse
|
5
|
Nemr AA, El-Mahrouk GM, Badie HA. Hyaluronic acid-enriched bilosomes: an approach to enhance ocular delivery of agomelatine via D-optimal design: formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug Deliv 2022; 29:2343-2356. [PMID: 35869684 PMCID: PMC9477486 DOI: 10.1080/10717544.2022.2100513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agomelatine (AGO) is a dual-functional drug. It uses as an antidepressant when orally administrated and antiglaucomic when topically applied to the eye. This study aimed to formulate AGO into bilosomal vesicles for glaucoma treatment, as modern studies pointed out the effect of topical AGO on intraocular pressure for the treatment of glaucoma. A modified ethanol injection technique was used for the fabrication of AGO bilosomes according to a D-optimal design. Phosphatidylcholine (PC) to edge activator (EA) ratio, Hyaluronic acid percentage (HA%), and EA type were utilized as independent variables. The measured responses were percent entrapment efficiency (EE%), particle size (PS), polydispersity index, zeta potential, percentage of drug released after 2 h (Q2h%), and 24 h (Q24h%). The optimal bilosomal formula (OB), with the desirability of 0.814 and the composition of 2:1 PC: EA ratio, 0.26% w/v HA and sodium cholate as EA, was subjected to further in vitro characterizations and in vivo evaluation studies. The OB formula had EE% of 81.81 ± 0.23%, PS of 432.45 ± 0.85 nm, Q2h% of 42.65 ± 0.52%, and Q24h% of 75.14 ± 0.39%. It demonstrated a higher elasticity than their corresponding niosomes with a typical spherical shape of niosomes by using transmission electron microscope. It exhibited acceptable stability over three months. pH and Refractive index measurements together with the histopathological study ensured that the OB formula is safe for the eye and causes no ocular irritation or blurred vision. The OB formula showed superiority in the in vivo pharmacodynamics parameters over the AGO solution, so AGO-loaded bilosome could improve ocular delivery and the bioavailability of agomelatine.
Collapse
Affiliation(s)
- Asmaa Ashraf Nemr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Galal Mohamed El-Mahrouk
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Hany Abdo Badie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
6
|
Elbialy NS, Mohamed N. Fabrication of the quaternary nanocomplex curcumin-casein-alginate-chitosan as a potential oral delivery system for cancer nutraceutical therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Prajapati M, Loftsson T. Stabilization and solubilization of difluprednate in aqueous cyclodextrin solution and its characterization for ophthalmic delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Ocular Fluid Mechanics and Drug Delivery: A Review of Mathematical and Computational Models. Pharm Res 2021; 38:2003-2033. [PMID: 34936067 DOI: 10.1007/s11095-021-03141-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
The human eye is a complex biomechanical structure with a range of biomechanical processes involved in various physiological as well as pathological conditions. Fluid flow inside different domains of the eye is one of the most significant biomechanical processes that tend to perform a wide variety of functions and when combined with other biophysical processes play a crucial role in ocular drug delivery. However, it is quite difficult to comprehend the effect of these processes on drug transport and associated treatment experimentally because of ethical constraints and economic feasibility. Computational modeling on the other hand is an excellent means to understand the associated complexity between these aforementioned processes and drug delivery. A wide range of computational models specific to different types of fluids present in different domains of the eye as well as varying drug delivery modes has been established to understand the fluid flow behavior and drug transport phenomenon in an insilico manner. These computational models have been used as a non-invasive tool to aid ophthalmologists in identifying the challenges associated with a particular drug delivery mode while treating particular eye diseases and to advance the understanding of the biomechanical behavior of the eye. In this regard, the author attempts to summarize the existing computational and mathematical approaches proposed in the last two decades for understanding the fluid mechanics and drug transport associated with different domains of the eye, together with their application to modify the existing treatment processes.
Collapse
|
10
|
Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: An update. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Jounaki K, Makhmalzadeh BS, Feghhi M, Heidarian A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur J Pharm Sci 2021; 167:105991. [PMID: 34517103 DOI: 10.1016/j.ejps.2021.105991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Vancomycin (VCM) is a drug of choice for treating infections caused by Staphylococcus species, reported being the most causative agent of bacterial endophthalmitis. However, the ocular bioavailability of topically applied VCM is low due to its high molecular weight and hydrophilicity. The current study sought to explore whether the nanostructured lipid carriers (NLCs) fabricated via cold homogenization technique could improve ocular penetration and prolong the ophthalmic residence of VCM. A 23 full factorial design was adopted to evaluate the influence of different process and formulation variables on VCM-loaded NLC formulae. The optimized formula with the particle size of 96.4 ± 0.71 nm and narrow size distribution showed spherical morphology obtained by AFM and represented sustained drug release up to 67% in 48 h fitted to the Korsmeyer-Peppas model with probably non-Fickian diffusion kinetic. FTIR studies visualized the drug-carrier interactions in great detail. High encapsulation of VCM (74.8 ± 4.3% w/w) in NLC has been established in DSC and PXRD analysis. The optimal positively charged (+ 29.7 ± 0.47 mV) colloidal dispersion was also stable for 12 weeks at both 4 °C and 25 °C. According to in vivo studies, incorporation of VCM in NLC resulted in a nearly 3-fold increase in the intravitreal concentration of VCM after eye-drop instillation over control groups. Besides, microbiological evaluation admitted its therapeutic effect within five days is comparable to intravitreal injection of VCM. Further, the optimized formula was found to be nonirritant and safe for ophthalmic administration in RBC hemolytic assay. Also, fluorescent tracking of NLCs on rabbit's cornea showed an increase in corneal penetration of nanoparticles. Thus, it is possible to infer that the evolved NLCs are promising drug delivery systems with superior attainments for enhanced Vancomycin ophthalmic delivery to the eye's posterior segment and improved bacterial endophthalmitis management.
Collapse
Affiliation(s)
- Kamyar Jounaki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Sharif Makhmalzadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mostafa Feghhi
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asghar Heidarian
- Department of Ophthalmology, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent Advances in the Excipients Used for Modified Ocular Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4290. [PMID: 34361483 PMCID: PMC8347600 DOI: 10.3390/ma14154290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022]
Abstract
In ocular drug delivery, maintaining an efficient concentration of the drug in the target area for a sufficient period of time is a challenging task. There is a pressing need for the development of effective strategies for drug delivery to the eye using recent advances in material sciences and novel approaches to drug delivery. This review summarizes the important aspects of ocular drug delivery and the factors affecting drug absorption in the eye including encapsulating excipients (chitosan, hyaluronic acid, poloxamer, PLGA, PVCL-PVA-PEG, cetalkonium chloride, and gelatin) for modified drug delivery.
Collapse
Affiliation(s)
- Melitini Koutsoviti
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece;
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.K.); (A.S.)
| |
Collapse
|
13
|
Peter M, Panonnummal R. A Review on Newer Ocular Drug Delivery Systems with an Emphasis on Glaucoma. Adv Pharm Bull 2021; 11:399-413. [PMID: 34513615 PMCID: PMC8421633 DOI: 10.34172/apb.2021.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Glaucoma is an irreversible condition resulting from the increase in intraocular pressure (IOP); which leads to permanent loss of vision with the destruction of retinal ganglion cells (RGCs). The IOP elevations are controlled in normal by the physiological flow of aqueous humour. A population with age above 40 is more susceptible to glaucoma. Other factors like gender, genetics, race etc. plays major roles in the development of the disease. Current treatment methods available for the disease includes drugs come under the classes of beta receptor blockers, carbonic anhydrase inhibitors, cholinergic agonists, prostaglandins etc. N-methyl-D-aspartate (NMDA) antagonists, inducible nitric oxide synthase (iNOS) inhibition, cytoskeletal agents, Rho-kinase inhibitors etc are few novel targets sites which are in research focus for the treatment of the disease. Developments in nanomedicine are also being evaluated for their potential in treating the growing glaucomatous population. Nanosystems are suggested to avoid the difficulties in tackling the various ocular barriers to a limit, help to decrease the instillation frequency of topical medication and can provide drug delivery in a sustained or controlled manner. This review focuses on the current and emerging treatment methods for glaucoma along with some of the nanoformulations for ocular drug delivery.
Collapse
Affiliation(s)
| | - Rajitha Panonnummal
- Amrita School of Pharmacy, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, India
| |
Collapse
|
14
|
Kulkarni M, Sawant N, Kolapkar A, Huprikar A, Desai N. Borneol: a Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers. AAPS PharmSciTech 2021; 22:145. [PMID: 33913042 DOI: 10.1208/s12249-021-01999-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Incorporation of permeation enhancers is one of the most widely employed approaches for delivering drugs across biological membranes. Permeation enhancers aid in delivering drugs across various physiological barriers such as brain capillary endothelium, stratum corneum, corneal epithelium, and mucosal membranes that pose resistance to the entry of a majority of drugs. Borneol is a natural, plant-derived, lipophilic, volatile, bicyclic monoterpenoid belonging to the class of camphene. It has been used under the names "Bing Pian" or "Long Nao" in Traditional Chinese Medicine for more than 1000 years. Borneol has been incorporated predominantly as an adjuvant in the traditional Chinese formulations of centrally acting drugs to improve drug delivery to the brain. This background knowledge and anecdotal evidence have led to extensive research in establishing borneol as a permeation enhancer across the blood-brain barrier. Alteration in cell membrane lipid structures and modulation of multiple ATP binding cassette transporters as well as tight junction proteins are the major contributing factors to blood-brain barrier opening functions of borneol. Owing to these mechanisms of altering membrane properties, borneol has also shown promising potential to improve drug delivery across other physiological barriers as well. The current review focuses on the role of borneol as a permeation enhancer across the blood-brain barrier, mucosal barriers including nasal and gastrointestinal linings, transdermal, transcorneal, and blood optic nerve barrier.
Collapse
|
15
|
Formica ML, Awde Alfonso HG, Palma SD. Biological drug therapy for ocular angiogenesis: Anti-VEGF agents and novel strategies based on nanotechnology. Pharmacol Res Perspect 2021; 9:e00723. [PMID: 33694304 PMCID: PMC7947217 DOI: 10.1002/prp2.723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, biological drug therapy for ocular angiogenesis treatment is based on the administration of anti‐VEGF agents via intravitreal route. The molecules approved with this purpose for ocular use include pegaptanib, ranibizumab, and aflibercept, whereas bevacizumab is commonly off‐label used in the clinical practice. The schedule dosage involves repeated intravitreal injections of anti‐VEGF agents to achieve and maintain effective concentrations in retina and choroids, which are administrated as solutions form. In this review article, we describe the features of different anti‐VEGF agents, major challenges for their ocular delivery and the nanoparticles in development as delivery system of them. In this way, several polymeric and lipid nanoparticles are explored to load anti‐VEGF agents with the aim of achieving sustained drug release and thus, minimize the number of intravitreal injections required. The main challenges were focused in the loading the molecules that maintain their bioactivity after their release from nanoparticulate system, followed the evaluation of them through studies of formulation stability, pharmacokinetic, and efficacy in in vitro and in vivo models. The analysis was based on the information published in peer‐reviewed published papers relevant to anti‐VEGF treatments and nanoparticles developed as ocular anti‐VEGF delivery system.
Collapse
Affiliation(s)
- María L Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Hamoudi G Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| | - Santiago D Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
| |
Collapse
|
16
|
Macoon R, Chauhan A. Ophthalmic delivery of hydrophilic drugs through drug-loaded oleogels. Eur J Pharm Sci 2021; 158:105634. [DOI: 10.1016/j.ejps.2020.105634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
|
17
|
Jain N, Verma A, Jain N. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: intraocular pressure measurement in white albino rabbits. Drug Deliv 2020; 27:888-899. [PMID: 32551978 PMCID: PMC8216479 DOI: 10.1080/10717544.2020.1775726] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 10/31/2022] Open
Abstract
The present study was focused on investigating niosomal gels loaded with cholinergic drug; pilocarpine HCl, for prolonged precorneal residence time and improved bioavailability for glaucoma treatment. Pilocarpine HCl niosomes were prepared using various nonionic surfactants (span 20, span 60 and span 80), in the presence of cholesterol in different molar ratios by ether injection method. The selected formulations were incorporated into carbopol 934 and locust bean gum-based gels. TEM analysis confirmed that niosomes formed were spherical in shape and has a definite internal aqueous space with uniform particle size. Formulation F4 composed of span 60 and cholesterol (1:1) gave the highest entrapment (93.26 ± 1.75%) and slower release results after 8 hours (Q8h = 60.35 ± 1.87%) among other formulations. The in-vitro drug permeation studies showed that there was a prolonged release of drug from niosomal gels as compared to niosomes itself. Considering the in-vitro drug release, niosomal gel formulation G2 was the best among the studied formulations. The release data were fitted to an empirical equation, which indicated that the release follows non-Fickian diffusion mechanism. The stability study revealed that incorporation of niosomes in gel increased their stability than the niosome itself. No signs of redness, inflammation, swelling or increased tear production were observed over the study period for tested formulation by Draize's test. The intraocular pressure (IOP) lowering activity of G2 formulation showed relative bioavailability 2.64 times more than bioavailability of marketed Pilopine HS® gel. These results suggest that the niosomal gels containing pilocarpine HCl are promising ocular carriers for glaucoma treatment.
Collapse
Affiliation(s)
- Neelam Jain
- Department of Pharmacy, Oriental College of Pharmacy and Research, Oriental University, Indore, India
| | - Anurag Verma
- School of Pharmaceutical Sciences, IFTM University, Moradabad, India
| | - Neeraj Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, India
| |
Collapse
|
18
|
Sadeghi S, Lee WK, Kong SN, Shetty A, Drum CL. Oral administration of protein nanoparticles: An emerging route to disease treatment. Pharmacol Res 2020; 158:104685. [DOI: 10.1016/j.phrs.2020.104685] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/20/2023]
|
19
|
Park CG, Choi G, Kim MH, Kim SN, Lee H, Lee NK, Choy YB, Choy JH. Brimonidine-montmorillonite hybrid formulation for topical drug delivery to the eye. J Mater Chem B 2020; 8:7914-7920. [PMID: 32726382 DOI: 10.1039/d0tb01213k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brimonidine (BMD) is often prescribed as an eye drop to reduce the intraocular pressure (IOP) for glaucoma treatment. However, eye drops are limited by rapid clearance from the preocular surface, and hence a low ocular drug bioavailability. Therefore, in this study, we propose montmorillonite (MMT), as a delivery carrier, hybridized with BMD (BMD-MMT) for topical drug delivery to the eye. The BMD-MMT hybrid was prepared by intercalating the BMD molecules in the interlayer space of the MMT lattice via ion-exchange reaction; it was then formulated with polyvinyl alcohol (PVA) to produce a dry tablet (i.e., BMD-MMT@PVA). The BMD-MMT@PVA hybrid drug released BMD in a sustained manner for more than 5 h under in vitro conditions. When the hybrid drug was administered to rabbit eyes in vivo, 43% and 18.5% BMD-MMT still remained on the preocular surface for 10 and 60 min after administration, respectively. Thus, the BMD-MMT@PVA hybrid drug exhibited a prolonged decrease in IOP, that is, for 12 h, which was approximately two times longer than that observed with the commercially available BMD eye drop, Alphagan® P.
Collapse
Affiliation(s)
- Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V. Hydrogel Biomaterials for Application in Ocular Drug Delivery. Front Bioeng Biotechnol 2020; 8:228. [PMID: 32266248 PMCID: PMC7099765 DOI: 10.3389/fbioe.2020.00228] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
There are many challenges involved in ocular drug delivery. These are a result of the many tissue barriers and defense mechanisms that are present with the eye; such as the cornea, conjunctiva, the blinking reflex, and nasolacrimal drainage system. This leads to many of the conventional ophthalmic preparations, such as eye drops, having low bioavailability profiles, rapid removal from the administration site, and thus ineffective delivery of drugs. Hydrogels have been investigated as a delivery system which is able to overcome some of these challenges. These have been formulated as standalone systems or with the incorporation of other technologies such as nanoparticles. Hydrogels are able to be formulated in such a way that they are able to change from a liquid to gel as a response to a stimulus; known as "smart" or stimuli-responsive biotechnology platforms. Various different stimuli-responsive hydrogel systems are discussed in this article. Hydrogel drug delivery systems are able to be formulated from both synthetic and natural polymers, known as biopolymers. This review focuses on the formulations which incorporate biopolymers. These polymers have a number of benefits such as the fact that they are biodegradable, biocompatible, and non-cytotoxic. The biocompatibility of the polymers is essential for ocular drug delivery systems because the eye is an extremely sensitive organ which is known as an immune privileged site.
Collapse
Affiliation(s)
- Courtney R. Lynch
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pierre P. D. Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, Kausar T, Iqbal S. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol 2019; 152:1056-1067. [PMID: 31751751 DOI: 10.1016/j.ijbiomac.2019.10.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/03/2023]
Abstract
Poor availability is the major barrier to accept the new smart gel system as a preferred ophthalmic solution for various eye problems. Smart gel system especially derived from natural source allows the rapid transition of ocular solution into gel form upon contact to tear solution. The present experimental scheme was intended to prepare and characterize a pH triggered in situ gelling system using moxifloxacin HCl (MOX-HCl). Gum was extracted from Terminalia arjuna bark resin and used as gelling agent in blend with sodium alginate. Sterilized formulations were developed and characterized for their physicochemical attributes. These were further investigated for microbiological testing and eye irritation studies. Drug loaded in situ gel was appeared as clear sol that converted into gel phase in presence of tear solution. Optimized formulation was stable, therapeutically efficacious, non-irritant and has a sustained release of the drug for twelve hours period. Instillation of MOX-HCl loaded in situ gel did not cause any type of irritation symptoms like redness, inflammation and excessive tear production in rabbits as compared to control. MOX-HCl loaded in situ gel can be appraised as a substitute for conventional eye drops for extended precorneal retention, improved corneal permeability along with better ocular bioavailability.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom.
| | | | - Fozia Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 53700, Pakistan
| | - Maryam Basharat
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Shazia Noureen
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Tusneem Kausar
- Department of Food Sciences and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
22
|
Supramolecular cyclodextrin complex: Diversity, safety, and applications in ocular therapeutics. Exp Eye Res 2019; 189:107829. [PMID: 31605685 DOI: 10.1016/j.exer.2019.107829] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Approximately 30-70% of the existing and new chemical entities exhibit poor aqueous solubility. For topical ocular delivery, drug molecules need to possess both hydrophilic and lipophilic nature to enable absorption through the aqueous tear layer and permeation through the corneal lipophilic barrier. To overcome the aqueous solubility related issues, various techniques such as solid dispersion, particle size reduction, cyclodextrin complexation, co-solvency, prodrug, derivatization, and salt formation are being explored in the healthcare sector. Cyclodextrin inclusion complexation techniques have been established by several pharmaceutical industries for systemic administration allowing a transition from the lab to the clinics. Though cyclodextrins are exploited in ocular drug delivery, there are prevailing concerns regarding its absorption enhancing capacity and mechanism, retention at the ocular surfaces and, irritation and toxicity profiles. In the present review, the efforts taken by various research groups to address the concerns of using cyclodextrin and its derivatives in ocular therapeutics are summarized. Also, considerations and utility of cyclodextrin systems in fabricating newer formulations such as contact lens, inserts, and implants have been discussed in the review.
Collapse
|
23
|
Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration Enhancers in Ocular Drug Delivery. Pharmaceutics 2019; 11:E321. [PMID: 31324063 PMCID: PMC6681039 DOI: 10.3390/pharmaceutics11070321] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 100 recognized disorders of the eye. This makes the development of advanced ocular formulations an important topic in pharmaceutical science. One of the ways to improve drug delivery to the eye is the use of penetration enhancers. These are defined as compounds capable of enhancing drug permeability across ocular membranes. This review paper provides an overview of anatomical and physiological features of the eye and discusses some common ophthalmological conditions and permeability of ocular membranes. The review also presents the analysis of literature on the use of penetration-enhancing compounds (cyclodextrins, chelating agents, crown ethers, bile acids and bile salts, cell-penetrating peptides, and other amphiphilic compounds) in ocular drug delivery, describing their properties and modes of action.
Collapse
Affiliation(s)
- Roman V Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Peter W J Morrison
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Fraser Steele
- MC2 Therapeutics, James House, Emlyn Lane, Leatherhead KT22 7EP, UK
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK.
| |
Collapse
|
24
|
Güven UM, Yenilmez E. Olopatadine hydrochloride loaded Kollidon® SR nanoparticles for ocular delivery: Nanosuspension formulation and in vitro–in vivo evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Shekhter AB, Fayzullin AL, Vukolova MN, Rudenko TG, Osipycheva VD, Litvitsky PF. Medical Applications of Collagen and Collagen-Based Materials. Curr Med Chem 2019; 26:506-516. [PMID: 29210638 DOI: 10.2174/0929867325666171205170339] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/19/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022]
Abstract
Collagen and collagen-based materials have been successfully used in medicine for over 50 years. The number of scientific articles about the role of collagen in the construction of scaffolds for tissue engineering has risen precipitously in recent years. The review contains materials about historic and modern applications of collagen in medicine such as soluble collagen injections, solid constructs reconstructed from solution, and decellularized collagen matrices. The analysis of published data proves the efficacy of collagen material in the treatment of chronic wounds, burns, venous and diabetic ulcers, in plastic, reconstructive and general surgery, urology, proctology, gynecology, ophthalmology, otolaryngology, neurosurgery, dentistry, cardiovascular and bone and cartilage surgery, as well as in cosmetology. Further development of collagenoplasty requires addressing the problems of allergic complications, improvement of structure and maximizing therapeutic effects against pathological processes.
Collapse
Affiliation(s)
- Anatoly B Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexey L Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Marina N Vukolova
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Tatyana G Rudenko
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Varvara D Osipycheva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Petr F Litvitsky
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
26
|
Kim H, Park K, Chung J, Woo S. A Prediction Model for the Intraocular Pharmacokinetics of Intravitreally Injected Drugs Based on Molecular Physicochemical Properties. Ophthalmic Res 2019; 63:41-49. [DOI: 10.1159/000499529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
|
27
|
Taghe S, Mirzaeei S. Preparation and characterization of novel, mucoadhesive ofloxacin nanoparticles for ocular drug delivery. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000117105] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Shiva Taghe
- Kermanshah University of Medical Sciences, Iran; Pharmaceutical Sciences Branch, Iran
| | - Shahla Mirzaeei
- Kermanshah University of Medical Sciences, Iran; Kermanshah University of Medical Sciences, Iran
| |
Collapse
|
28
|
Fouda NH, Abdelrehim RT, Hegazy DA, Habib BA. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv 2018; 25:1340-1349. [PMID: 29869516 PMCID: PMC6058483 DOI: 10.1080/10717544.2018.1477861] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is the second cause of blindness worldwide. Frequent administration of traditional topical dosage forms may lead to patient incompliance and failure of treatment. Our study aims to formulate proniosomal gel formulations that sustain the release of the water-soluble anti-glaucoma drug Dorzolamide-HCl (Dorz). Proniosomal gel formulations were prepared using coacervation phase separation method according to a 52 full factorial design. The effects of Cholesterol and surfactant (Span 40) amounts (independent variables) on the percentage entrapment efficiency (EE%), particle size (PS), and the percent of drug released after 8 h (Q8h) (dependent variables (DVs)) were investigated. An optimized formulation (OF) was chosen based on maximizing EE% and Q8h and minimizing PS. An intraocular pressure (IOP) pharmacodynamic study was performed in rabbits to evaluate the in-vivo performance of the OF-gel compared to the marketed Trusopt® eye drops. The results showed that the independent variables studied significantly affected EE%, PS, and Q8h. OF was the one containing 60 mg Cholesterol and 540 mg Span 40. It had desirability of 0.885 and its actually measured DVs deviated from the predicted ones by a maximum of 4.8%. The in-vivo pharmacodynamic study showed that OF could result in higher reduction in IOP, significantly sustain that reduction in IOP and increase Dorz bioavailability compared to Trusopt® eye drops. Thus the OF-gel is very promising for being used in glaucoma treatment.
Collapse
Affiliation(s)
- Nagwa Hussein Fouda
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Randa Tag Abdelrehim
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Doaa Abdelmagid Hegazy
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Basant Ahmed Habib
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Cairo University , Cairo , Egypt
| |
Collapse
|
29
|
Phua JL, Hou A, Lui YS, Bose T, Chandy GK, Tong L, Venkatraman S, Huang Y. Topical Delivery of Senicapoc Nanoliposomal Formulation for Ocular Surface Treatments. Int J Mol Sci 2018; 19:E2977. [PMID: 30274277 PMCID: PMC6213297 DOI: 10.3390/ijms19102977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
Topical ophthalmologic treatments have been facing great challenges with main limitations of low drug bioavailability, due to highly integrative defense mechanisms of the eye. This study rationally devised strategies to increase drug bioavailability by increasing ocular surface residence time of drug-loaded nanoliposomes dispersed within thermo-sensitive hydrogels (Pluronic F-127). Alternatively, we utilized sub-conjunctival injections as a depot technique to localize nanoliposomes. Senicapoc was encapsulated and sustainably released from free nanoliposomes and hydrogels formulations in vitro. Residence time increased up to 12-fold (60 min) with 24% hydrogel formulations, as compared to 5 min for free liposomes, which was observed in the eyes of Sprague-Dawley rats using fluorescence measurements. Pharmacokinetic results obtained from flushed tears, also showed that the hydrogels had greater drug retention capabilities to that of topical viscous solutions for up to 60 min. Senicapoc also remained quantifiable within sub-conjunctival tissues for up to 24 h post-injection.
Collapse
Affiliation(s)
- Jie Liang Phua
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Aihua Hou
- Singapore Eye Research Institute, Singapore 169856, Singapore.
- Duke-NUS Medical School, Singapore 169856, Singapore.
| | - Yuan Siang Lui
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Tanima Bose
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| | | | - Louis Tong
- Singapore Eye Research Institute, Singapore 169856, Singapore.
- Duke-NUS Medical School, Singapore 169856, Singapore.
- Singapore National Eye Center, Singapore 168751, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Subbu Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| | - Yingying Huang
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
30
|
Kim SN, Ko SA, Park CG, Lee SH, Huh BK, Park YH, Kim YK, Ha A, Park KH, Choy YB. Amino-Functionalized Mesoporous Silica Particles for Ocular Delivery of Brimonidine. Mol Pharm 2018; 15:3143-3152. [DOI: 10.1021/acs.molpharmaceut.8b00215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Se-Na Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Song Ah Ko
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Beom Kang Huh
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoh Han Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Kook Kim
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ahnul Ha
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
31
|
In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int J Pharm 2018; 539:83-94. [DOI: 10.1016/j.ijpharm.2018.01.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
|
32
|
Griffith GL, Wirostko B, Lee HK, Cornell LE, McDaniel JS, Zamora DO, Johnson AJ. Treatment of corneal chemical alkali burns with a crosslinked thiolated hyaluronic acid film. Burns 2018; 44:1179-1186. [PMID: 29429747 DOI: 10.1016/j.burns.2018.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE The study objective was to test the utilization of a crosslinked, thiolated hyaluronic acid (CMHA-S) film for treating corneal chemical burns. METHODS Burns 5.5mm in diameter were created on 10 anesthetized, male New Zealand white rabbits by placing a 1N NaOH soaked circular filter paper onto the cornea for 30s. Wounds were immediately rinsed with balanced salt solution (BSS). CMHA-S films were placed in the left inferior fornix of five injured and five uninjured animals. Five animals received no treatment. At 0h, 48h, 96h, and on day 14 post chemical burn creation, eyes were evaluated by white light imaging, fluorescein staining, and optical coherence tomography (OCT). Corneal histology was performed using H&E and Masson's Trichrome stains. RESULTS Image analysis indicated biocompatible CMHA-S treatment resulted in significant decreases in the areas of corneal opacity at 48h, 96h, and on day 14 postoperatively. A significant increase in re-epithelialization was seen 14days post injury. CMHA-S treated corneas showed significantly less edema than untreated burns. No pathological differences were observed in corneal histological samples as a result of CMHA-S treatment. CONCLUSIONS CMHA-S films facilitate re-epithelialization and decrease the area of corneal opacity in our corneal alkali burn rabbit model.
Collapse
Affiliation(s)
- Gina L Griffith
- Department of Sensory Trauma, United States Army Institute of Surgical Research, San Antonio, TX 78234, United States.
| | - Barbara Wirostko
- Jade Therapeutics, Inc. (Wholly Owned Subsidiary of EyeGate Pharmaceuticals, Inc.), 391 Chipeta Way, Salt Lake City, UT 84108, United States; University of Utah, Moran Eye Center, Salt Lake City, UT 84108, United States
| | - Hee-Kyoung Lee
- Jade Therapeutics, Inc. (Wholly Owned Subsidiary of EyeGate Pharmaceuticals, Inc.), 391 Chipeta Way, Salt Lake City, UT 84108, United States
| | - Lauren E Cornell
- Department of Sensory Trauma, United States Army Institute of Surgical Research, San Antonio, TX 78234, United States
| | - Jennifer S McDaniel
- Department of Sensory Trauma, United States Army Institute of Surgical Research, San Antonio, TX 78234, United States
| | - David O Zamora
- Department of Sensory Trauma, United States Army Institute of Surgical Research, San Antonio, TX 78234, United States
| | - Anthony J Johnson
- Department of Sensory Trauma, United States Army Institute of Surgical Research, San Antonio, TX 78234, United States
| |
Collapse
|
33
|
Abstract
Existing methods of administering ocular drugs are limited in either their safety or efficiency. Nanomedicine therapies have the potential to address this deficiency by creating vehicles that can control drug biodistribution. Dendrimers are synthetic polymeric nanoparticles with a unique highly organized branching structure. In recent years, promising results using dendrimer vehicles to deliver ocular drugs through different routes of administration have been reported. In this review, we briefly summarize these results with emphasis on the dendrimer modifications used to target different ocular structures.
Collapse
Affiliation(s)
- Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| |
Collapse
|
34
|
Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm 2016; 109:224-235. [PMID: 27793755 DOI: 10.1016/j.ejpb.2016.10.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/10/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE The objective of the present study was to formulate indomethacin (IN)-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) and to investigate their potential use in topical ocular delivery. METHODS IN SLNs (0.1% w/v) and NLCs (0.8% w/v) were prepared, characterized and evaluated. Their in vitro release and flux profiles across the cornea and sclera-choroid-RPE (trans-SCR) tissues and in vivo ocular tissue distribution were assessed. Furthermore, chitosan chloride (CS) (mol. wt.<200kDa), a cationic and water-soluble penetration enhancer, was used to modify the surface of the SLNs, and its effect was investigated through in vitro transmembrane penetration and in vivo distribution tissue studies. RESULTS For the IN-SLNs, IN-CS-SLNs and IN-NLCs, the particle size was 226±5, 265±8, and 227±11nm, respectively; the zeta potential was -22±0.8, 27±1.2, and -12.2±2.3mV, respectively; the polydispersity index (PDI) was 0.17, 0.30, and 0.23, respectively; and the entrapment efficiency (EE) was 81±0.9, 91.5±3.2 and 99.8±0.2%, respectively. The surface modification of the SLNs with CS increased the ocular penetration of IN. The NLCs maintained significantly higher IN concentrations in all ocular tissues tested compared to the other formulations evaluated in vivo. CONCLUSION The results suggest that lipid-based particulate systems can serve as viable vehicles for ocular delivery. The NLC formulations demonstrated increased drug loading capability, entrapment and delivery to anterior and posterior segment ocular tissues.
Collapse
|
35
|
A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: In vitro, in vivo and stability studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:529-540. [PMID: 27987741 DOI: 10.1016/j.msec.2016.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022]
Abstract
The present investigation was carried out to demonstrate with the help of in vitro and in vivo studies that nanoparticles impregnated ocular inserts effectively delivers significant concentration of drug to the posterior segment of eye after topical administration for treatment of glaucoma. Drug loaded Nanoparticles and their ocular insert have been reported to reduce side effects of orally administered Acetazolamide. Eudragit NPs were prepared by the solvent diffusion nanoprecipitation technique. The prepared NPs were evaluated for various parameters such as particle size, zeta potential, % entrapment efficiency, % drug loading, DSC, FTIR, TEM and stability studies. Ocular inserts of NPs were prepared by solvent casting method. The prepared ocular inserts were evaluated for thickness, content uniformity, folding endurance, disintegration time, morphology and stability study. The NPs and ocular inserts were evaluated for in-vitro drug diffusion study, ex-vivo trans-corneal permeability study, in-vivo ocular tolerability and intra ocular pressure (IOP) reduction study. The optimized batch was stable for a period of 3months in lyophilized form. The optimized formulations had size range of 367nm±8nm, zeta potential around +7mV±1.3mV and 51.61%±3.84% entrapment efficiency with 19%±1.40% drug loading. The ex-vivo trans-corneal study showed higher cumulative corneal permeation, flux across corneal tissue (2.460±0.028μg/ml) and apparent corneal permeability (3.926×10-6cm2/s & 3.863×10-6cm2/s) from drug loaded Eudragit NPs and Ocular inserts as compared to drug solution (0.671±0.020μg/ml & 3.166×10-6cm2/s). In-vivo study showed the Eudragit NPs and ocular insert produced significant (P<0.001) lowering in intra ocular pressure compared with the solution of free drug after 3h of topical ocular administration. Plain Eudragit NPs caused no inflammation and/or discomfort in rabbit eyes and neither affected the intra ocular pressure establishing their safety and non irritancy.
Collapse
|
36
|
Karki S, Kim H, Na SJ, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2016.05.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
Niakan S, Heidari B, Akbari G, Nikousefat Z. Comparison of Different Electroporation Parameters on Transfection Efficiency of Sheep Testicular Cells. CELL JOURNAL 2016; 18:425-37. [PMID: 27602325 PMCID: PMC5011331 DOI: 10.22074/cellj.2016.4571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Electroporation can be a highly efficient method for introducing the foreign genetic materials into the targeted cells for transient and/or permanent genetic modification. Considering the application of this technique as a very efficient method for drug, oligonucleotide, antibody and plasmid delivery for clinical applications and production of transgenic animals, the present study aimed to optimize the transfection efficiency of sheep testicular cells including spermatogonial stem cells (SSCs) via electroporation. MATERIALS AND METHODS This study is an experimental research conducted in Biotechnology Research Center (Avicenna Research Institute, Tehran, Iran) from September 2013 to March 2014. Following isolation and propagation of one-month lamb testicular cells (SSCs and somatic testicular cells including; Sertoli, Leydig, and myoid cells), the effect of different electroporation parameters including total voltages (280, 320, and 350 V), burst durations (10, 8, and 5 milliseconds), burst modes (single or double) and addition of dimethyl sulfoxide (DMSO) were evaluated on transfection efficiency, viability rate and mean fluorescent intensity (MFI) of sheep testicular cells. RESULTS The most transfection efficiency was obtained in 320 V/8 milliseconds/single burst group in transduction medium with and without DMSO. There was a significantly inverse correlation between transfection efficiency with application of both following parameters: addition of DMSO and double burst. After transfection, the highest and lowest viability rates of testicular cells were demonstrated in 320 V/8 milliseconds with transduction medium without DMSO and 350 V/5 milliseconds in medium containing DMSO. Ad- dition of DMSO to transduction medium in all groups significantly decreased the viability rate. The comparison of gene expression indicated that Sertoli and SSCs had the most fluorescence intensity in 320 V/double burst/DMSO positive. However, myoid and Leydig cells showed the maximum expression in 320 V/single burst and/or 350 V/double burst/ DMSO positive. CONCLUSION We optimized the electroporation method for transfection of sheep testicular cells and recommended the application of 320 V/8 milliseconds/single pulse/DMSO negative for transduction of plasmid vector into these cells. Among testicular cells, the most external gene expression was demonstrated in SSC population.
Collapse
Affiliation(s)
- Sarah Niakan
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Banafsheh Heidari
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghasem Akbari
- Department of Clinical Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Nikousefat
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
38
|
Park CG, Kim YK, Kim MJ, Park M, Kim MH, Lee SH, Choi SY, Lee WS, Chung YJ, Jung YE, Park KH, Choy YB. Mucoadhesive microparticles with a nanostructured surface for enhanced bioavailability of glaucoma drug. J Control Release 2015; 220:180-188. [DOI: 10.1016/j.jconrel.2015.10.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 11/27/2022]
|
39
|
Duxfield L, Sultana R, Wang R, Englebretsen V, Deo S, Swift S, Rupenthal I, Al-Kassas R. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm Dev Technol 2015; 21:172-9. [PMID: 26794936 DOI: 10.3109/10837450.2015.1091839] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present investigation aimed at improving the ocular bioavailability of gatifloxacin by prolonging its residence time in the eye and reducing problems associated with the drug re-crystallization after application through incorporation into cationic polymeric nanoparticles. Gatifloxacin-loaded nanoparticles were prepared via the nanoprecipitation and double emulsion techniques. A 50:50 Eudragit® RL and RS mixture was used as cationic polymer with other formulation parameters varied. Prepared nanoparticles were evaluated for size, zeta potential, and drug loading. An optimized formulation was selected and further characterized for in vitro drug release, cytotoxicity, and antimicrobial activity. The double emulsion method produced larger nanoparticles than the nanoprecipitation method (410 nm and 68 nm, respectively). Surfactant choice also affected particle size and zeta potential with Tween 80 producing smaller-sized particles with higher zeta potential than PVA. However, the zeta potential was positive at all experimental conditions investigated. The optimal formulation produced by double emulsion technique and has achieved 46% drug loading. This formulation had optimal physicochemical properties with acceptable cytotoxicity results, and very prolonged release rate. The particles antimicrobial activities of the selected formulation have been tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and showed prolonged antimicrobial effect for gatifloxacin.
Collapse
Affiliation(s)
- Linda Duxfield
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Rubab Sultana
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Ruokai Wang
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Vanessa Englebretsen
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Samantha Deo
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| | - Simon Swift
- c Department of Molecular Medicine and Pathology , Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| | - Ilva Rupenthal
- b Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand , and
| | - Raida Al-Kassas
- a Faculty of Medical and Health Sciences , School of Pharmacy, The University of Auckland , Auckland , New Zealand
| |
Collapse
|
40
|
Kakkar S, Karuppayil SM, Raut JS, Giansanti F, Papucci L, Schiavone N, Kaur IP. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int J Pharm 2015; 495:276-289. [PMID: 26325312 DOI: 10.1016/j.ijpharm.2015.08.088] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022]
Abstract
Ophthalmic mycoses including corneal keratitis or endophthalmitis affects 6-million persons/year and can cause blindness. Its management requires antifungals to penetrate the ocular tissue. Oral use of Ketoconazole (KTZ), the first broad-spectrum antifungal to be marketed, is now restricted to life-threatening infections due to severe adverse effects and drug-interactions. Local use of KTZ loaded nanocarrier system can address its toxicity, poor solubility, photodegradation, permeation and bioavailability issues. Solid lipid nanoparticles (SLNs) comprising Compritol(®) 888 ATO and PEG 600 matrix, were presently prepared using hot high-pressure homogenization. Employing extensive characterization: TEM, NMR, DSC, XRD and FTIR, it is proposed that SLNs comprise of a polyethylene glycol (PEG) core into which KTZ is dissolved. PEG endows the lipid matrix with amorphousness and imperfections; rigidity; and, stability to aggregation, on storage and autoclaving. PEG is a simple, cost-effective and safe polymer with superior solubilizing and surfactant-supporting properties. Without its inclusion KTZ could not be loaded into SLNs. It ensured high incorporation efficiency (70%) of KTZ; small size (126 nm); and, better permeation into the eye. Pharmacokinetic studies indicated 2.5 and 1.6 fold higher bioavailability (AUC) in aqueous and vitreous humor, respectively. Biocompatibility and in vitro (both in corneal and retinal cell lines) and in vivo (in rabbits) ocular safety is the other highlight of developed formulation.
Collapse
Affiliation(s)
- Shilpa Kakkar
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | | | - Jayant S Raut
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India
| | - Fabrizio Giansanti
- Department of Translational Medicine and Surgery, Eye Clinic, University of Florence, Viale Morgagni 85, 50134 Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
41
|
Duxfield L, Sultana R, Wang R, Englebretsen V, Deo S, Rupenthal ID, Al-Kassas R. Ocular delivery systems for topical application of anti-infective agents. Drug Dev Ind Pharm 2015; 42:1-11. [DOI: 10.3109/03639045.2015.1070171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Linda Duxfield
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Rubab Sultana
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Ruokai Wang
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Vanessa Englebretsen
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Samantha Deo
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Raida Al-Kassas
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| |
Collapse
|
42
|
Cadinoiu AN, Peptu CA, Fache B, Chailan JF, Popa M. Microparticulated systems based on chitosan and poly(vinyl alcohol) with potential ophthalmic applications. J Microencapsul 2015; 32:381-9. [DOI: 10.3109/02652048.2015.1035682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Avachat AM, Kapure SS. Asenapine maleate in situ forming biodegradable implant: An approach to enhance bioavailability. Int J Pharm 2014; 477:64-72. [DOI: 10.1016/j.ijpharm.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 01/12/2023]
|
44
|
Trehalose-based eye drops preserve viability and functionality of cultured human corneal epithelial cells during desiccation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:292139. [PMID: 24995283 PMCID: PMC4068125 DOI: 10.1155/2014/292139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022]
Abstract
This paper presents the evaluation of cytoprotective ability of trehalose-based eye drops in comparison with commercially available preparations during the experimental desiccation of cultured human corneal epithelial cells. Cultured human corneal epithelial cells (hCEC) underwent incubation with 7 different, commercially available medicaments used commonly in dry eye syndrome treatment, followed by desiccation trial performed on air under the flow hood for 5, 15, 30, and 45 minutes. Cell viability was quantified by live/dead fluorescent assay, while the presence of apoptotic cells was estimated by immunofluorescent staining for active caspase 3 protein. The preservation of membrane functions was evaluated using neutral red staining, while the preservation of proper morphology and phenotype was determined by fluorescent staining for actin filaments, nuclei, and p63 protein. The trehalose-based eye drops showed the highest efficiency in prevention of cell death from desiccation; moreover, this preparation preserved the normal cellular morphology, functions of cell membrane, and proliferative activity more effectively than other tested medicaments.
Collapse
|
45
|
Luo Z, Jin L, Xu L, Zhang ZL, Yu J, Shi S, Li X, Chen H. Thermosensitive PEG–PCL–PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium. Drug Deliv 2014; 23:63-8. [PMID: 24758189 DOI: 10.3109/10717544.2014.903535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Zichao Luo
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Jin
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
| | - Lu Xu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhao Liang Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing Yu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
| | - Shuai Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
| | - Hao Chen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye hospital, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China
| |
Collapse
|
46
|
Mahomed A, Tighe BJ. The design of contact lens based ocular drug delivery systems for single-day use: Part (I) Structural factors, surrogate ophthalmic dyes and passive diffusion studies. J Biomater Appl 2014; 29:341-53. [DOI: 10.1177/0885328214527776] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under ‘passive’ conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role.
Collapse
Affiliation(s)
- Anisa Mahomed
- Biomaterials Research Unit, School of Engineering and Applied Chemistry, Aston University, Birmingham, UK
| | - Brian J Tighe
- Biomaterials Research Unit, School of Engineering and Applied Chemistry, Aston University, Birmingham, UK
| |
Collapse
|
47
|
Giannaccini M, Giannini M, Calatayud MP, Goya GF, Cuschieri A, Dente L, Raffa V. Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE). Int J Mol Sci 2014; 15:1590-605. [PMID: 24451140 PMCID: PMC3907888 DOI: 10.3390/ijms15011590] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
One of the most challenging efforts in drug delivery is the targeting of the eye. The eye structure and barriers render this organ poorly permeable to drugs. Quite recently the entrance of nanoscience in ocular drug delivery has improved the penetration and half-life of drugs, especially in the anterior eye chamber, while targeting the posterior chamber is still an open issue. The retina and the retinal pigment epithelium/choroid tissues, located in the posterior eye chamber, are responsible for the majority of blindness both in childhood and adulthood. In the present study, we used magnetic nanoparticles (MNPs) as a nanotool for ocular drug delivery that is capable of specific localization in the retinal pigmented epithelium (RPE) layer. We demonstrate that, following intraocular injection in Xenopus embryos, MNPs localize specifically in RPE where they are retained for several days. The specificity of the localization did not depend on particle size and surface properties of the MNPs used in this work. Moreover, through similar experiments in zebrafish, we demonstrated that the targeting of RPE by the nanoparticles is not specific for the Xenopus species.
Collapse
Affiliation(s)
- Martina Giannaccini
- Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy.
| | - Marianna Giannini
- Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy.
| | - M Pilar Calatayud
- Instituto de Nanociencia de Aragon & Condensed Matter Physics Department, Universidad de Zaragoza, Mariano Esquillor edif. I+D, Zaragoza 50018, Spain.
| | - Gerardo F Goya
- Instituto de Nanociencia de Aragon & Condensed Matter Physics Department, Universidad de Zaragoza, Mariano Esquillor edif. I+D, Zaragoza 50018, Spain.
| | - Alfred Cuschieri
- Institute of Life Science, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy.
| | - Luciana Dente
- Department of Biology, Università di Pisa, S.S. 12 Abetone e Brennero 4, Pisa 56127, Italy.
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, S.S. 12 Abetone e Brennero 4, Pisa 56127, Italy.
| |
Collapse
|
48
|
Ali M, Byrne ME. Challenges and solutions in topical ocular drug-delivery systems. Expert Rev Clin Pharmacol 2014; 1:145-61. [DOI: 10.1586/17512433.1.1.145] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Shah SS, Denham LV, Elison JR, Bhattacharjee PS, Clement C, Huq T, Hill JM. Drug delivery to the posterior segment of the eye for pharmacologic therapy. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 5:75-93. [PMID: 20305803 DOI: 10.1586/eop.09.70] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Treatment of diseases of the posterior segment of the eye, such as age-related macular degeneration, cytomegalovirus retinitis, diabetic retinopathy, posterior uveitis and retinitis pigmentosa, requires novel drug delivery systems that can overcome the many barriers for efficacious delivery of therapeutic drug concentrations. This challenge has prompted the development of biodegradable and nonbiodegradable sustained-release systems for injection or transplantation into the vitreous as well as drug-loaded nanoparticles, microspheres and liposomes. These drug delivery systems utilize topical, systemic, subconjunctival, intravitreal, transscleral and iontophoretic routes of administration. The focus of research has been the development of methods that will increase the efficacy of spatiotemporal drug application, resulting in more successful therapy for patients with posterior segment diseases. This article summarizes recent advances in the research and development of drug delivery methods of the posterior chamber of the eye, with an emphasis on the use of implantable devices as well as micro- and nanoparticles.
Collapse
Affiliation(s)
- Shalin S Shah
- Department of Ophthalmology, Louisiana State University Health Sciences Center (LSUHSC), 2020 Gravier St. Suite B, Room 3E6, New Orleans, LA 70112-2234, USA, Tel.: +1 678 296 2334, ,
| | | | | | | | | | | | | |
Collapse
|
50
|
Park CG, Kim MJ, Park M, Choi SY, Lee SH, Lee JE, Shin GS, Park KH, Choy YB. Nanostructured mucoadhesive microparticles for enhanced preocular retention. Acta Biomater 2014; 10:77-86. [PMID: 23978409 DOI: 10.1016/j.actbio.2013.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/14/2013] [Indexed: 01/22/2023]
Abstract
We describe nanostructured microparticles (NMs) containing a mucoadhesive polymer for enhanced preocular retention and consider them as potential carriers of drugs to the eye. These NMs are each composed of entangled nanofibers to give an enlarged specific surface area, and thus can better adhere to the preocular mucus surface. This physical design allows the microparticles still to be composed mainly of a wall material, poly(lactic-co-glycolic acid), as required for controlled drug delivery, while the effects of an additive, mucoadhesive material, polyethylene glycol, can be synergistically improved via the nanostructured morphology. Thus, when formulated in a dry tablet dosage form, the NMs in this work show more than a 10-fold increase in preocular retention in vivo compared to conventional spherical microparticles. Therefore, we conclude that these mucoadhesive NMs can reside on the preocular surface for a prolonged period, and thus appear to be a promising system for topical drug delivery to the eye.
Collapse
Affiliation(s)
- Chun Gwon Park
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 152-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|