1
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
2
|
Khalid R, Mahmood S, Mohamed Sofian Z, Hilles AR, Hashim NM, Ge Y. Microneedles and Their Application in Transdermal Delivery of Antihypertensive Drugs-A Review. Pharmaceutics 2023; 15:2029. [PMID: 37631243 PMCID: PMC10459756 DOI: 10.3390/pharmaceutics15082029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most cutting-edge, effective, and least invasive pharmaceutical innovations is the utilization of microneedles (MNs) for drug delivery, patient monitoring, diagnostics, medicine or vaccine delivery, and other medical procedures (e.g., intradermal vaccination, allergy testing, dermatology, and blood sampling). The MN-based system offers many advantages, such as minimal cost, high medical effectiveness, comparatively good safety, and painless drug application. Drug delivery through MNs can possibly be viewed as a viable instrument for various macromolecules (e.g., proteins, peptides, and nucleic acids) that are not efficiently administered through traditional approaches. This review article provides an overview of MN-based research in the transdermal delivery of hypertensive drugs. The critical attributes of microneedles are discussed, including the mechanism of drug release, pharmacokinetics, fabrication techniques, therapeutic applications, and upcoming challenges. Furthermore, the therapeutic perspective and improved bioavailability of hypertensive drugs that are poorly aqueous-soluble are also discussed. This focused review provides an overview of reported studies and the recent progress of MN-based delivery of hypertensive drugs, paving the way for future pharmaceutical uses. As MN-based drug administration bypasses first-pass metabolism and the high variability in drug plasma levels, it has grown significantly more important for systemic therapy. In conclusion, MN-based drug delivery of hypertensive drugs for increasing bioavailability and patient compliance could support a new trend of hypertensive drug delivery and provide an alternative option, overcoming the restrictions of the current dosage forms.
Collapse
Affiliation(s)
- Ramsha Khalid
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (R.K.); (Z.M.S.)
| | - Ayah R. Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Najihah Mohd Hashim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
3
|
Anjani QK, Sabri AHB, McGuckin MB, Li H, Hamid KA, Donnelly RF. In Vitro Permeation Studies on Carvedilol Containing Dissolving Microarray Patches Quantified Using a Rapid and Simple HPLC-UV Analytical Method. AAPS PharmSciTech 2022; 23:273. [PMID: 36195761 DOI: 10.1208/s12249-022-02422-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Analytical method validation is a vital element of drug formulation and delivery studies. Here, high-performance liquid chromatography in conjunction with UV detection (HPLC-UV) has been used to produce a straightforward, quick, yet sensitive analytical approach to quantify carvedilol (CAR). A C18 column was used to isolate the analyte from the mixture by isocratic elution with a mobile phase comprising a mixture of 0.1% v/v trifluoroacetic acid in water and acetonitrile in a ratio of 65:35 v/v at a flow rate of 0.6 mL min-1. Linearity was observed for CAR concentrations within the range of 1.5-50 μg mL-1 (R2 = 0.999) in phosphate buffer saline and within the range of 0.2-6.2 μg mL-1 (R2 = 0.9999) in methanol. The International Council on Harmonization (ICH) requirements were followed throughout the validation of the isocratic approach, rendering it specific, accurate, and precise. Moreover, robustness tests indicated that the method remained selective and specific despite small deliberate changes to environmental and operational factors. An efficient extraction procedure was also developed to extract and quantify CAR from excised neonatal porcine skin, resulting in recovery rates ranging from 95 to 97%. The methods reported here have been successfully utilised to evaluate CAR permeation, both transdermally and intradermally following application of a dissolving microarray patch (MAP) to excised neonatal porcine skin.
Collapse
Affiliation(s)
- Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.,Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar, 90234, Indonesia
| | - Akmal Hidayat Bin Sabri
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Mary B McGuckin
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Huanhuan Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, 42300, Puncak Alam, Malaysia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
4
|
Yamada M, Dang N, Lin LL, Flewell-Smith R, Espartero LJL, Bramono D, Grégoire S, Belt PJ, Prow TW. Elongated microparticles tuned for targeting hyaluronic acid delivery to specific skin strata. Int J Cosmet Sci 2021; 43:738-747. [PMID: 34757625 DOI: 10.1111/ics.12749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Microneedle or fractional laser applications are the most common topical delivery enhancement platforms. However, these methods of drug delivery are not skin strata specific. Drug delivery approaches which could target specific stratum of the skin remains a challenge. Elongated microparticles (EMPs) have been used in enhancing drug delivery into the skin. The aim of this study was to evaluate, for the first time, elongated silica microparticles with two different length profiles to enhance delivery of hyaluronic acid into different strata of human skin. METHODS Two types of EMPs - long (milled EMPs) or short (etched EMPs) length ranges were characterized. A prototypical liquid formulation (Fluorescent hyaluronic acid) with and without EMP enhancement were evaluated for hyaluronic acid delivery in ex-vivo human skin. High Performance Liquid Chromatography (HPLC), Typhoon fluorescence scanning system, Laser Scanning Confocal Microscopy (LSCM) and Reflectance Confocal Microscopy (RCM) were used to validate F-HA stability, visualize fluorescein in the skin, image the depth of F-HA delivery in the skin and define EMP penetration in skin strata, respectively. Statistical analysis was conducted using GraphPad Prism 6 software (GraphPad Software Inc, USA). RESULTS Fluorescein-hyaluronic acid was stable and EMP enhanced skin penetration. Reflectance confocal microscopy revealed that "etched EMP" penetrated the skin to the stratum spinosum level. The vast majority (97.8%; p < 0.001) of the etched EMP did not penetrate completely through the viable epidermis and no obvious penetration into the dermis. In contrast, milled EMP showed 41-fold increase in penetration compared to the etched EMP but penetrated beyond the dermoepidermal junction. CONCLUSION EMPs can enhance delivery of hyaluronic acid. Using EMPs with defined length distributions, which can be tuned for a specific stratum of the skin, can achieve targeted hyaluronic acid delivery.
Collapse
Affiliation(s)
- Miko Yamada
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Nhung Dang
- Dermatology Research Centre, The University of Queensland, School of Medicine, Brisbane, Australia
| | - Lynlee L Lin
- Dermatology Research Centre, The University of Queensland, School of Medicine, Brisbane, Australia
| | - Ross Flewell-Smith
- Future Industries Institute, University of South Australia, Adelaide, Australia.,Dermatology Research Centre, The University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Diah Bramono
- Open Innovation, L'Oréal Research & Innovation, Singapore
| | - Sébastien Grégoire
- Advanced Research, L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Paul J Belt
- Department of Plastic and Reconstructive Surgery, Princess Alexandra Hospital, Brisbane, Australia
| | - Tarl W Prow
- Future Industries Institute, University of South Australia, Adelaide, Australia.,Skin Research Centre, York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
5
|
Qiao Z, Tran L, Parks J, Zhao Y, Hai N, Zhong Y, Ji H. Highly stretchable gelatin‐polyacrylamide hydrogel for potential transdermal drug release. NANO SELECT 2020. [DOI: 10.1002/nano.202000087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhen Qiao
- Department of Chemistry Drexel University Philadelphia Pennsylvania 19104 USA
| | - Long Tran
- Department of Chemistry Drexel University Philadelphia Pennsylvania 19104 USA
| | - Jesse Parks
- Department of Chemistry Drexel University Philadelphia Pennsylvania 19104 USA
| | - Yao Zhao
- School of Biomedical Engineering Science and Health Systems Drexel University Philadelphia Pennsylvania 19104 USA
| | - Nan Hai
- School of Biomedical Engineering Science and Health Systems Drexel University Philadelphia Pennsylvania 19104 USA
| | - Yinghui Zhong
- School of Biomedical Engineering Science and Health Systems Drexel University Philadelphia Pennsylvania 19104 USA
| | - Hai‐Feng Ji
- Department of Chemistry Drexel University Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
6
|
Ita K, Ashong S. Percutaneous Delivery of Antihypertensive Agents: Advances and Challenges. AAPS PharmSciTech 2020; 21:56. [PMID: 31909450 DOI: 10.1208/s12249-019-1583-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hypertension remains a significant risk factor for several cardiovascular disorders including coronary artery disease and heart failure. Despite the large armamentarium of drugs available for the management of high blood pressure, low oral availability is an ongoing challenge. Researchers are constantly developing alternative drug delivery systems. This review focuses on the transcutaneous delivery of antihypertensive agents. The use of diverse technologies for the delivery of specific antihypertensive agents is emphasized. The advances made and the challenges encountered are highlighted. Several transdermal drug delivery strategies are employed for the transport of this group of therapeutic agents across the skin and the most widely used techniques include microneedles, iontophoresis, sonophoresis, and chemical penetration enhancers. Each of these methods has benefits and limitations, and there are ongoing attempts by scientists to address the shortcomings. For instance, skin irritation continues to be a major challenge with iontophoretic transport while the quantity of a medication that can be incorporated into dissolving microneedles is limited. With skin permeation enhancers, concerns relating to cytotoxicity and irritation are common. Even though the use of ultrasound is exciting, this mode of delivery is also accompanied by challenges such as the design of a battery system that is potent enough to drive a low-frequency sonophoretic cymbal array, while still being portable enough to function as a wearable device. Although most researchers report enhanced drug delivery with the aforementioned methods, it is important to deliver therapeutically useful doses of these medications.
Collapse
|
7
|
|
8
|
Li Y, Liu F, Su C, Yu B, Liu D, Chen HJ, Lin DA, Yang C, Zhou L, Wu Q, Xia W, Xie X, Tao J. Biodegradable Therapeutic Microneedle Patch for Rapid Antihypertensive Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30575-30584. [PMID: 31382742 DOI: 10.1021/acsami.9b09697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hypertensive emergency causes severe cardiovascular diseases accompanied by acute target organ damage, requiring rapid and smooth blood pressure (BP) reduction. Current medicines for treating hypertensive emergencies, such as sodium nitroprusside (SNP), require careful dose control to avoid side effects (e.g., cyanide poisoning). The clinical administration of SNP using intravenous injection or drip further restrict its usage for first aid or self-aid in emergencies. Here, we developed an antihypertensive microneedle (aH-MN) technique to transdermally deliver SNP in combination with sodium thiosulfate (ST) as a cyanide antidote in a painless way. Dissolvable microneedles loaded with SNP and ST were fabricated via the centrifugation casting method, where the SNPs were stably packaged in microneedles and would be immediately released into the systemic circulation via subcutaneous capillaries when aH-MNs penetrated the skin. The antihypertensive effects were demonstrated on spontaneously hypertensive rat models. Rapid and potent BP reduction was achieved via aH-MN treatment, fulfilling clinical BP-control requirements for hypertensive emergencies. The side effects including skin irritation and target organ damage of aH-MN therapies were evaluated; the combinative delivery of ST effectively suppressed these side effects induced by the consecutive intake of SNP. This study introduces an efficient and patient-friendly antihypertensive therapy with a favorable side-effect profile, particularly a controllable and self-administrable approach to treat hypertensive emergencies.
Collapse
Affiliation(s)
- Yan Li
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
- Department of Cardiovascular Medicine , The First Affiliated Hospital of Jinan University , 510630 Guangzhou , China
| | - Fanmao Liu
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Chen Su
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| | - Bingbo Yu
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| | - Di Liu
- Pritzker School of Medicine , University of Chicago , Chicago , Illinois 60637 , United States
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Di-An Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Lingfei Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center , Sun Yat-sen University , 510060 Guangzhou , China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| | - Xi Xie
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-sen University , 510006 Guangzhou , China
| | - Jun Tao
- Department of Hypertension and Vascular Disease , The First Affiliated Hospital, Sun Yat-sen University , 510080 Guangzhou , China
| |
Collapse
|