1
|
Lashkarizadeh MR, Shafie'ei M, Lashkarizadeh M, Mousavi SM, Sheibani G, Akbari Z, Daneshafruz H, Derakhshani A, Khamesipour F. Assessment of the Effects of Albendazole-Loaded Sulfonated Graphene Oxide on Echinococcus granulosus Protoscoleces: An In Vitro Investigation. J Trop Med 2024; 2024:4851392. [PMID: 39372238 PMCID: PMC11452239 DOI: 10.1155/2024/4851392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/15/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Due to Albendazole's relatively low efficacy and bioavailability, Echinococcosis has proven a challenge to manage successfully, with several studies investigating ways to improve the outcome, mainly showing mixed results. We, therefore, aimed to evaluate whether Sulfonated Graphene Oxide (S-GO), as nanocarriers, could improve the mentioned outcome. Methods Echinococcus protoscoleces were divided into four groups based on the agent they received, which comprised control, S-GO, Albendazole, and Albendazole-loaded S-GO (S-GO-Albendazole). Then, the Bax and Bcl-2 gene expression levels and the number of surviving protoscoleces in each group were determined. Results Bax gene expression increased by 121% in the 50 μg/ml concentration of the S-GO-Albendazole, while Bcl-2 gene expression decreased by 64%. Moreover, S-GO-Albendazole was approximately 18% more effective at neutralizing protoscoleces than Albendazole and 14% and 31% more effective at improving the expression of the mentioned genes, respectively (p < 0.05). In addition, the number of surviving protoscoleces after exposure to the mentioned concentration reduced by approximately 99%. Conclusions S-GO, despite not having significant lethality on protoscoleces, significantly increased the lethality of Albendazole and, therefore, is a suitable nanocarrier. However, we recommend conducting in vivo and clinical studies to more accurately determine this nanocomplex's potential and side effects.
Collapse
Affiliation(s)
| | - Mohammad Shafie'ei
- Student Research CommitteeFaculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Mahdiyeh Lashkarizadeh
- Pathology and Stem Cell Research CenterDepartment of PathologySchool of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in IranKerman University of Medical Sciences, Kerman, Iran
| | - Ghazaleh Sheibani
- Medical Student of First Faculty of Medicine Charles University, Kateřinskǎ 32, Prague 2 121 08, Czech Republic
| | - Zahra Akbari
- Faculty of MedicineKerman University of Medical Sciences, Kerman, Iran
| | - Haniyeh Daneshafruz
- Department of ChemistryShahid Bahonar University of Kerman, Kerman 76169, Iran
| | - Ali Derakhshani
- Research Center for Hydatid Disease in IranKerman University of Medical Sciences, Kerman, Iran
| | - Faham Khamesipour
- Halal Research Center of the Islamic Republic of Iran (IRI)Iran Food and Drug AdministrationMinistry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
2
|
Valdehita A, Fernández-Cruz ML, Navas JM. The Potentiating Effect of Graphene Oxide on the Arylhydrocarbon Receptor (AhR)-Cytochrome P4501A (Cyp1A) System Activated by Benzo(k)fluoranthene (BkF) in Rainbow Trout Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2501. [PMID: 37764529 PMCID: PMC10534689 DOI: 10.3390/nano13182501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
The increasing use of graphene oxide (GO) will result in its release into the environment; therefore, it is essential to determine its final fate and possible metabolism by organisms. The objective of this study was to assess the possible role of the aryl hydrocarbon receptor (AhR)-dependent cytochrome P4501A (Cyp1A) detoxification activities on the catabolism of GO. Our hypothesis is that GO cannot initially interact with the AhR, but that after an initial degradation caused by other mechanisms, small fractions of GO could activate the AhR, inducing Cyp1A. The environmental pollutant benzo(k)fluoranthene (BkF) was used for the initial activation of the AhR in the rainbow trout (Oncorhynchus mykiss) cell line RTL-W1. Pre-, co-, and post-exposure experiments with GO were performed and Cyp1A induction was monitored. The strong stimulation of Cyp1A observed in cells after exposure to GO, when BkF levels were not detected in the system, suggests a direct action of GO. The role of the AhR was confirmed by a blockage of the observed effects in co-treatment experiments with αNF (an AhR antagonist). These results suggest a possible role for the AhR and Cyp1A system in the cellular metabolism of GO and that GO could modulate the toxicity of environmental pollutants.
Collapse
Affiliation(s)
| | | | - José M. Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain; (A.V.); (M.L.F.-C.)
| |
Collapse
|
3
|
Eskandari F, Ghahramani Y, Abbaszadegan A, Gholami A. The antimicrobial efficacy of nanographene oxide and double antibiotic paste per se and in combination: part II. BMC Oral Health 2023; 23:253. [PMID: 37131216 PMCID: PMC10155346 DOI: 10.1186/s12903-023-02957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Finding strategies to overcome the rising trends of antimicrobial resistance against currently available antimicrobial agents has become increasingly relevant. Graphene oxide has recently emerged as a promising material due to its outstanding physicochemical and biological properties. This study aimed to validate previous data on the antibacterial activity of nanographene oxide (nGO), double antibiotic paste (DAP), and their combination (nGO-DAP). METHODS The antibacterial evaluation was performed against a wide range of microbial pathogens. Synthesis of nGO was achieved using a modified Hummers' method, and loading it with ciprofloxacin and metronidazole resulted in nGO-DAP. The microdilution method was utilized to assess the antimicrobial efficacy of nGO, DAP, and nGO-DAP against two gram-positive bacteria (S. aureus and E. faecalis), two gram-negative bacteria (E. coli, and S. typhi), and an opportunistic pathogenic yeast (C. albicans). Statistical analysis was conducted using one-sample t-test and one-way ANOVA (α = 0.05). RESULTS All three antimicrobial agents significantly increased the killing percent of microbial pathogens compared to the control group (P < 0.05). Furthermore, the synthesized nGO-DAP exhibited higher antimicrobial activity than nGO and DAP per se. CONCLUSION The novel synthesized nGO-DAP can be used as an effective antimicrobial nanomaterial for use in dental, biomedical, and pharmaceutical fields against a range of microbial pathogens, including gram-negative and gram-positive bacteria, as well as yeasts.
Collapse
Affiliation(s)
- Fateme Eskandari
- Dentist, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasamin Ghahramani
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran
| | - Abbas Abbaszadegan
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Ghasrdasht Street, Shiraz, 71956-15878, Iran.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Li Y, Luo Q, Liu S, Su J, Chen J, Dong G, Wang Y. Transcriptome analysis of Shewanella xiamenensis co-incubated with internalized carbon dots in response to boosting Cr(VI)-bioreduction. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Ban G, Hou Y, Shen Z, Jia J, Chai L, Ma C. Potential Biomedical Limitations of Graphene Nanomaterials. Int J Nanomedicine 2023; 18:1695-1708. [PMID: 37020689 PMCID: PMC10069520 DOI: 10.2147/ijn.s402954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Graphene-family nanomaterials (GFNs) possess mechanical stiffness, optical properties, and biocompatibility making them promising materials for biomedical applications. However, to realize the potential of graphene in biomedicine, it must overcome several challenges that arise when it enters the body's circulatory system. Current research focuses on the development of tumor-targeting devices using graphene, but GFNs accumulated in different tissues and cells through different pathways, which can cause toxic reactions leading to cell apoptosis and body dysfunction when the accumulated amount exceeds a certain limit. In addition, as a foreign substance, graphene can induce complex inflammatory reactions with immune cells and inflammatory factors, potentially enhancing or impairing the body's immune function. This review discusses the biomedical applications of graphene, the effects of graphene materials on human immune function, and the biotoxicity of graphene materials.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Correspondence: Ge Ban, Email
| | - Yingze Hou
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Department of Biomedical Research, Research and Innovation Center, Xinjiang Institute of Technology, Xinjiang, 843100, People’s Republic of China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Lei Chai
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chongyang Ma
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| |
Collapse
|
6
|
Zanelli D, Candotto Carniel F, Fortuna L, Pavoni E, Jehová González V, Vázquez E, Prato M, Tretiach M. Interactions of airborne graphene oxides with the sexual reproduction of a model plant: When production impurities matter. CHEMOSPHERE 2023; 312:137138. [PMID: 36343732 DOI: 10.1016/j.chemosphere.2022.137138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The increasing use of graphene-related materials (GRMs) in everyday-life products raises concerns for their possible release into the environment and consequent impact on organisms. GRMs have widely varying effects on plants and, according to recent evidences, graphene oxide (GO) has the potential to interfere with the sexual reproduction owing to its acidic properties and production residues. Here, stigmas of the model plant Cucurbita pepo (summer squash) were subjected to simulated dry depositions of GO and GO purified from production residues (PGO). Stigmas were then hand-pollinated and GRM deposition was checked by ESEM and confocal microscopy. Analysis of stigma integrity, pH homeostasis and pollen-stigma interactions did not reveal negative effects. Fruit and seed production were not affected, but GO depositions of 22.1 ± 7.2 ng mm-2 affected the normal development of seeds, decreasing seed dimensions, seed germination and germination speed. The elemental analysis revealed that GO has significant quantities of production residues, such as strong acids and oxidants, while PGO has only traces, which justifies the differences observed in the effects caused by the two materials. Our results show that GO depositions of up to 11.1 ± 3.6 ng mm-2, which fall within the variation range of total dry particulate matter depositions reported in the literature, are safe for reproduction of C. pepo. This is the first "safety" limit ever recorded for depositions of "out-of-the-box" GO concerning the reproduction of a seed plant. If confirmed for wind-pollinated species, it might be considered for policymaking of GRMs emissions in the air.
Collapse
Affiliation(s)
- Davide Zanelli
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | | - Lorenzo Fortuna
- Department of Engineering and Architecture, University of Trieste, 34127, Trieste, Italy
| | - Elena Pavoni
- Department of Mathematics and Geosciences, University of Trieste, 34128, Trieste, Italy
| | - Viviana Jehová González
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Ester Vázquez
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain; Department of Organic Chemistry, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla La Mancha, 13071, Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013, Bilbao, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
7
|
Ahmad V, Ansari MO. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224002. [PMID: 36432288 PMCID: PMC9694244 DOI: 10.3390/nano12224002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
Graphene (GN)-related nanomaterials such as graphene oxide, reduced graphene oxide, quantum dots, etc., and their composites have attracted significant interest owing to their efficient antimicrobial properties and thus newer GN-based composites are being readily developed, characterized, and explored for clinical applications by scientists worldwide. The GN offers excellent surface properties, i.e., a large surface area, pH sensitivity, and significant biocompatibility with the biological system. In recent years, GN has found applications in tissue engineering owing to its impressive stiffness, mechanical strength, electrical conductivity, and the ability to innovate in two-dimensional (2D) and three-dimensional (3D) design. It also offers a photothermic effect that potentiates the targeted killing of cells via physicochemical interactions. It is generally synthesized by physical and chemical methods and is characterized by modern and sophisticated analytical techniques such as NMR, Raman spectroscopy, electron microscopy, etc. A lot of reports show the successful conjugation of GN with existing repurposed drugs, which improves their therapeutic efficacy against many microbial infections and also its potential application in drug delivery. Thus, in this review, the antimicrobial potentialities of GN-based nanomaterials, their synthesis, and their toxicities in biological systems are discussed.
Collapse
Affiliation(s)
- Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence:
| | | |
Collapse
|
8
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
9
|
Zanelli D, Candotto Carniel F, Fortuna L, Pavoni E, Jehová González V, Vázquez E, Prato M, Tretiach M. Is airborne graphene oxide a possible hazard for the sexual reproduction of wind-pollinated plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154625. [PMID: 35306080 DOI: 10.1016/j.scitotenv.2022.154625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Products containing graphene-related materials (GRMs) are becoming increasingly common, allowing GRM nanoparticles (NPs) to enter the environment during their life cycle. Thanks to their lightness and bidimensional geometry, GRM NPs can be easily dispersed in the air and travel very long distances. The flowers of wind-pollinated plants may be exposed to airborne GRMs, being apt to intercept pollen from the air and, inevitably, other airborne particles. Here, stigmas of four wind-pollinated plants (Corylus avellana, common hazel; Juglans regia, walnut; Quercus ilex, holm oak; Zea mays, maize) were exposed to airborne graphene oxide (GO) and GO purified from production residues (PGO) at a concentration of 3.7 ng m-3. Subsequently, the stigmas were pollinated and the adhesion of GOs and their effects on stigma integrity and pollen-stigma interaction were examined. The effect of GO NPs in presence of liquid water on the stigma of C. avellana was also investigated. GOs NPs were intercepted by all species, but their effect varied among them. GO reduced pollen adhesion in J. regia and Q. ilex, whereas pollen germination was unaffected in all four species. The presence of a film of water neither completely removed GO NPs from the stigma, nor it enhanced the toxic effect of GO acidity. PGO never affected pollen-stigma interaction, indicating that the phytotoxic substances used for the production of GO, still in traces in commercial GO, are the main cause of GO toxicity. These results reconfirm the need to verify GRMs effects also on key biological processes beside single model organisms.
Collapse
Affiliation(s)
- Davide Zanelli
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy; Department of Chemical and Pharmaceutical Sciences, University of Trieste, I-34127 Trieste, Italy.
| | - Lorenzo Fortuna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Elena Pavoni
- Department of Mathematics and Geosciences, University of Trieste, I-34128 Trieste, Italy
| | - Viviana Jehová González
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, E-13071 Ciudad Real, Spain
| | - Ester Vázquez
- Department of Organic Chemistry, Instituto Regional de Investigación Científica Aplicada (IRICA), University of Castilla-La Mancha, E-13071 Ciudad Real, Spain; Department of Organic Chemistry, University of Castilla La Mancha, E-13071 Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, I-34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, E-20014 Donostia, San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), E-48013 Bilbao, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| |
Collapse
|
10
|
Hariprabu KNG, Sathya M, Vimalraj S. CRISPR/Cas9 in cancer therapy: A review with a special focus on tumor angiogenesis. Int J Biol Macromol 2021; 192:913-930. [PMID: 34655593 DOI: 10.1016/j.ijbiomac.2021.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
Tumor angiogenesis is a critical target for cancer treatment and its inhibition has become a common anticancer approach following chemotherapy. However, due to the simultaneous activation of different compensatory molecular mechanisms that enhance tumor angiogenesis, clinically authorized anti-angiogenic medicines are ineffective. Additionally, medications used to treat cancer have an effect on normal body cells; nonetheless, more research is needed to create new cancer therapeutic techniques. With advances in molecular biology, it is now possible to use gene-editing technology to alter the genome and study the functional changes resulting from genetic manipulation. With the development of CRISPR/Cas9 technology, it has become a very powerful tool for altering the genomes of many organisms. It was determined that CRISPR/Cas9, which first appeared in bacteria as a part of an adaptive immune system, could be used, in modified forms, to alter genomes and function. In conclusion, CRISPR/Cas9 could be a major step forward to cancer management by providing patients with an effective method for dealing with cancers by dissecting the carcinogenesis pathways, identifying new biologic targets, and perhaps arming cancer cells with drugs. Hence, this review will discuss the current applications of CRISPR/Cas9 technology in tumor angiogenesis research for the purpose of cancer treatment.
Collapse
Affiliation(s)
| | - Muthusamy Sathya
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Iber BT, Kasan NA. Recent advances in Shrimp aquaculture wastewater management. Heliyon 2021; 7:e08283. [PMID: 34778576 PMCID: PMC8577153 DOI: 10.1016/j.heliyon.2021.e08283] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/02/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Aquaculture has been celebrated globally and believed to usher in a viable alternative to capture fisheries. It is most welcomed especially now that the world population explosion has pushed the demand on fisheries products to worrisome limits. Shrimp farming is an area of aquaculture that has witnessed significant growth in recent years, contributing substantially to the global aquaculture production. However, intensification of shrimp aquaculture has come with unintended consequences such as wastewater management and other problems emanating from environmental impact of the wastewater. This study identified excess feed and fertilizer application, metabolite wastes, shrimp mortalities, oil spillage from farm machines, drug and chemical abuse as some of the activities contributing to wastewater generation in shrimp aquaculture farming. The impact of shrimp effluent water discharged has been observed to be socio-economic with both positive and negative dimensions. In attempt to overcome the overwhelming problems associated with shrimp effluent water and bring reassurances to its sustainability, a good number of new technological approaches have been identified including caviation, high-rate algal pond system, use of nanomaterials, biofloc technology, nanoadsorbent and polymeric nanoadsorbents. Although all have been proven to be useful, none could boast of a complete and integrated approach that considers all the technological, legal, social, environmental, public health and institutional concerns.
Collapse
Affiliation(s)
- Benedict Terkula Iber
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.,Department of Fisheries and Aquaculture, Federal University of Agriculture Makurdi, P.M.B. 2373, Benue State, Nigeria
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
12
|
Luo S, Chen X, He Y, Gu Y, Zhu C, Yang GH, Qu LL. Recent advances in graphene nanoribbons for biosensing and biomedicine. J Mater Chem B 2021; 9:6129-6143. [PMID: 34291262 DOI: 10.1039/d1tb00871d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, a new type of quasi-one-dimensional graphene-based material, graphene nanoribbons (GNRs), has attracted increasing attention. The limited domain width and rich edge configurations of GNRs endow them with unique properties and wide applications in comparison to two-dimensional graphene. This review article mainly focuses on the electrical, chemical and other properties of GNRs, and further introduces the typical preparation methods of GNRs, including top-down and bottom-up strategies. Then, their biosensing and biomedical applications are highlighted in detail, such as biosensors, photothermal therapy, drug delivery, etc. Finally, the challenges and future prospects in the synthesis and application of functionalized GNRs are discussed. It is expected that GNRs will have significant practical use in biomedical applications in the future.
Collapse
Affiliation(s)
- Siyu Luo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Galactopolymer architectures/functionalized graphene oxide nanocomposites for antimicrobial applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Graphene nanoribbons: A state-of-the-art in health care. Int J Pharm 2021; 595:120269. [DOI: 10.1016/j.ijpharm.2021.120269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/02/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023]
|
15
|
Shende P, Pathan N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr Polym 2020; 255:117385. [PMID: 33436214 DOI: 10.1016/j.carbpol.2020.117385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/24/2020] [Accepted: 11/04/2020] [Indexed: 01/16/2023]
Abstract
Graphene displays various properties like optical, electrical, mechanical, etc. resulting in a large range of applications in biosensing, bio-imaging, medical and electronic devices. The graphene-based nanomaterials show disadvantages like hydrophobic surface, degradation of biomolecules (proteins and amino acids) and toxicity to the human and microbes by permeating into the cells and thus, limiting the use in the biomedical field. Conjugation of carbohydrates like chitin, cyclodextrins and cellulose with graphene results in thermal stability, oxygen repulsive ability, fire-retardant and gelling properties with better biodegradability, biocompatibility and safety leading to the formation of environment-friendly biopolymers. This article delivers an overview of the molecular interaction of different carbohydrates-derived from natural sources like marine, plants and microbes with graphene nanosheets to extend the applications in tissue engineering, surgical materials, biosensing and novel drug delivery for prolonged action in the treatment of breast and hepatic cancers.
Collapse
Affiliation(s)
- Pravin Shende
- Shobaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| | - Nazneen Pathan
- Shobaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
16
|
Zanelli D, Candotto Carniel F, Garrido M, Fortuna L, Nepi M, Cai G, Del Casino C, Vázquez E, Prato M, Tretiach M. Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1877. [PMID: 32961680 PMCID: PMC7560101 DOI: 10.3390/nano10091877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
Products containing graphene-related materials (GRMs) are becoming quite common, raising concerns for environmental safety. GRMs have varying effects on plants, but their impact on the sexual reproduction process is largely unknown. In this study, the effects of few-layer graphene (FLG) and a similarly layered phyllosilicate, muscovite mica (MICA), were tested in vivo on the reproductive structures, i.e., pollen and stigma, of Cucurbita pepo L. ssp. pepo 'greyzini' (summer squash, zucchini). Pollen was exposed to FLG or MICA, after careful physical-chemical characterization, at concentrations of 0.5 and 2 mg of nanomaterial (NM) per g of pollen for up to six hours. Following this, pollen viability was tested. Stigmas were exposed to FLG or MICA for three hours and then analyzed by environmental scanning electron microscopy to verify possible alterations to their surface. Stigmas were then hand-pollinated to verify the effects of the two NMs on pollen adhesion and in vivo pollen germination. FLG and MICA altered neither pollen viability nor the stigmatic surface. However, both NMs equivalently decreased pollen adhesion and in vivo germination compared with untreated stigmas. These effects deserve further attention as they could impact on production of fruits and seeds. Importantly, it was shown that FLG is as safe as a naturally occurring nanomaterial.
Collapse
Affiliation(s)
- Davide Zanelli
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127 Trieste, Italy; (D.Z.); (M.T.)
| | - Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127 Trieste, Italy; (D.Z.); (M.T.)
| | - Marina Garrido
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy; (M.G.); (L.F.); (M.P.)
| | - Lorenzo Fortuna
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy; (M.G.); (L.F.); (M.P.)
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100 Siena, Italy; (M.N.); (G.C.); (C.D.C.)
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100 Siena, Italy; (M.N.); (G.C.); (C.D.C.)
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100 Siena, Italy; (M.N.); (G.C.); (C.D.C.)
| | - Ester Vázquez
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005 Ciudad Real, Spain;
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy; (M.G.); (L.F.); (M.P.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque Foundation for Science, Ikerbasque, 48013 Bilbao, Spain
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127 Trieste, Italy; (D.Z.); (M.T.)
| |
Collapse
|
17
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
18
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
19
|
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 2020; 11:6606-6622. [PMID: 33033592 PMCID: PMC7499860 DOI: 10.1039/d0sc02658a] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by selective action or in a broad spectrum. A fundamental requirement is non-toxicity. However, biocompatible nanomaterials have very often little or no antiviral activity, preventing their practical use. Carbon-based nanomaterials have displayed encouraging results and can present the required mix of biocompatibility and antiviral properties. In the present review, the main candidates for future carbon nanometric antiviral systems, namely graphene, carbon dots and fullerenes, have been critically analysed. In general, different carbon nanostructures allow several strategies to be applied. Some of the materials have peculiar antiviral properties, such as singlet oxygen emission, or the capacity to interfere with virus enzymes. In other cases, nanomaterials have been used as a platform for functional molecules able to capture and inhibit viral activity. The use of carbon-based biocompatible nanomaterials as antivirals is still an almost unexplored field, while the published results show promising prospects.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| | - Luigi Stagi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| |
Collapse
|
20
|
Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020. [DOI: 10.3390/catal10060680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This paper aims to revise research on carbonaceous nanomaterials used in developing sensors. In general, nanomaterials are known to be useful in developing high-performance sensors due to their unique physical and chemical properties. Thus, descriptions were made for various structural features, properties, and manner of functionalization of carbon-based nanomaterials used in electrochemical sensors. Of the commonly used technologies in manufacturing electrochemical sensors, the screen-printing technique was described, highlighting the advantages of this type of device. In addition, an analysis was performed in point of the various applications of carbon-based nanomaterial sensors to detect analytes of interest in different sample types.
Collapse
|
21
|
Massoumi B, Taghavi N, Ghamkhari A. Synthesis of a new biodegradable system based on β-cyclodextrin/iron oxide nanocomposite: application for delivery of docetaxel. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03254-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Li Y, Chen Z, Shi Y, Luo Q, Wang Y, Wang H, Peng Y, Wang H, He N, Wang Y. Function of c-type cytochromes of Shewanella xiamenensis in enhanced anaerobic bioreduction of Cr(VI) by graphene oxide and graphene oxide/polyvinyl alcohol films. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:122018. [PMID: 31927260 DOI: 10.1016/j.jhazmat.2020.122018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Graphene-based materials have been demonstrated to facilitate electron extracellular transfer (EET) of Shewanella. In this study, compared to group lacking graphene oxide (GO)-based materials, GO films-added group and graphene oxide/polyvinyl alcohol (GO/PVA) film-added group delivered 2.67- and 3.13-fold increases in the Cr(VI) reduction by Shewanella xiamenensis, respectively. The whole reduction process could be divided into three stages, including microbial Cr(VI) reduction and GO reduction stage, microbial GO reduction stage and microbial Cr(VI) reduction mediated by reduced graphene oxide (rGO) stage. Moreover, gene analysis revealed that addition of GO and GO/PVA films stimulated overexpression of several c-type cytochrome (c-Cyts) genes, including mtrA, mtrB, mtrC, mtrD, mtrE, mtrF, omcA, petC and SO-4047. Specifically, appreciable Cr(VI) reduction by the strains that overexpressed mtrA, mtrB, mtrC, mtrD, mtrE, mtrF and omcA further confirmed that overexpression of c-Cyts genes indeed enhanced the efficiency of Cr(VI) reduction. Based on these results, the specific function of every c-Cyt was clearly found in Cr(VI) reduction by the induction of GO-based materials. Our finding has disclosed a synergetic mechanism stimulated by GO-based materials to enhance Cr(VI) bioreduction that was not only mediated through the modification of material but also upregulated the expression of functional genes.
Collapse
Affiliation(s)
- Yixin Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Zheng Chen
- School of Environmental Science and Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, PR China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, PR China; Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, PR China.
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Qingliu Luo
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Yiming Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Honghui Wang
- School of Environmental Science and Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, PR China
| | - Yajuan Peng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Haitao Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China.
| |
Collapse
|
23
|
Domenech J, Hernández A, Demir E, Marcos R, Cortés C. Interactions of graphene oxide and graphene nanoplatelets with the in vitro Caco-2/HT29 model of intestinal barrier. Sci Rep 2020; 10:2793. [PMID: 32066787 PMCID: PMC7026044 DOI: 10.1038/s41598-020-59755-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon-based nanomaterials are being increasingly used, demanding strong information to support their safety in terms of human health. As ingestion is one of the most important exposure routes in humans, we have determined their potential risk by using an in vitro model simulating the human intestinal barrier and evaluated the effects of both graphene oxide (GO) and graphene nanoplatelets (GNPs). A coculture of differentiated Caco-2/HT29 cells presenting inherent intestinal epithelium characteristics (i.e. mucus secretion, brush border, tight junctions, etc.) were treated with GO or GNPs for 24 h. Different endpoints such as viability, membrane integrity, NPs localization, cytokines secretion, and genotoxic damage were evaluated to have a wide view of their potentially harmful effects. No cytotoxic effects were observed in the cells that constitute the barrier model. In the same way, no adverse effects were detected neither in the integrity of the barrier (TEER) nor in its permeability (LY). Nevertheless, a different bio-adhesion and biodistribution behavior was observed for GO and GNPs by confocal microscopy analysis, with a more relevant uptake of GNPs. No oxidative damage induction was detected, either by the DCFH-DA assay or the FPG enzyme in the comet assay. Conversely, both GO and GNPs were able to induce DNA breaks, as observed in the comet assay. Finally, low levels of anti-inflammatory cytokines were detected, suggesting a weak anti-inflammatory response. Our results show the moderate/severe risk posed by GO/GNPs exposures, given the observed genotoxic effects, suggesting that more extensive genotoxic evaluations must be done to properly assess the genotoxic hazard of these nanomaterials.
Collapse
Affiliation(s)
- Josefa Domenech
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alba Hernández
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Esref Demir
- Antalya Bilim University, College of Engineering, Department of Material Science and Nanotechnology Engineering, 07190-Dosemealti, Antalya, Turkey
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - Constanza Cortés
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|