1
|
Maïza A, Hamoudi R, Mabondzo A. Targeting the Multiple Complex Processes of Hypoxia-Ischemia to Achieve Neuroprotection. Int J Mol Sci 2024; 25:5449. [PMID: 38791487 PMCID: PMC11121719 DOI: 10.3390/ijms25105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of newborn brain damage stemming from a lack of oxygenated blood flow in the neonatal period. Twenty-five to fifty percent of asphyxiated infants who develop HIE die in the neonatal period, and about sixty percent of survivors develop long-term neurological disabilities. From the first minutes to months after the injury, a cascade of events occurs, leading to blood-brain barrier (BBB) opening, neuronal death and inflammation. To date, the only approach proposed in some cases is therapeutic hypothermia (TH). Unfortunately, TH is only partially protective and is not applicable to all neonates. This review synthesizes current knowledge on the basic molecular mechanisms of brain damage in hypoxia-ischemia (HI) and on the different therapeutic strategies in HI that have been used and explores a major limitation of unsuccessful therapeutic approaches.
Collapse
Affiliation(s)
- Auriane Maïza
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| | - Rifat Hamoudi
- Center of Excellence of Precision Medicine, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London NW3 2PF, UK
| | - Aloïse Mabondzo
- CEA, DMTS, SPI, Neurovascular Unit Research & Therapeutic Innovation Laboratory, Paris-Saclay University, CEDEX 91191 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Maiese K. Innovative therapeutic strategies for cardiovascular disease. EXCLI JOURNAL 2023; 22:690-715. [PMID: 37593239 PMCID: PMC10427777 DOI: 10.17179/excli2023-6306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
As a significant non-communicable disease, cardiovascular disease is the leading cause of death for both men and women, comprises almost twenty percent of deaths in most racial and ethnic groups, can affect greater than twenty-five million individuals worldwide over the age of twenty, and impacts global economies with far-reaching financial challenges. Multiple factors can affect the onset of cardiovascular disease that include high serum cholesterol levels, elevated blood pressure, tobacco consumption and secondhand smoke exposure, poor nutrition, physical inactivity, obesity, and concurrent diabetes mellitus. Yet, addressing any of these factors cannot completely eliminate the onset or progression of cardiovascular disorders. Novel strategies are necessary to target underlying cardiovascular disease mechanisms. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), a histone deacetylase, can limit cardiovascular injury, assist with stem cell development, oversee metabolic homeostasis through nicotinamide adenine dinucleotide (NAD+) pathways, foster trophic factor protection, and control cell senescence through the modulation of telomere function. Intimately tied to SIRT1 pathways are mammalian forkhead transcription factors (FoxOs) which can modulate cardiac disease to reduce oxidative stress, repair microcirculation disturbances, and reduce atherogenesis through pathways of autophagy, apoptosis, and ferroptosis. AMP activated protein kinase (AMPK) also is critical among these pathways for the oversight of cardiac cellular metabolism, insulin sensitivity, mitochondrial function, inflammation, and the susceptibility to viral infections such as severe acute respiratory syndrome coronavirus that can impact cardiovascular disease. Yet, the relationship among these pathways is both intricate and complex and requires detailed insight to successfully translate these pathways into clinical care for cardiovascular disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
3
|
Kitase Y, Madurai NK, Hamimi S, Hellinger RL, Odukoya OA, Ramachandra S, Muthukumar S, Vasan V, Sevensky R, Kirk SE, Gall A, Heck T, Ozen M, Orsburn BC, Robinson S, Jantzie LL. Chorioamnionitis disrupts erythropoietin and melatonin homeostasis through the placental-fetal-brain axis during critical developmental periods. Front Physiol 2023; 14:1201699. [PMID: 37546540 PMCID: PMC10398572 DOI: 10.3389/fphys.2023.1201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Novel therapeutics are emerging to mitigate damage from perinatal brain injury (PBI). Few newborns with PBI suffer from a singular etiology. Most experience cumulative insults from prenatal inflammation, genetic and epigenetic vulnerability, toxins (opioids, other drug exposures, environmental exposure), hypoxia-ischemia, and postnatal stressors such as sepsis and seizures. Accordingly, tailoring of emerging therapeutic regimens with endogenous repair or neuro-immunomodulatory agents for individuals requires a more precise understanding of ligand, receptor-, and non-receptor-mediated regulation of essential developmental hormones. Given the recent clinical focus on neurorepair for PBI, we hypothesized that there would be injury-induced changes in erythropoietin (EPO), erythropoietin receptor (EPOR), melatonin receptor (MLTR), NAD-dependent deacetylase sirtuin-1 (SIRT1) signaling, and hypoxia inducible factors (HIF1α, HIF2α). Specifically, we predicted that EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α alterations after chorioamnionitis (CHORIO) would reflect relative changes observed in human preterm infants. Similarly, we expected unique developmental regulation after injury that would reveal potential clues to mechanisms and timing of inflammatory and oxidative injury after CHORIO that could inform future therapeutic development to treat PBI. Methods: To induce CHORIO, a laparotomy was performed on embryonic day 18 (E18) in rats with transient uterine artery occlusion plus intra-amniotic injection of lipopolysaccharide (LPS). Placentae and fetal brains were collected at 24 h. Brains were also collected on postnatal day 2 (P2), P7, and P21. EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α levels were quantified using a clinical electrochemiluminescent biomarker platform, qPCR, and/or RNAscope. MLT levels were quantified with liquid chromatography mass spectrometry. Results: Examination of EPO, EPOR, and MLTR1 at 24 h showed that while placental levels of EPO and MLTR1 mRNA were decreased acutely after CHORIO, cerebral levels of EPO, EPOR and MLTR1 mRNA were increased compared to control. Notably, CHORIO brains at P2 were SIRT1 mRNA deficient with increased HIF1α and HIF2α despite normalized levels of EPO, EPOR and MLTR1, and in the presence of elevated serum EPO levels. Uniquely, brain levels of EPO, EPOR and MLTR1 shifted at P7 and P21, with prominent CHORIO-induced changes in mRNA expression. Reductions at P21 were concomitant with increased serum EPO levels in CHORIO rats compared to controls and variable MLT levels. Discussion: These data reveal that commensurate with robust inflammation through the maternal placental-fetal axis, CHORIO impacts EPO, MLT, SIRT1, and HIF signal transduction defined by dynamic changes in EPO, EPOR, MLTR1, SIRT1, HIF1α and HIF2α mRNA, and EPO protein. Notably, ligand-receptor mismatch, tissue compartment differential regulation, and non-receptor-mediated signaling highlight the importance, complexity and nuance of neural and immune cell development and provide essential clues to mechanisms of injury in PBI. As the placenta, immune cells, and neural cells share many common, developmentally regulated signal transduction pathways, further studies are needed to clarify the perinatal dynamics of EPO and MLT signaling and to capitalize on therapies that target endogenous neurorepair mechanisms.
Collapse
Affiliation(s)
- Yuma Kitase
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nethra K. Madurai
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah Hamimi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan L. Hellinger
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - O. Angel Odukoya
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sindhu Ramachandra
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sankar Muthukumar
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vikram Vasan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Riley Sevensky
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shannon E. Kirk
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexander Gall
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Timothy Heck
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Maide Ozen
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Liu Y, Liu R, Huang L, Zuo G, Dai J, Gao L, Shi H, Fang Y, Lu Q, Okada T, Wang Z, Hu X, Lenahan C, Tang J, Xiao J, Zhang JH. Inhibition of Prostaglandin E2 Receptor EP3 Attenuates Oxidative Stress and Neuronal Apoptosis Partially by Modulating p38MAPK/FOXO3/Mul1/Mfn2 Pathway after Subarachnoid Hemorrhage in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7727616. [PMID: 36531208 PMCID: PMC9757947 DOI: 10.1155/2022/7727616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/23/2022] [Accepted: 11/19/2022] [Indexed: 09/30/2023]
Abstract
Oxidative stress and neuronal apoptosis contribute to pathological processes of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies demonstrated that the inhibition of prostaglandin E2 receptor EP3 suppressed oxidative stress and apoptotic effects after Alzheimer's disease and intracerebral hemorrhage. This study is aimed at investigating the antioxidative stress and antiapoptotic effect of EP3 inhibition and the underlying mechanisms in a rat mode of SAH. A total of 263 Sprague-Dawley male rats were used. SAH was induced by endovascular perforation. Selective EP3 antagonist L798106 was administered intranasally at 1 h, 25 h, and 49 h after SAH induction. EP3 knockout CRISPR and FOXO3 activation CRISPR were administered intracerebroventricularly at 48 h prior to SAH, while selective EP3 agonist sulprostone was administered at 1 h prior to SAH. SAH grade, neurological deficits, western blots, immunofluorescence staining, Fluoro-Jade C staining, TUNEL staining, 8-OHdG staining, and Nissl staining were conducted after SAH. The expression of endogenous PGES2 increased and peaked at 12 h while the expression of EP1, EP2, EP3, EP4, and Mul1 increased and peaked at 24 h in the ipsilateral brain after SAH. EP3 was expressed mainly in neurons. The inhibition of EP3 with L798106 or EP3 KO CRISPR ameliorated the neurological impairments, brain tissue oxidative stress, and neuronal apoptosis after SAH. To examine potential downstream mediators of EP3, we examined the effect of the increased expression of activated FOXO3 following the administration of FOXO3 activation CRISPR. Mechanism studies demonstrated that L798106 treatment significantly decreased the expression of EP3, p-p38, p-FOXO3, Mul1, 4-HNE, Bax, and cleaved caspase-3 but upregulated the expression of Mfn2 and Bcl-2 in SAH rats. EP3 agonist sulprostone or FOXO3 activation CRISPR abolished the neuroprotective effects of L798106 and its regulation on expression of p38MAPK/FOXO3/Mul1/Mfn2 in the ipsilateral brain after SAH. In conclusion, the inhibition of EP3 by L798106 attenuated oxidative stress and neuronal apoptosis partly through p38MAPK/FOXO3/Mul1/Mfn2 pathway post-SAH in rats. EP3 may serve as a potential therapeutic target for SAH patients.
Collapse
Affiliation(s)
- Yu Liu
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Gang Zuo
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jiaxing Dai
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ling Gao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hui Shi
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuanjian Fang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Takeshi Okada
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Zhifei Wang
- Department of Neurosurgery, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xiao Hu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jie Xiao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Emergency, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92350, USA
| |
Collapse
|
5
|
Holopainen S, Laurila HP, Lappalainen AK, Rajamäki MM, Viitanen SJ. Polycythemia is uncommon in dogs with chronic hypoxic pulmonary disease. J Vet Intern Med 2022; 36:1202-1210. [PMID: 35702817 PMCID: PMC9308418 DOI: 10.1111/jvim.16466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Prolonged tissue hypoxia caused by chronic pulmonary disease is commonly regarded as an important mechanism in the development of secondary polycythemia, but little clinical data are available to support this hypothesis. Objective To study the prevalence and severity of erythrocytosis accompanying chronic hypoxic pulmonary disease in dogs. Animals Forty‐seven dogs with hypoxic chronic pulmonary disease, 27 dogs with nonhypoxic chronic pulmonary disease, and 60 healthy controls. Methods Dogs with chronic pulmonary disease and chronic hypoxemia (partial pressure of arterial oxygen [PaO2] < 80 mm Hg on at least 2 arterial blood gas measurements a minimum of 1 month apart) were identified retrospectively from patient records. Association between arterial oxygen and red blood cell parameters was analyzed using Pearson's correlation coefficients and multivariable linear regression analysis. Results Red blood cell parameters measured at the end of the hypoxemia period were within the laboratory reference range in most dogs. In chronically hypoxemic dogs, hematocrit (Hct) was increased in 4/47 (8.5%; 95% confidence interval [CI], 0‐17) dogs, erythrocyte count (Erytr) was increased in 12/47 (26%; 95%CI, 13‐38) dogs and hemoglobin concentration (Hb) was increased in 3/47 (6.4%; 95%CI, 0‐14) dogs. No marked polycythemia (Hct ≥65%) was noted in any of the dogs. Red blood cell parameters were not associated with the severity of hypoxemia (correlation to PaO2: Erytr, r = −.14; Hb, r = −.21; Hct, r = −.14; P > .05 for all). Conclusions and Clinical Importance Polycythemia is uncommon, and usually mild if present, in dogs with chronic hypoxia caused by pulmonary disease.
Collapse
Affiliation(s)
- Saila Holopainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.,The Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
| | - Henna P Laurila
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anu K Lappalainen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Minna M Rajamäki
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Sanna J Viitanen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Zhang D, Mohammed H, Ye Z, Rhodes MA, Thongda W, Zhao H, Jescovitch LN, Fuller SA, Davis DA, Peatman E. Transcriptomic profiles of Florida pompano (Trachinotus carolinus) gill following infection by the ectoparasite Amyloodiniumocellatum. FISH & SHELLFISH IMMUNOLOGY 2022; 125:171-179. [PMID: 35569776 DOI: 10.1016/j.fsi.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The dinoflagellate Amyloodinium ocellatum is an important pathogenic parasite infecting cultured marine and brackish water fishes worldwide. This includes cultured Florida pompano (Trachinotus carolinus), which is one of the most desirable marine food fish with high economic value in the USA. A. ocellatum infects fish gills and causes tissue damage, increased respiratory rate, reduced appetite, and mortality, especially in closed aquaculture systems. This study mimicked the natural infection of A. ocellatum in cultured pompano and conducted a transcriptomic comparison of gene expression in the gills of control and A. ocellatum infected fish to explore the molecular mechanisms of infection. RNA-seq data revealed 604 differentially expressed genes in the infected fish gills. The immunoglobulin genes (including IgM/T) augmentation and IL1 inflammation suppression were detected after infection. Genes involved in reactive oxygen species mediating parasite killing were also highly induced. However, excessive oxidants have been linked to oxidative tissue damage and apoptosis. Correspondingly, widespread down-regulation of collagen genes and growth factor deprivation indicated impaired tissue repair, and meanwhile the key executor of apoptosis, caspase-3 was highly expressed (25.02-fold) in infected fish. The infection also influenced the respiratory gas sensing and transport genes and established hypoxic conditions in the gill tissue. Additionally, food intake and lipid metabolism were also affected. Our work provides the transcriptome sequencing of Florida pompano and provides key insights into the acute pathogenesis of A. ocellatum. This information can be utilized for designing optimal disease surveillance strategies, future selection for host resistance, and development of novel therapeutic measures.
Collapse
Affiliation(s)
- Dongdong Zhang
- College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, PR China; School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Haitham Mohammed
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Melanie A Rhodes
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Honggang Zhao
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Lauren N Jescovitch
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - S Adam Fuller
- USDA, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, 2955 Highway 130 East, Stuttgart, AR, 72160, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Al-Onaizi MA, Thériault P, Lecordier S, Prefontaine P, Rivest S, ElAli A. Early monocyte modulation by the non-erythropoietic peptide ARA 290 decelerates AD-like pathology progression. Brain Behav Immun 2022; 99:363-382. [PMID: 34343617 DOI: 10.1016/j.bbi.2021.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) pathology is characterized by amyloid-β (Aβ) deposition and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Monocytes have been recently shown to play a major role in modulating Aβ pathology, and thereby have been pointed as potential therapeutic targets. However, the main challenge remains in identifying clinically relevant interventions that could modulate monocyte immune functions in absence of undesired off-target effects. Erythropoietin (EPO), a key regulator of erythrocyte production, has been shown to possess immunomodulatory potential and to provide beneficial effects in preclinical models of AD. However, the transition to use recombinant human EPO in clinical trials was hindered by unwanted erythropoietic effects that could lead to thrombosis. Here, we used a recently identified non-erythropoietic analogue of EPO, ARA 290, to evaluate its therapeutic potential in AD therapy. We first evaluated the effects of early systemic ARA 290 administration on AD-like pathology in an early-onset model, represented by young APP/PS1 mice. Our findings indicate that ARA 290 early treatment decelerated Aβ pathology progression in APP/PS1 mice while improving cognitive functions. ARA 290 potently increased the levels of total monocytes by specifically stimulating the generation of Ly6CLow patrolling subset, which are implicated in clearing Aβ from the cerebral vasculature, and subsequently reducing overall Aβ burden in the brain. Moreover, ARA 290 increased the levels of monocyte progenitors in the bone marrow. Using chimeric APP/PS1 mice in which Ly6CLow patrolling subset are selectively depleted, ARA 290 was inefficient in attenuating Aβ pathology and ameliorating cognitive functions in young animals. Interestingly, ARA 290 effects were compromised when delivered in a late-onset model, represented by aged APP1/PS1. In aged APP/PS1 mice in which AD-like pathology is at advanced stages, ARA 290 failed to reverse Aβ pathology and to increase the levels of circulating monocytes. Our study suggests that ARA 290 early systemic treatment could prevent AD-like progression via modulation of monocyte functions by specifically increasing the ratio of patrolling monocytes.
Collapse
Affiliation(s)
- Mohammed A Al-Onaizi
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Peter Thériault
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Paul Prefontaine
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Serge Rivest
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
8
|
Rossi R, Lo Feudo CM, Zucca E, Vizzarri F, Corino C, Ferrucci F. Innovative Blood Antioxidant Test in Standardbred Trotter Horses. Antioxidants (Basel) 2021; 10:antiox10122013. [PMID: 34943116 PMCID: PMC8698842 DOI: 10.3390/antiox10122013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/03/2022] Open
Abstract
In athletic horses, prolonged and intense training gives rise to an imbalance between the production of free radicals and antioxidant molecules, leading to oxidative stress. Considering the relation between exercise and oxidative stress in horses, the present work aims to validate the Kit Radicaux Libres (KRL) test as a tool to verify the influence of taming, training and racing on the total blood antioxidant activity and some haematochemical parameters. Five Italian Standardbred racehorses (two males and three females, aged 12 ± 1 months) from the same training center were selected and monitored upon arrival and during the following year until the racing season. Blood samples were obtained at different timepoints, corresponding to different steps of training. The data showed that KRL values were higher (p < 0.001) before the beginning of the taming period and at 60 days of taming, compared with the training and racing periods; additionally, the total protein value was affected by the training program, whereas no effects of training on muscle enzymes were detected. These results confirm that exercise plays a role in the production of free radicals and show that the KRL test may represent a valid method to determine oxidative stress in athletic horses.
Collapse
Affiliation(s)
- Raffaella Rossi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (R.R.); (E.Z.); (C.C.); (F.F.)
| | - Chiara Maria Lo Feudo
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (R.R.); (E.Z.); (C.C.); (F.F.)
- Correspondence: ; Tel.: +39-0250334146
| | - Enrica Zucca
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (R.R.); (E.Z.); (C.C.); (F.F.)
| | - Francesco Vizzarri
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via G. Amendola 165/A, 70126 Bari, Italy;
| | - Carlo Corino
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (R.R.); (E.Z.); (C.C.); (F.F.)
| | - Francesco Ferrucci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (R.R.); (E.Z.); (C.C.); (F.F.)
| |
Collapse
|
9
|
Hartog MA, Lewandowski RJ, Hofmann CS, Melber AA, Rothwell CC, Sherman K, Andres J, Tressler JA, Sciuto AM, Wong B, Hoard-Fruchey HM. Transcriptomic Characterization of Inhalation Phosphine Toxicity in Adult Male Sprague-Dawley Rats. Chem Res Toxicol 2021; 34:2032-2044. [PMID: 34427094 DOI: 10.1021/acs.chemrestox.1c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphine (PH3) is a highly toxic, corrosive, flammable, heavier-than-air gas that is a commonly used fumigant. When used as a fumigant, PH3 can be released from compressed gas tanks or produced from commercially available metal phosphide tablets. Although the mechanism of toxicity is unclear, PH3 is thought to be a metabolic poison. PH3 exposure induces multiorgan toxicity, and no effective antidotes or therapeutics have been identified. Current medical treatment consists largely of supportive care and maintenance of cardiovascular function. To better characterize the mechanism(s) driving PH3-induced toxicity, we have performed transcriptomic analysis on conscious adult male Sprague-Dawley rats following whole-body inhalation exposure to phosphine gas at various concentration-time products. PH3 exposure induced concentration- and time-dependent changes in gene expression across multiple tissues. These gene expression changes were mapped to pathophysiological responses using molecular pathway analysis. Toxicity pathways indicative of cardiac dysfunction, cardiac arteriopathy, and cardiac enlargement were identified. These cardiotoxic responses were linked to apelin-mediated cardiomyocyte and cardiac fibroblast signaling pathways. Evaluation of gene expression changes in blood revealed alterations in pathways associated with the uptake, transport, and utilization of iron. Altered erythropoietin signaling was also observed in the blood. Upstream regulator analysis identified several therapeutics predicted to counteract PH3-induced gene expression changes. These include antihypertensive drugs (losartan, candesartan, and prazosin) and therapeutics to reduce pathological cardiac remodeling (curcumin and TIMP3). This transcriptomics study has characterized molecular pathways involved in PH3-induced cardiotoxicity. These data will aid in elucidating a precise mechanism of toxicity for PH3 and guide the development of effective medical countermeasures for PH3-induced toxicity.
Collapse
Affiliation(s)
- Matthew A Hartog
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Rebecca J Lewandowski
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Christopher S Hofmann
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Ashley A Melber
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Cristin C Rothwell
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Katherine Sherman
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Jaclynn Andres
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Justin A Tressler
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Alfred M Sciuto
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Benjamin Wong
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Heidi M Hoard-Fruchey
- Medical Toxicology Research Division, US Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
10
|
Pabel S, Hamdani N, Luedde M, Sossalla S. SGLT2 Inhibitors and Their Mode of Action in Heart Failure-Has the Mystery Been Unravelled? Curr Heart Fail Rep 2021; 18:315-328. [PMID: 34523061 PMCID: PMC8484236 DOI: 10.1007/s11897-021-00529-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW SGLT2 inhibitors (SGLT2i) are new drugs for patients with heart failure (HF) irrespective of diabetes. However, the mechanisms of SGLT2i in HF remain elusive. This article discusses the current clinical evidence for using SGLT2i in different types of heart failure and provides an overview about the possible underlying mechanisms. RECENT FINDINGS Clinical and basic data strongly support and extend the use of SGLT2i in HF. Improvement of conventional secondary risk factors is unlikely to explain the prognostic benefits of these drugs in HF. However, different multidirectional mechanisms of SGLT2i could improve HF status including volume regulation, cardiorenal mechanisms, metabolic effects, improved cardiac remodelling, direct effects on cardiac contractility and ion-homeostasis, reduction of inflammation and oxidative stress as well as an impact on autophagy and adipokines. Further translational studies are needed to determine the mechanisms of SGLT2i in HF. However, basic and clinical evidence encourage the use of SGLT2i in HFrEF and possibly HFpEF.
Collapse
Affiliation(s)
- Steffen Pabel
- Department of Internal Medicine II, University Medical Centre Regensburg, Regensburg, Germany
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology and Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Mark Luedde
- Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Samuel Sossalla
- Department of Internal Medicine II, University Medical Centre Regensburg, Regensburg, Germany. .,Clinic for Cardiology and Pneumology, Georg-August University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Kakadia J, Biggar K, Jain B, Chen AW, Nygard K, Li C, Nathanielsz PW, Jansson T, Gupta MB. Mechanisms linking hypoxia to phosphorylation of insulin-like growth factor binding protein-1 in baboon fetuses with intrauterine growth restriction and in cell culture. FASEB J 2021; 35:e21788. [PMID: 34425031 DOI: 10.1096/fj.202100397r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
Hypoxia increases fetal hepatic insulin-like growth factor binding protein-1 (IGFBP-1) phosphorylation mediated by mechanistic target of rapamycin (mTOR) inhibition. Whether maternal nutrient restriction (MNR) causes fetal hypoxia remains unclear. We used fetal liver from a baboon (Papio sp.) model of intrauterine growth restriction due to MNR (70% global diet of Control) and liver hepatocellular carcinoma (HepG2) cells as a model for human fetal hepatocytes and tested the hypothesis that mTOR-mediated IGFBP-1 hyperphosphorylation in response to hypoxia requires hypoxia-inducible factor-1α (HIF-1α) and regulated in development and DNA-damage responses-1 (REDD-1) signaling. Western blotting (n = 6) and immunohistochemistry (n = 3) using fetal liver indicated greater expression of HIF-1α, REDD-1 as well as erythropoietin and its receptor, and vascular endothelial growth factor at GD120 (GD185 term) in MNR versus Control. Moreover, treatment of HepG2 cells with hypoxia (1% pO2 ) (n = 3) induced REDD-1, inhibited mTOR complex-1 (mTORC1) activity and increased IGFBP-1 secretion/phosphorylation (Ser101/Ser119/Ser169). HIF-1α inhibition by echinomycin or small interfering RNA silencing prevented the hypoxia-mediated inhibition of mTORC1 and induction of IGFBP-1 secretion/phosphorylation. dimethyloxaloylglycine (DMOG) induced HIF-1α and also REDD-1 expression, inhibited mTORC1 and increased IGFBP-1 secretion/phosphorylation. Induction of HIF-1α (DMOG) and REDD-1 by Compound 3 inhibited mTORC1, increased IGFBP-1 secretion/ phosphorylation and protein kinase PKCα expression. Together, our data demonstrate that HIF-1α induction, increased REDD-1 expression and mTORC1 inhibition represent the mechanistic link between hypoxia and increased IGFBP-1 secretion/phosphorylation. We propose that maternal undernutrition limits fetal oxygen delivery, as demonstrated by increased fetal liver expression of hypoxia-responsive proteins in baboon MNR. These findings have important implications for our understanding of the pathophysiology of restricted fetal growth.
Collapse
Affiliation(s)
- Jenica Kakadia
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Bhawani Jain
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Allan W Chen
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, ON, Canada
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.,Southwest National Primate Research Center, San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada.,Department of Pediatrics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Coimbra-Costa D, Garzón F, Alva N, Pinto TCC, Aguado F, Torrella JR, Carbonell T, Rama R. Intermittent Hypobaric Hypoxic Preconditioning Provides Neuroprotection by Increasing Antioxidant Activity, Erythropoietin Expression and Preventing Apoptosis and Astrogliosis in the Brain of Adult Rats Exposed to Acute Severe Hypoxia. Int J Mol Sci 2021; 22:5272. [PMID: 34067817 PMCID: PMC8156215 DOI: 10.3390/ijms22105272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Exposure to intermittent hypoxia has been demonstrated to be an efficient tool for hypoxic preconditioning, preventing damage to cells and demonstrating therapeutic benefits. We aimed to evaluate the effects of respiratory intermittent hypobaric hypoxia (IHH) to avoid brain injury caused by exposure to acute severe hypoxia (ASH). METHODS biomarkers of oxidative damage, mitochondrial apoptosis, and transcriptional factors in response to hypoxia were assessed by Western blot and immunohistochemistry in brain tissue. Four groups of rats were used: (1) normoxic (NOR), (2) exposed to ASH (FiO2 7% for 6 h), (3) exposed to IHH for 3 h per day over 8 days at 460 mmHg, and (4) ASH preconditioned after IHH. RESULTS ASH animals underwent increased oxidative-stress-related parameters, an upregulation in apoptotic proteins and had astrocytes with phenotype forms compatible with severe diffuse reactive astrogliosis. These effects were attenuated and even prevented when the animals were preconditioned with IHH. These changes paralleled the inhibition of NF-κB expression and the increase of erythropoietin (EPO) levels in the brain. CONCLUSIONS IHH exerted neuroprotection against ASH-induced oxidative injury by preventing oxidative stress and inhibiting the apoptotic cascade, which was associated with NF-κB downregulation and EPO upregulation.
Collapse
Affiliation(s)
- Débora Coimbra-Costa
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Fernando Garzón
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Norma Alva
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Tiago C. C. Pinto
- Department of Neurophychiatry and Behavioural Science, Universidade Federal de Pernambuco, Av. da Engenharia, 186-298, Cidade Universitaria, Recife 50740-600, PE, Brazil;
| | - Fernando Aguado
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Joan Ramon Torrella
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Teresa Carbonell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| | - Ramón Rama
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (D.C.-C.); (F.G.); (N.A.); (F.A.); (T.C.); (R.R.)
| |
Collapse
|
13
|
Asker ME, Ali SI, Mohamed SH, Abdelaleem RMA, Younis NN. The efficacy of bone marrow-derived mesenchymal stem cells and/or erythropoietin in ameliorating kidney damage in gamma irradiated rats: Role of non-hematopoietic erythropoietin anti-apoptotic signaling. Life Sci 2021; 275:119388. [PMID: 33774028 DOI: 10.1016/j.lfs.2021.119388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 01/27/2023]
Abstract
Radiation-induced multiple organ injury, including γ-radiation nephropathy, is the most common. Even with dose fractionation strategy, residual late side effects are inevitable. Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and erythropoietin (EPO) have shown to be effective in treating chronic kidney disease and associated anemia. This study aimed to evaluate the effect of BM-MSCs and/or EPO in fractionated γ-irradiation induced kidney damage in rats. Adult male Wistar rats were randomized into 2 groups; normal and 8 Gy (fractionated dose of 2 Gy for 4 days) γ-irradiated rats. Animal from both groups were subdivided to receive the following treatments: BM-MSCs (1 × 106 cells/rat, i.v - once), EPO (100 IU/kg, i.p - every other day for 30 days) or their combined treatment (BM-MSCs and EPO). γ-Irradiated rats showed a noticeable elevation in serum urea and creatinine, kidney malondialdehyde (MDA) and caspase 3 activity. They also revealed significant drop in kidney glutathione (GSH) and Bcl2 protein contents. Conspicuously, they revealed down-regulation of renal EPO signaling (EPO, EPOR, pJAK2, pPI3K and pAkt). Conversely, groups treated with BM-MSCs and/or EPO revealed significant modulation in most tested parameters and appeared to be effective in minimizing the hazard effects of radiation. In conclusion, BM-MSCs and/or EPO exhibited therapeutic potentials against nephrotoxicity induced by fractionated dose of γ-irradiation. An effect mediated by antioxidant and non-hematopoietic EPO downstream anti-apoptotic signaling (PI3K/Akt) pathway. EPO potentiate the repair capabilities of BM-MSCs making this combined treatment a promising therapeutic strategy to overcome radiotherapy-induced kidney damage.
Collapse
Affiliation(s)
- Mervat E Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Seham H Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Rasha M A Abdelaleem
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, PO Box 29, Nasr City, Cairo, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
14
|
Maiese K. Nicotinamide as a Foundation for Treating Neurodegenerative Disease and Metabolic Disorders. Curr Neurovasc Res 2021; 18:134-149. [PMID: 33397266 PMCID: PMC8254823 DOI: 10.2174/1567202617999210104220334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders impact more than one billion individuals worldwide and are intimately tied to metabolic disease that can affect another nine hundred individuals throughout the globe. Nicotinamide is a critical agent that may offer fruitful prospects for neurodegenerative diseases and metabolic disorders, such as diabetes mellitus. Nicotinamide protects against multiple toxic environments that include reactive oxygen species exposure, anoxia, excitotoxicity, ethanolinduced neuronal injury, amyloid (Aß) toxicity, age-related vascular disease, mitochondrial dysfunction, insulin resistance, excess lactate production, and loss of glucose homeostasis with pancreatic β-cell dysfunction. However, nicotinamide offers cellular protection in a specific concentration range, with dosing outside of this range leading to detrimental effects. The underlying biological pathways of nicotinamide that involve the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and mammalian forkhead transcription factors (FoxOs) may offer insight for the clinical translation of nicotinamide into a safe and efficacious therapy through the modulation of oxidative stress, apoptosis, and autophagy. Nicotinamide is a highly promising target for the development of innovative strategies for neurodegenerative disorders and metabolic disease, but the benefits of this foundation depend greatly on gaining a further understanding of nicotinamide's complex biology.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
15
|
Abstract
Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.
Collapse
|
16
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
17
|
Suyono H, Sanjaya K, Susanti D. The Role of Antiapoptotic Erythropoietin on Ultraviolet B-Induced Photodamaged Skin Through Inhibition of Sunburn Cells. FOLIA MEDICA INDONESIANA 2020. [DOI: 10.20473/fmi.v56i2.21229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ultraviolet light causes photodamaged skin leading to photoaging skin. Ultraviolet-B (UV-B) causes epidermal keratinocyte apoptosis, namely sunburn cell, through apoptotic intrinsic pathway. Erythropoietin (EPO) has a role in cytoprotection in various tissues but its role to epidermal skin is not clear yet. This study was designed pretest-posttest control group design. Thirty two male mice Mus musculus, strain Balbc, were divided into control and treatment group, 16 mice each group. All mice were exposured by UV-B light 16mJ/cm2, distance 30 cm, duration 90 seconds, for 3 consecutive days. Four mice each group were randomly sacrificed as pretest data. The control mice were given aquadest subcutaneous injection 0.1 mL, and treatment mice were given EPO subcutaneous injection 0.1 mL (100 IU/kg BW). UVB were given everyday with same protocol above. Treatments were given 4 times, interval 3 days. All mice were sacrificed to examine sunburn cells. Data were performed as mean ± SD and analyzed by t-test using SPSS 17.0 with significant value p<0.05. Sunburn cells of pretest control were 25.00 ± 4.85% and treatment group were 24.83 ± 5.15%. Sunburn cells significantly decreased (p=0.002) in treatment group (31.5 ± 9.39%) than control (50.83 ± 6.70%). UV-B causes sunburn cells formation. EPO inhibits apoptosis through increasing NO production and eNOS expression, inhibiting caspase and proinflammatory cytokines, and increasing antiapoptotic protein. EPO has a role in skin apoptosis inhibition which is shown by decreased sunburn cells
Collapse
|
18
|
Jiang S, Yang J, Fang DA. Transcriptome changes of Takifugu obscurus liver after acute exposure to the oxygenated-PAH 9,10-phenanthrenequione. Physiol Genomics 2020; 52:305-313. [PMID: 32538278 DOI: 10.1152/physiolgenomics.00022.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Contamination with polycyclic aromatic hydrocarbons (PAHs) causes noticeable ecological problems in aquatic ecosystems. 9,10-Phenanthrenequione (9,10-PQ) is an oxidized PAH and is highly toxic to aquatic animals. However, the effects of 9,10-PQ on the molecular metabolism of fish remain largely unknown. In this study, Takifugu obscurus juveniles were acutely exposed to 44.30 µg/L 9,10-PQ for 3 days. The transcriptome profile changes in their livers were compared between the 9,10-PQ treatment group and the control using T. rubripes as the reference genome. The results identified 22,414 genes in our transcriptome. Among them, 767 genes were differentially expressed after exposure to 9,10-PQ, which enriched 16 KEGG pathways. Among them, the glycolysis, phagosome, and FOXO signaling pathways were significantly activated in 9,10-PQ treatment compared with the control. These data indicate that 9,10-PQ increased the glycolysis capacity to produce more energy for resistance and harmed immune function. Moreover, several genes related to tumorigenesis were significantly upregulated in response to 9,10-PQ, displaying the carcinogenic toxicity of 9,10-PQ to T. obscurus. Genes in steroid biosynthesis pathways were downregulated in the 9,10-PQ treatment group, suggesting interference with the endocrine system. Overall, these findings provide information to help evaluate the environmental risks that oxygenated-PAHs present to T. obscurus.
Collapse
Affiliation(s)
- Shulun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
19
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
20
|
Chen ZY, Jiang N, Guo S, Li BB, Yang JQ, Chai SB, Yan HF, Sun PM, Zhang T, Sun HW, Yang HM, Zhou JL, Cui Y. Effect of simulated microgravity on metabolism of HGC-27 gastric cancer cells. Oncol Lett 2020; 19:3439-3450. [PMID: 32269617 PMCID: PMC7115135 DOI: 10.3892/ol.2020.11451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
The understanding into the pathogenesis and treatment of gastric cancer has improved in recent years; however, a number of limitations have delayed the development of effective treatment. Cancer cells can undergo glycolysis and inhibit oxidative phosphorylation in the presence of oxygen (Warburg effect). Previous studies have demonstrated that a rotary cell culture system (RCCS) can induce glycolytic metabolism. In addition, the potential of regulating cancer cells by targeting their metabolites has led to the rapid development of metabolomics. In the present study, human HGC-27 gastric cancer cells were cultured in a RCCS bioreactor, simulating weightlessness. Subsequently, liquid chromatography-mass spectrometry was used to examine the effects of simulated microgravity (SMG) on the metabolism of HGC-27 cells. A total of 67 differentially regulated metabolites were identified, including upregulated and downregulated metabolites. Compared with the normal gravity group, phosphatidyl ethanolamine, phosphatidyl choline, arachidonic acid and sphinganine were significantly upregulated in SMG conditions, whereas sphingomyelin, phosphatidyl serine, phosphatidic acid, L-proline, creatine, pantothenic acid, oxidized glutathione, adenosine diphosphate and adenosine triphosphate were significantly downregulated. The Human Metabolome Database compound analysis revealed that lipids and lipid-like metabolites were primarily affected in an SMG environment in the present study. Overall, the findings of the present study may aid our understanding of gastric cancer by identifying the underlying mechanisms of metabolism of the disease under SMG.
Collapse
Affiliation(s)
- Zheng-Yang Chen
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China
| | - Nan Jiang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Song Guo
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Bin-Bin Li
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Clinical Hospital of Anhui Medical University, Beijing 100101, P.R. China
| | - Jia-Qi Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China.,Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Shao-Bin Chai
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Feng Yan
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Pei-Ming Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Tao Zhang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Hong-Wei Sun
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - He-Ming Yang
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Jin-Lian Zhou
- Department of Pathology, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| | - Yan Cui
- Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
| |
Collapse
|
21
|
Anuriev AM, Gorbachev VI. [Hypoxic-ischemic brain damage in premature newborns]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 119:63-69. [PMID: 31825364 DOI: 10.17116/jnevro201911908263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the main causes of cerebral dysfunction in premature newborns is hypoxia. High mortality and lifelong morbidity in these children is a frequent result of neonatal hypoxic brain damage. The article presents some data on the prevalence of neurological diseases that have arisen in the perinatal period, and highlights the key etiological factors leading to hypoxia in both the intranatal and early postnatal periods. The pathogenesis of hypoxic-ischemic brain lesions in premature infants is described in detail. At the same time, more careful consideration is given to the glutathione system, which protects against lipid peroxidation, the glutamate-calcium cascade, and the excitotoxicity mediated by it, as well as the processes of necrosis and apoptosis of nerve cells. The advantages and disadvantages of modern methods for diagnosing cerebral lesions are noted, and the principles of treatment of these disorders are analyzed.
Collapse
Affiliation(s)
- A M Anuriev
- Irkutsk State Medical Academy of Postgraduate Education - Branch Campus of the Russian Medical Academy of Continuing Professional Education, Irkutsk, Russia
| | - V I Gorbachev
- Irkutsk State Medical Academy of Postgraduate Education - Branch Campus of the Russian Medical Academy of Continuing Professional Education, Irkutsk, Russia
| |
Collapse
|
22
|
Liu W, Varier KM, Sample KM, Zacksenhaus E, Gajendran B, Ben-David Y. Erythropoietin Signaling in the Microenvironment of Tumors and Healthy Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:17-30. [PMID: 32030683 DOI: 10.1007/978-3-030-35582-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Erythropoietin (EPO), the primary cytokine of erythropoiesis, stimulates both proliferation and differentiation of erythroid progenitors and their maturation to red blood cells. Basal EPO levels maintain the optimum levels of circulating red blood cells. However, during hypoxia, EPO secretion and its expression is elevated drastically in renal interstitial fibroblasts, thereby increasing the number of erythroid progenitors and accelerating their differentiation to mature erythrocytes. A tight regulation of this pathway is therefore of paramount importance. The biological response to EPO is commenced through the involvement of its cognate receptor, EPOR. The receptor-ligand complex results in homodimerization and conformational changes, which trigger downstream signaling events and cause activation or inactivation of critical transcription factors that promote erythroid expansion. In recent years, recombinant human EPO (rEPO) has been widely used as a therapeutic tool to treat a number of anemias induced by infection, and chemotherapy for various cancers. However, several studies have uncovered a tumor promoting ability of EPO in man, which likely occurs through EPOR or alternative receptor(s). On the other hand, some studies have demonstrated a strong anticancer activity of EPO, although the mechanism still remains unclear. A thorough investigation of EPOR signaling could yield enhanced understanding of the pathobiology for a variety of disorders, as well as the potential novel therapeutic strategies. In this chapter, in addition to the clinical relevance of EPO/EPOR signaling, we review its anticancer efficacy within various tumor microenvironments.
Collapse
Affiliation(s)
- Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Krishnapriya M Varier
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Klarke M Sample
- Central Laboratory, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| |
Collapse
|
23
|
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13:23-34. [PMID: 31794280 PMCID: PMC6959472 DOI: 10.1080/17512433.2020.1698288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Dementia is the 7th leading cause of death that imposes a significant financial and service burden on the global population. Presently, only symptomatic care exists for cognitive loss, such as Alzheimer's disease.Areas covered: Given the advancing age of the global population, it becomes imperative to develop innovative therapeutic strategies for cognitive loss. New studies provide insight to the association of cognitive loss with metabolic disorders, such as diabetes mellitus.Expert opinion: Diabetes mellitus is increasing in incidence throughout the world and affects 350 million individuals. Treatment strategies identifying novel pathways that oversee metabolic and neurodegenerative disorders offer exciting prospects to treat dementia. The mechanistic target of rapamycin (mTOR) and circadian clock gene pathways that include AMP activated protein kinase (AMPK), Wnt1 inducible signaling pathway protein 1 (WISP1), erythropoietin (EPO), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) provide novel strategies to treat cognitive loss that has its basis in metabolic cellular dysfunction. However, these pathways are complex and require precise regulation to maximize treatment efficacy and minimize any potential clinical disability. Further investigations hold great promise to treat both the onset and progression of cognitive loss that is associated with metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
24
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
25
|
Effect of erythropoietin on Fas/FasL expression in brain tissues of neonatal rats with hypoxic-ischemic brain damage. Neuroreport 2019; 30:262-268. [PMID: 30672890 PMCID: PMC6392204 DOI: 10.1097/wnr.0000000000001194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypoxic-ischemic brain damage (HIBD) occurs due to intrauterine hypoxia ischemia influencing the energy supply for fetal brain cells, which affects the metabolism of the brain to make the brain suffer a severe damage. Erythropoietin (EPO), which regulates hemacytopoiesis, is a kind of cytokine. EPO is sensitive to hypoxia ischemia. In this study, we aimed to investigate the effect of EPO on the expression of Fas/FasL in brain tissues of neonatal rats with HIBD. Neonatal rats were assigned randomly to sham, HIBD, and EPO groups. Five time points for observation were 6, 12, 24, 48, and 72 h after the HIBD rat model had been established, respectively. In the HIBD group, Fas/FasL expression began to rise at 6 h, reached the peak at 12–24 h, and dropped from 24 h. In the EPO group, the expression of Fas/FasL was lower than those in HIBD group at 12, 24, and 48 h (P<0.05). Our findings suggest that EPO may reduce cell apoptosis after hypoxic-ischemic damage through reduction of the expression of Fas and FasL, and that optimal therapeutic time window is 6–24 h after HIBD.
Collapse
|
26
|
Borjini N, Sivilia S, Giuliani A, Fernandez M, Giardino L, Facchinetti F, Calzà L. Potential biomarkers for neuroinflammation and neurodegeneration at short and long term after neonatal hypoxic-ischemic insult in rat. J Neuroinflammation 2019; 16:194. [PMID: 31660990 PMCID: PMC6819609 DOI: 10.1186/s12974-019-1595-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic (HI) encephalopathy causes life-long morbidity and premature mortality in term neonates. Therapies in addition to whole-body cooling are under development to treat the neonate at risk for HI encephalopathy, but are not a quickly measured serum inflammatory or neuronal biomarkers to rapidly and accurately identify brain injury in order to follow the efficacy of therapies. METHODS In order to identify potential biomarkers for early inflammatory and neurodegenerative events after neonatal hypoxia-ischemia, both male and female Wistar rat pups at postnatal day 7 (P7) were used and had their right carotid artery permanently doubly occluded and exposed to 8% oxygen for 90 min. Sensory and cognitive parameters were assessed by open field, rotarod, CatWalk, and Morris water maze (MWM) test. Plasma and CSF biomarkers were investigated on the acute (24 h and 72 h) and chronic phase (4 weeks). Brains were assessed for gene expression analysis by quantitative RT-PCR Array. RESULTS We found a delay of neurological reflex maturation in HI rats. We observed anxiolytic-like baseline behavior in males more than females following HI injury. HI rats held on the rotarod for a shorter time comparing to sham. HI injury impaired spatial learning ability on MWM test. The CatWalk assessment demonstrated a long-term deficit in gait parameters related to the hind paw. Proinflammatory biomarkers such as IL-6 in plasma and CCL2 and TNF-α in CSF showed an upregulation at 24 h after HI while other cytokines, such as IL-17A and CCL5, were upregulated after 72 h in CSF. At 24 h post-injury, we observed an increase of Edn1, Hif1-α, and Mmp9 mRNA levels in the ipsilateral vs the contralateral hemisphere of HI rats. An upregulation of genes involved with clotting and hematopoietic processes was observed 72 h post-injury. CONCLUSIONS Our work showed that, in the immature brain, the HI injury induced an early increased production of several proinflammatory mediators detectable in plasma and CSF, followed by tissue damage in the hypoxic hemisphere and short-term as well as long-lasting neurobehavioral deficits.
Collapse
Affiliation(s)
- Nozha Borjini
- Corporate Pre-clinical R&D, Chiesi Farmaceutici S.p.A, Largo Belloli 11/A, 43122, Parma, Italy. .,Health Science and Technologies Interdepartmental Center for Industrial Research, University of Bologna, Via Tolara di Sopra 41/E, I-40064, Ozzano Emilia, BO, Italy. .,IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.
| | - Sandra Sivilia
- IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy
| | - Alessandro Giuliani
- IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Mercedes Fernandez
- IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Luciana Giardino
- Health Science and Technologies Interdepartmental Center for Industrial Research, University of Bologna, Via Tolara di Sopra 41/E, I-40064, Ozzano Emilia, BO, Italy.,IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Fabrizio Facchinetti
- Corporate Pre-clinical R&D, Chiesi Farmaceutici S.p.A, Largo Belloli 11/A, 43122, Parma, Italy
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research, University of Bologna, Via Tolara di Sopra 41/E, I-40064, Ozzano Emilia, BO, Italy.,IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Tolara di Sopra 41, 40064, Ozzano Emilia, BO, Italy
| |
Collapse
|
27
|
Garzón F, Coimbra D, Parcerisas A, Rodriguez Y, García JC, Soriano E, Rama R. NeuroEPO Preserves Neurons from Glutamate-Induced Excitotoxicity. J Alzheimers Dis 2019; 65:1469-1483. [PMID: 30175978 DOI: 10.3233/jad-180668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many experimental studies show that erythropoietin (EPO) has a neuroprotective action in the brain. EPO in acute and chronic neurological disorders, particularly in stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, has neuroprotective effects. We previously reported the neuroprotective effect of NeuroEPO, a low sialic form of EPO, against oxidative stress induced by glutamate excitotoxicity. In this paper, we analyze the effect of NeuroEPO against apoptosis induced by glutamate excitotoxicity in primary neuronal cultures obtained from the forebrains of Wistar rat embryos after 17 days of gestation. Excitotoxicity was induced after nine days of in vitro culture by treatment with a culture medium containing 100μM glutamate for 15 min. To withdraw glutamate, a new medium containing 100 ng NeuroEPO/mL was added. Apoptosis was analyzed after 24 h. Images obtained by phase contrast microscopy show that neurons treated with glutamate exhibit cell body shrinkage, loss of dendrites that do not make contact with neighboring cells, and that NeuroEPO was able to preserve the morphological characteristics of the control. Immunocytochemistry images show that the culture is essentially pure in neurons; that glutamate causes cell mortality, and that this is partially avoided when the culture medium is supplemented with NeuroEPO. Activation of intrinsic apoptotic pathways was analyzed. The decreases in Bcl-2/Bax ratio, increase in the release of cytochrome c, and in the expression and activity of caspase-3 observed in cells treated with glutamate, were restored by NeuroEPO. The results from this study show that NeuroEPO protects cortical neurons from glutamate-induced apoptosis via upregulation of Bcl-2 and inhibit glutamate-induced activation of caspase-3.
Collapse
Affiliation(s)
- Fernando Garzón
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Department of Animal Health, University of Nariño, Colombia
| | - Débora Coimbra
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain
| | - Yamila Rodriguez
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,Center of Molecular Immunology (CIM), Havana, Cuba
| | - Julio Cesar García
- Department of Histology, Institute of Preclinical and Basic Sciences, University of Medical Sciences, Havana, Cuba.,National Center for Animals Breeding (Cenpalab), Havana, Cuba
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.,Vall d'Hebron Institute of Research, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Ramón Rama
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| |
Collapse
|
28
|
Golubinskaya PA, Sarycheva MV, Burda SY, Puzanov MV, Nadezhdina NA, Kulikovskiy VF, Nadezhdin SV, Korokin MV, Burda YE. Pharmacological modulation of cell functional activity with valproic acid and erythropoietin. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.34710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Valproic acid (VA) is carboxylic acid with a branched chain, which is used as an antiepileptic drug.
Valproic acid influence on cells in vivo: VA, which is an antiepileptic drug, is also a teratogen, which causes defects of a neural tube and an axial skeleton, although the mechanisms are not yet fully clear.
Valproic acid influence on mesenchymal stem cells (MSC) in vitro: It is shown that valproic acid reduces the intracellular level of oxygen active forms.
Valproic acid effect on tumor cells: VA inhibits tumor growth through several mechanisms, including the cell cycle stop, differentiation induction and inhibition of growth of tumor vessels.
Valproic acid influence on enzymes: It affects mainly GSK-3.
Valproic acid influence on animals’ cells: It is shown that VA can significantly improve an ability to develop in vitro and improve nuclear reprogramming of embryos.
Erythropoietin (EPO): Is an hypoxia-induced hormone and a cytokine, which is necessary for normal erythropoiesis. EPO is widely used in in vitro experiments.
Conclusion: Thus, the influence of VA and EPO on cells can be used in cell technologies.
Collapse
|
29
|
Michael AE, Grimes JA, Volstad NJ, Osekavage KE, Koenig A. Inappropriate Secondary Erythrocytosis in a Dog With Renal Sarcoma. Top Companion Anim Med 2019; 36:9-11. [PMID: 31472727 DOI: 10.1053/j.tcam.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 11/11/2022]
Abstract
A 7-year-old mixed breed dog was evaluated for erythrocytosis with an initial hematocrit of 82.3%. Abdominal ultrasound revealed a 6 cm mass on the cranial pole of the right kidney. Daily therapeutic phlebotomies were performed, reducing the hematocrit to 54%. The dog underwent a right nephroureterectomy, recovered without complications, and was discharged 3 days after surgery. Histopathologic evaluation revealed a completely excised grade II soft tissue sarcoma. The preoperative erythropoietin level was 7.00 mU/mL (RI 1.90-22.90 mU/mL) and the 3-day postoperative erythropoietin level was 0.99 mU/mL, supporting a diagnosis of inappropriate secondary erythrocytosis due to the renal tumor. Secondary erythrocytosis resulting from renal soft tissue sarcoma is rare. Confirmatory testing with erythropoietin levels can assist in the diagnosis of secondary erythrocytosis. Erythropoietin levels that are normal or increased in the face of erythrocytosis indicate a source of inappropriate erythropoietin production.
Collapse
Affiliation(s)
- Aleisha E Michael
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Nicola J Volstad
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Katie E Osekavage
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Amie Koenig
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
30
|
Zubareva EV, Nadezhdin SV, Burda YE, Nadezhdina NA, Gashevskaya A. Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.33457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structure and synthesis of Erythropoietin: Erythropoietin (EPO) is a glycoprotein hormone.Recombinant Erythropoietin (Epoetin): Human recombinant erythropoietin is characterised as a factor which stimulates differentiation and proliferation of erythroid precursor cells, and as a tissue protective factor.Anti-ischemic effects of recombinant Erythropoietin: Erythropoietin is one of the most perspective humoral agents which are involved in the preconditioning phenomenon.Erythropoietin receptors and signal transduction pathways: Erythropoietin effects on cells through their interconnection with erythropoietin receptors, which triggers complex intracellular signal cascades, such as JAK2/STAT signaling pathway, phosphatidylinositol 3-kinase (PI3K), protein kinase C, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB signaling pathways.Mechanisms of the effect of Erythropoietin on hematopoietic and non-hematopoietic cells and tissues: In addition to regulation of haemopoiesis, erythropoietin mediates bone formation as it has an effect on hematopoietic stem cells and osteoblastic niche, and this illustrates connection between the processes of haematopoiesis and osteopoiesis which take place in the red bone marrow.The effect of Erythropoietin on mesenchymal stem cells and process of bone tissue formation: Erythropoietin promotes mesenchymal stem cells proliferation, migration and differentiation in osteogenic direction. The evidence of which is expression of bone phenotype by cells under the influence of EPO, including activation of bone specific transcription factors Runx2, osteocalcin and bone sialoprotein.Conclusion: Erythropoietin has a pleiotropic effect on various types of cells and tissues. But the mechanisms which are involved in the process of bone tissue restoration via erythropoietin are still poorly understood.
Collapse
|
31
|
Suzuki H, Kume A, Herbas MS. Potential of Vitamin E Deficiency, Induced by Inhibition of α-Tocopherol Efflux, in Murine Malaria Infection. Int J Mol Sci 2018; 20:ijms20010064. [PMID: 30586912 PMCID: PMC6337606 DOI: 10.3390/ijms20010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023] Open
Abstract
Although epidemiological and experimental studies have suggested beneficial effects of vitamin E deficiency on malaria infection, it has not been clinically applicable for the treatment of malaria owing to the significant content of vitamin E in our daily food. However, since α-tocopherol transfer protein (α-TTP) has been shown to be a determinant of vitamin E level in circulation, manipulation of α-tocopherol levels by α-TTP inhibition was considered as a potential therapeutic strategy for malaria. Knockout studies in mice indicated that inhibition of α-TTP confers resistance against malaria infections in murines, accompanied by oxidative stress-induced DNA damage in the parasite, arising from vitamin E deficiency. Combination therapy with chloroquine and α-TTP inhibition significantly improved the survival rates in murines with malaria. Thus, clinical application of α-tocopherol deficiency could be possible, provided that α-tocopherol concentration in circulation is reduced. Probucol, a recently found drug, induced α-tocopherol deficiency in circulation and was effective against murine malaria. Currently, treatment of malaria relies on the artemisinin-based combination therapy (ACT); however, when mice infected with malarial parasites were treated with probucol and dihydroartemisinin, the beneficial effect of ACT was pronounced. Protective effects of vitamin E deficiency might be extended to manage other parasites in future.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Aiko Kume
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| | - Maria Shirely Herbas
- Research Unit for Functional Genomics, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada, Obihiro 080-8555, Japan.
| |
Collapse
|
32
|
Nair J, Kumar VHS. Current and Emerging Therapies in the Management of Hypoxic Ischemic Encephalopathy in Neonates. CHILDREN (BASEL, SWITZERLAND) 2018; 5:E99. [PMID: 30029531 PMCID: PMC6069156 DOI: 10.3390/children5070099] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) presents a significant clinical burden with its high mortality and morbidity rates globally. Therapeutic hypothermia (TH) is now standard of care for infants with moderate to severe HIE, but has not definitively changed outcomes in severe HIE. In this review, we discuss newer promising markers that may help the clinician identify severity of HIE. Therapies that are beneficial and agents that hold promise for neuroprotection are described, both for use either alone or as adjuncts to TH. These include endogenous pathway modifiers such as erythropoietin and analogues, melatonin, and remote ischemic post conditioning. Stem cells have therapeutic potential in this condition, as in many other neonatal conditions. Of the agents listed, only erythropoietin and analogues are currently being evaluated in large randomized controlled trials (RCTs). Exogenous therapies such as argon and xenon, allopurinol, monosialogangliosides, and magnesium sulfate continue to be investigated. The recognition of tertiary mechanisms of brain damage has opened up new research into therapies not only to attenuate brain damage but also to promote cell repair and regeneration in a developmentally disorganized brain long after the perinatal insult. These alternative modalities may be especially important in mild HIE and in areas of the world where there is limited access to expensive hypothermia equipment and services.
Collapse
Affiliation(s)
- Jayasree Nair
- Division of Neonatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| | - Vasantha H S Kumar
- Division of Neonatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
33
|
Szymura J, Wiecek M, Maciejczyk M, Gradek J, Kantorowicz M, Szygula Z. Unchanged Erythrocyte Profile After Exposure to Cryogenic Temperatures in Elder Marathon Runners. Front Physiol 2018; 9:659. [PMID: 29899711 PMCID: PMC5989585 DOI: 10.3389/fphys.2018.00659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Objective: Endurance runners may experience “sports anemia” resulting from intravascular hemolysis. In addition, aging has negative impact on hematopoiesis and rheological properties of blood, and erythrocyte membranes in older people are more vulnerable to oxidative damage, which together can lead to anemia. Whole-body cryostimulation (WBCST) is increasingly used in the elderly as a method of biological regeneration of athletes or therapy and preventive treatment. That is why the aim of the study was to determine whether repeated WBCST had an effect on the erythrocyte system in master marathon runners, compared to non-training men. Methods: Ten marathon runners (men aged 55.9 ± 5.5 years, training experience 6.71 ± 5.79 years) and 10 non-training (men aged 62.0 ± 5.8 years) were subjected to a series of 24 WBCST (3 min, -130°C) performed every other day. Erythrocyte levels, interleukin-3 (IL-3), erythropoietin (EPO), haptoglobin, bilirubin, and extracellular hemoglobin (HGBecf) concentrations were determined in the blood before and after 12, 24 WBCST, as well as 7 days after their completion. Results: The concentrations of EPO and IL-3 were significantly increased 7 days after the completion of WBCST in both groups (P < 0.05). The erythrocyte content and indicators, the bilirubin, haptoglobin, and HGBecf levels in each group did not change as a result of WBCST. In order to document hemolytic changes and/or factors affecting the severity of erythropoiesis, correlations between growth erythropoietic factors, erythrocyte and hemolytic factors as well as mutual correlations between hemolytic indexes were calculated. There was a positive correlation (P < 0.05) between the EPO and IL-3, bilirubin, mean corpuscular hemoglobin, and red blood cell distribution width – standard deviation. There was also a positive correlation between the concentrations of bilirubin and HGBecf, and a negative correlation between haptoglobin and HGBecf as well as bilirubin concentrations. Conclusion: WBCST treatments, repeated every other day, do not cause hemolytic changes in elder men with high or low physical activity. But also, they are a procedure that does not increase the level of erythrocytes or their hemoglobinization. In athletes, it is not a form of doping. The positive correlation between EPO and bilirubin may be indicative of, for example, the mutual antioxidative effect of these factors.
Collapse
Affiliation(s)
- Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education, Krakow, Poland
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Marcin Maciejczyk
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Joanna Gradek
- Department of Theory and Methodology of Athletics, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Malgorzata Kantorowicz
- Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Faculty of Physical Education and Sport, University of Physical Education, Krakow, Poland
| |
Collapse
|
34
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
35
|
Flocculation of CHO cells for primary separation of recombinant glycoproteins: Effect on glycosylation profiles. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability. Shock 2018; 46:390-7. [PMID: 27172159 DOI: 10.1097/shk.0000000000000606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. METHODS ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. RESULTS In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. DISCUSSION ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.
Collapse
|
37
|
Panfoli I, Candiano G, Malova M, De Angelis L, Cardiello V, Buonocore G, Ramenghi LA. Oxidative Stress as a Primary Risk Factor for Brain Damage in Preterm Newborns. Front Pediatr 2018; 6:369. [PMID: 30555809 PMCID: PMC6281966 DOI: 10.3389/fped.2018.00369] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
The risk of oxidative stress is high in preterm newborns. Room air exposure of an organism primed to develop in a hypoxic environment, lacking antioxidant defenses, and subjected to hyperoxia, hypoxia, and ischemia challenges the newborn with oxidative stress production. Free radicals can be generated by a multitude of other mechanisms, such as glutamate excitotoxicity, excess free iron, inflammation, and immune reactions. Free radical-induced damage caused by oxidative stress appears to be the major candidate for the pathogenesis of most of the complications of prematurity, brain being especially at risk, with short to long-term consequences. We review the role of free radical oxidative damage to the newborn brain and propose a mechanism of oxidative injury, taking into consideration the particular maturation-dependent vulnerability of the oligodendrocyte precursors. Prompted by our observation of an increase in plasma Adenosine concentrations significantly associated with brain white matter lesions in some premature infants, we discuss a possible bioenergetics hypothesis, correlated to the oxidative challenge of the premature infant. We aim at explaining both the oxidative stress generation and the mechanism promoting the myelination disturbances. Being white matter abnormalities among the most common lesions of prematurity, the use of Adenosine as a biomarker of brain damage appears promising in order to design neuroprotective strategies.
Collapse
Affiliation(s)
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Mariya Malova
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Laura De Angelis
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Valentina Cardiello
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Luca A Ramenghi
- Neonatal Intensive Care Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
38
|
Maiese K. Sirtuins: Developing Innovative Treatments for Aged-Related Memory Loss and Alzheimer's Disease. Curr Neurovasc Res 2018; 15:367-371. [PMID: 30484407 PMCID: PMC6538488 DOI: 10.2174/1567202616666181128120003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
The world's population continues to age at a rapid pace. By the year 2050, individuals over the age of 65 will account for sixteen percent of the world's population and life expectancy will increase well over eighty years of age. Accompanied by the aging of the global population is a significant rise in Non-Communicable Diseases (NCDs). Neurodegenerative disorders will form a significant component for NCDs. Currently, dementia is the 7th leading cause of death and can be the result of multiple causes that include diabetes mellitus, vascular disease, and Alzheimer's Disease (AD). AD may represent at least sixty percent of these cases. Current treatment for these disorders is extremely limited to provide only some symptomatic relief at present. Sirtuins and in particular, the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), represent innovative strategies for the treatment of cognitive loss. New work has revealed that SIRT1 provides protection against memory loss through mechanisms that involve oxidative stress, Aβ toxicity, neurofibrillary degeneration, vascular injury, mitochondrial dysfunction, and neuronal loss. In addition, SIRT1 relies upon other avenues that can include trophic factors, such as erythropoietin, and signaling pathways, such as Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4). Yet, SIRT1 can have detrimental effects as well that involve tumorigenesis and blockade of stem cell differentiation and maturation that can limit reparative processes for cognitive loss. Further investigations with sirtuins and SIRT1 should be able to capitalize upon these novel targets for dementia and cognitive loss.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
39
|
Maiese K. Novel Treatment Strategies for the Nervous System: Circadian Clock Genes, Non-coding RNAs, and Forkhead Transcription Factors. Curr Neurovasc Res 2018; 15:81-91. [PMID: 29557749 PMCID: PMC6021214 DOI: 10.2174/1567202615666180319151244] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND With the global increase in lifespan expectancy, neurodegenerative disorders continue to affect an ever-increasing number of individuals throughout the world. New treatment strategies for neurodegenerative diseases are desperately required given the lack of current treatment modalities. METHODS Here, we examine novel strategies for neurodegenerative disorders that include circadian clock genes, non-coding Ribonucleic Acids (RNAs), and the mammalian forkhead transcription factors of the O class (FoxOs). RESULTS Circadian clock genes, non-coding RNAs, and FoxOs offer exciting prospects to potentially limit or remove the significant disability and death associated with neurodegenerative disorders. Each of these pathways has an intimate relationship with the programmed death pathways of autophagy and apoptosis and share a common link to the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) and the mechanistic target of rapamycin (mTOR). Circadian clock genes are necessary to modulate autophagy, limit cognitive loss, and prevent neuronal injury. Non-coding RNAs can control neuronal stem cell development and neuronal differentiation and offer protection against vascular disease such as atherosclerosis. FoxOs provide exciting prospects to block neuronal apoptotic death and to activate pathways of autophagy to remove toxic accumulations in neurons that can lead to neurodegenerative disorders. CONCLUSION Continued work with circadian clock genes, non-coding RNAs, and FoxOs can offer new prospects and hope for the development of vital strategies for the treatment of neurodegenerative diseases. These innovative investigative avenues have the potential to significantly limit disability and death from these devastating disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101
| |
Collapse
|
40
|
Li Q, Han Y, Du J, Jin H, Zhang J, Niu M, Qin J. Recombinant Human Erythropoietin Protects Against Hippocampal Damage in Developing Rats with Seizures by Modulating Autophagy via the S6 Protein in a Time-Dependent Manner. Neurochem Res 2017; 43:465-476. [PMID: 29238892 DOI: 10.1007/s11064-017-2443-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
Abstract
Epilepsy is among the most common neurological disorders. Recurrent seizures result in neuronal death, cognitive deficits and intellectual disabilities in children. Currently, recombinant human erythropoietin (rhEPO) is considered to play a neuroprotective role in nervous system disorders. However, the precise mechanisms through which rhEPO modulates epilepsy remain unknown. Based on results from numerous studies, we hypothesized that rhEPO protects against hippocampal damage in developing rats with seizures probably by modulating autophagy via the ribosomal protein S6 (S6) in a time-dependent manner. First, we observed that rats with recurrent seizures displayed neuronal loss in the hippocampal CA1 region. Second, rhEPO injection reduced neuronal loss and decreased the number of apoptotic cells in the hippocampal CA1 region. Moreover, rhEPO increased the Bcl-2 protein expression levels and decreased the ratio of cleaved caspase-3/caspase-3 in the hippocampus. Finally, rhEPO modulated autophagy in the hippocampus in a time-dependent manner, probably via the S6 protein. In summary, rhEPO protects against hippocampal damage in developing rats with seizures by modulating autophagy in a time-dependent manner, probably via the S6 protein. Consequently, rhEPO is a likely drug candidate that is capable of attenuating brain injury.
Collapse
Affiliation(s)
- Qinrui Li
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi-An Men Street, Beijing, 100034, People's Republic of China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi-An Men Street, Beijing, 100034, People's Republic of China.
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi-An Men Street, Beijing, 100034, People's Republic of China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi-An Men Street, Beijing, 100034, People's Republic of China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi-An Men Street, Beijing, 100034, People's Republic of China
| | - Manman Niu
- Department of Pediatrics, Peking University First Hospital, No. 1, Xi-An Men Street, Beijing, 100034, People's Republic of China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, No. 11, Xi Zhi Men Street, Beijing, 100044, People's Republic of China.
| |
Collapse
|
41
|
Hedayati MH, Norouzian D, Aminian M, Teimourian S, Ahangari Cohan R, Khorramizadeh MR. Identification of methionine oxidation in human recombinant erythropoietin by mass spectrometry: Comparative isoform distribution and biological activity analysis. Prep Biochem Biotechnol 2017; 47:990-997. [PMID: 28825868 DOI: 10.1080/10826068.2017.1365243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Oxidative degradation of human recombinant erythropoietin (hrEPO) may occur in manufacturing process or therapeutic applications. This unfavorable alteration may render EPO inefficient or inactive. We investigated the effect of methionine/54 oxidative changes on the amino acid sequences, glycoform distribution and biological activity of hrEPO. METHODS Mass spectrometry was applied to verify the sequence and determine the methionine oxidation level of hrEPO. Isoform distribution was studied by capillary zone electrophoresis method. In vivo normocythemic mice assay was used to assess the biological activity of three different batches (A, B, and C) of the proteins. RESULTS Nano-LC/ESI/MS/MS data analyses confirmed the amino acid sequences of all samples. The calculated area percent of three isoforms (2-4 of the 8 obtained isoforms) were decreased in samples of C, B, and A with 27.3, 16.7, and 6.8% of oxidation, respectively. Specific activities were estimated as 53671.54, 95826.47, and 112994.93 mg/mL for the samples of A, B, and C, respectively. CONCLUSION The observed decrease in hrEPO biological activity, caused by increasing methionine oxidation levels, was rather independent of its amino acid structure and mainly associated with the higher contents of acidic isoforms.
Collapse
Affiliation(s)
- Mohammad Hossein Hedayati
- a Department of Medical Biotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Dariush Norouzian
- b Department of Pilot Nanobiotechnology , Pasteur Institute of Iran , Tehran , Iran
| | - Mahdi Aminian
- c Department of Clinical Biochemistry, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Shahram Teimourian
- d Department of Medical Genetics , Iran University of Medical sciences , Tehran , Iran
| | - Reza Ahangari Cohan
- b Department of Pilot Nanobiotechnology , Pasteur Institute of Iran , Tehran , Iran
| | - M Reza Khorramizadeh
- e Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute , University of Medical Sciences , Tehran , Iran
| |
Collapse
|
42
|
Maiese K. Erythropoietin and mTOR: A "One-Two Punch" for Aging-Related Disorders Accompanied by Enhanced Life Expectancy. Curr Neurovasc Res 2017; 13:329-340. [PMID: 27488211 DOI: 10.2174/1567202613666160729164900] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Life expectancy continues to increase throughout the world, but is accompanied by a rise in the incidence of non-communicable diseases. As a result, the benefits of an increased lifespan can be limited by aging-related disorders that necessitate new directives for the development of effective and safe treatment modalities. With this objective, the mechanistic target of rapamycin (mTOR), a 289-kDa serine/threonine protein, and its related pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), proline rich Akt substrate 40 kDa (PRAS40), AMP activated protein kinase (AMPK), Wnt signaling, and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), have generated significant excitement for furthering novel therapies applicable to multiple systems of the body. Yet, the biological and clinical outcome of these pathways can be complex especially with oversight of cell death mechanisms that involve apoptosis and autophagy. Growth factors, and in particular erythropoietin (EPO), are one avenue under consideration to implement control over cell death pathways since EPO can offer potential treatment for multiple disease entities and is intimately dependent upon mTOR signaling. In experimental and clinical studies, EPO appears to have significant efficacy in treating several disorders including those involving the developing brain. However, in mature populations that are affected by aging-related disorders, the direction for the use of EPO to treat clinical disease is less clear that may be dependent upon a number of factors including the understanding of mTOR signaling. Continued focus upon the regulatory elements that control EPO and mTOR signaling could generate critical insights for targeting a broad range of clinical maladies.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
43
|
Garg B, Sharma D, Bansal A. Systematic review seeking erythropoietin role for neuroprotection in neonates with hypoxic ischemic encephalopathy: presently where do we stand. J Matern Fetal Neonatal Med 2017; 31:3214-3224. [PMID: 28797191 DOI: 10.1080/14767058.2017.1366982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hypoxic ischemic encephalopathy (HIE) is one of the leading causes of neonatal mortality in developing countries and leads to some form of neuro-developmental disability in latter part of life. AIMS The aim of this study is to evaluate the role of erythropoietin (EPO) in neuroprotection for term newborn having HIE. METHOD The literature search was done for various trials by searching the Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, EMBASE, Web of science, Scopus, Index Copernicus, and other database. RESULTS A total of nine studies fulfilled inclusion criteria. EPO has shown to cause reduction in death and disability, better long-term neuro-developmental outcome, improvement in EEG, and reduction in risk of cerebral palsy. CONCLUSION EPO treatment has neuroprotective effects against moderate/severe HIE and improves long-term behavioral neurological developments in neonates.
Collapse
Affiliation(s)
- Bhawandeep Garg
- a Department of Neonatology , Surya Children's Medicare Pvt. Ltd , Mumbai , India
| | - Deepak Sharma
- b Department of Neonatology , National Institute of Medical and Sciences , Jaipur , India
| | - Anju Bansal
- c Department of Surgery , Adarsh Hospital , Sri Ganganagar , India
| |
Collapse
|
44
|
Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int J Biol Sci 2017; 13:815-827. [PMID: 28808415 PMCID: PMC5555100 DOI: 10.7150/ijbs.20052] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Many transcription factors play a key role in cellular differentiation and the delineation of cell phenotype. Transcription factors are regulated by phosphorylation, ubiquitination, acetylation/deacetylation and interactions between two or more proteins controlling multiple signaling pathways. These pathways regulate different physiological processes and pathological events, such as cancer and other diseases. The Forkhead box O (FOXO) is one subfamily of the fork head transcription factor family with important roles in cell fate decisions and this subfamily is also suggested to play a pivotal functional role as a tumor suppressor in a wide range of cancers. During apoptosis, FOXOs are involved in mitochondria-dependent and -independent processes triggering the expression of death receptor ligands like Fas ligand, TNF apoptosis ligand and Bcl‑XL, bNIP3, Bim from Bcl-2 family members. Different types of growth factors like insulin play a vital role in the regulation of FOXOs. The most important pathway interacting with FOXO in different types of cancers is the PI3K/AKT pathway. Some other important pathways such as the Ras-MEK-ERK, IKK and AMPK pathways are also associated with FOXOs in tumorigenesis. Therapeutically targeting the FOXO signaling pathway(s) could lead to the discovery and development of efficacious agents against some cancers, but this requires an enhanced understanding and knowledge of FOXO transcription factors and their regulation and functioning. This review focused on the current understanding of cell biology of FOXO transcription factors which relates to their potential role as targets for the treatment and prevention of human cancers. We also discuss drugs which are currently being used for cancer treatment along with their target pathways and also point out some potential drawbacks of those drugs, which further signifies the need for development of new drug strategies in the field of cancer treatment.
Collapse
Affiliation(s)
- Mohd Farhan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, 4102 Australia and Xin Hua College, Sun Yat- Sen University, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
45
|
Cui L, Guo J, Zhang Q, Yin J, Li J, Zhou W, Zhang T, Yuan H, Zhao J, Zhang L, Carmichael PL, Peng S. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol Lett 2017; 275:28-38. [PMID: 28456571 DOI: 10.1016/j.toxlet.2017.04.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 01/02/2023]
Abstract
The hormone erythropoietin (EPO) has been demonstrated to protect against chemotherapy drug doxorubicin (DOX)-induced cardiotoxicity, but the underlying mechanism remains obscure. We hypothesized that silent mating type information regulation 2 homolog 1 (SIRT1), an NAD+-dependent protein deacetylase that activates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), plays a crucial role in regulating mitochondrial function and mediating the beneficial effect of EPO. Our study in human cardiomyocyte AC16 cells showed that DOX-induced cytotoxicity and mitochondrial dysfunction, as manifested by decreased mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential, and increased mitochondrial superoxide accumulation, can be mitigated by EPO pretreatment. EPO was found to upregulate SIRT1 activity and protein expression to reverse DOX-induced acetylation of PGC-1α and suppression of a suite of PGC-1α-activated genes involved in mitochondrial function and biogenesis, such as nuclear respiratory factor-1 (NRF1), mitochondrial transcription factor A (TFAM), citrate synthase (CS), superoxide dismutase 2 (SOD2), cytochrome c oxidase IV (COXIV), and voltage-dependent anion channel (VDAC). Silencing of SIRT1 via small RNA interference sensitized AC16 cells to DOX-induced cytotoxicity and reduction in mtDNA copy number. Although with SIRT1 silenced, EPO could reverse to some extent DOX-induced mitochondrial superoxide accumulation, loss of mitochondrial membrane potential and ATP depletion, it failed to normalize protein expression of PGC-1α and its downstream genes. Taken together, our results indicated that EPO may activate SIRT1 to enhance mitochondrial function and protect against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lan Cui
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jian Yin
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Wei Zhou
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Tingfen Zhang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haitao Yuan
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jun Zhao
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Li Zhang
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China.
| |
Collapse
|
46
|
Vazquez-Mellado MJ, Monjaras-Embriz V, Rocha-Zavaleta L. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration. VITAMINS AND HORMONES 2017. [DOI: 10.1016/bs.vh.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Sundem L, Chris Tseng KC, Li H, Ketz J, Noble M, Elfar J. Erythropoietin Enhanced Recovery After Traumatic Nerve Injury: Myelination and Localized Effects. J Hand Surg Am 2016; 41:999-1010. [PMID: 27593486 PMCID: PMC5053901 DOI: 10.1016/j.jhsa.2016.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/08/2016] [Accepted: 08/06/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE We previously found that administration of erythropoietin (EPO) shortens the course of recovery after experimental crush injury to the mouse sciatic nerve. The course of recovery was more rapid than would be expected if EPO's effects were caused by axonal regeneration, which raised the question of whether recovery was instead the result of promoting remyelination and/or preserving myelin on injured neurons. This study tested the hypothesis that EPO has a direct and local effect on myelination in vivo and in vitro. METHODS Animals were treated with EPO after standard calibrated sciatic nerve crush injury; immunohistochemical analysis was performed to assay for myelinated axons. Combined in vitro neuron-Schwann cell co-cultures were performed to assess EPO-mediated effects directly on myelination and putative protective effects against oxidative stress. In vivo local administration of EPO in a fibrin glue carrier was used to demonstrate early local effects of EPO treatment well in advance of possible neuroregenerative effects. RESULTS Systemic Administration of EPO maintained more in vivo myelinated axons at the site of nerve crush injury. In vitro, EPO treatment promoted myelin formation and protected myelin from the effects of nitric oxide exposure in co-cultures of Schwann cells and dorsal root ganglion neurons. In a novel, surgically applicable local treatment using Food and Drug Administration-approved fibrin glue as a vehicle, EPO was as effective as systemic EPO administration at time points earlier than those explainable using standard models of neuroregeneration. CONCLUSIONS In nerve crush injury, EPO may be exerting a primary influence on myelin status to promote functional recovery. CLINICAL RELEVANCE Mixed injury to myelin and axons may allow the opportunity for the repurposing of EPO for use as a myeloprotective agent in which injuries spare a requisite number of axons to allow early functional recovery.
Collapse
Affiliation(s)
- Leigh Sundem
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
| | | | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
| | - John Ketz
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY
| | - Mark Noble
- Department of Biomedical Genetics, Institute for Stem Cell and Regenerative Medicine, University of Rochester Medical Center, Rochester, NY
| | - John Elfar
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY; Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
48
|
Grasso G, Alafaci C, Ghezzi P. Is erythropoietin a worthy candidate for traumatic brain injury or are we heading the wrong way? F1000Res 2016; 5:911. [PMID: 27239280 PMCID: PMC4879931 DOI: 10.12688/f1000research.8723.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the modern society. Although primary prevention is the only strategy that can counteract the primary brain damage, numerous preclinical studies have been accumulated in order to find therapeutic strategies against the secondary damage. In this scenario erythropoietin (EPO) has been shown to be a promising candidate as neuroprotective agent. A recent clinical trial, however, has shown that EPO has not an overall effect on outcomes following TBI thus renewing old concerns. However, the results of a prespecified sensitivity analysis indicate that the effect of EPO on mortality remains still unclear. In the light of these observations, further investigations are needed to resolve doubts on EPO effectiveness in order to provide a more solid base for tailoring conclusive clinical trials.
Collapse
Affiliation(s)
- Giovanni Grasso
- Section of Neurosurgery, Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo, Palermo, 90100, Italy
| | - Concetta Alafaci
- Department of Neurosurgery, University of Messina, Messina, 98100, Italy
| | - Pietro Ghezzi
- Brighton and Sussex Medical School, Falmer, BN1 9PX, UK
| |
Collapse
|
49
|
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11:372-85. [PMID: 27127460 PMCID: PMC4828986 DOI: 10.4103/1673-5374.179032] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Throughout the globe, diabetes mellitus (DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder. DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy. The mechanistic target of rapamycin (mTOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM. mTOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis, insulin resistance, insulin secretion, stem cell proliferation and differentiation, pancreatic β-cell function, and programmed cell death with apoptosis and autophagy. mTOR is central element for the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), and growth factors. As a result, mTOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease. Future studies directed to elucidate the delicate balance mTOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
Collapse
|
50
|
Maiese K. Charting a course for erythropoietin in traumatic brain injury. JOURNAL OF TRANSLATIONAL SCIENCE 2016; 2:140-144. [PMID: 27081573 PMCID: PMC4829112 DOI: 10.15761/jts.1000131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a severe public health problem that impacts more than four million individuals in the United States alone and is increasing in incidence on a global scale. Importantly, TBI can result in acute as well as chronic impairments for the nervous system leaving individuals with chronic disability and in instances of severe trauma, death becomes the ultimate outcome. In light of the significant negative health consequences of TBI, multiple therapeutic strategies are under investigation, but those focusing upon the cytokine and growth factor erythropoietin (EPO) have generated a great degree of enthusiasm. EPO can control cell death pathways tied to apoptosis and autophagy as well oversees processes that affect cellular longevity and aging. In vitro studies and experimental animal models of TBI have shown that EPO can restore axonal integrity, promote cellular proliferation, reduce brain edema, and preserve cellular energy homeostasis and mitochondrial function. Clinical studies for neurodegenerative disorders that involve loss of cognition or developmental brain injury support a positive role for EPO to prevent or reduce injury in the nervous system. However, recent clinical trials with EPO and TBI have not produced such clear conclusions. Further clinical studies are warranted to address the potential efficacy of EPO during TBI, the concerns with the onset, extent, and duration of EPO therapeutic strategies, and to focus upon the specific downstream pathways controlled by EPO such as protein kinase B (Akt), mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), sirtuins, wingless pathways, and forkhead transcription factors for improved precision against the detrimental effects of TBI.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA
| |
Collapse
|