1
|
Qin H, Du H, Wang H, Li S. Analysis on application effect and prognostic factors of medical care combined with nursing in the elderly with T2DM and Cerebral Infarction based on targeted management mode. Biotechnol Genet Eng Rev 2024; 40:4181-4192. [PMID: 37171373 DOI: 10.1080/02648725.2023.2207935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
To explore the analysis on application effect and prognostic factors of medical care combined with nursing in the elderly with type 2 diabetes mellitus (T2DM) and cerebral infraction (CI) based on targeted management mode. The clinical data of 180 elderly patients with T2DM and CI in our hospital from August 2017 to August 2019 were selected for retrospective analysis. Their cognitive function and daily living ability before and after intervention were evaluated, using the National Institutes of Health Stroke Scale (NIHSS) to evaluate their prognosis. They were divided into good prognosis group (n = 134) and poor prognosis group (n = 46) according to the score. Binary Logistic regression analysis was adopted to analyze the prognostic factors of such patients. After intervention, patients had visibly lower indexes of blood glucose fluctuation and lower average scores of ADL and MMSE (P < 0.001), with differences in body mass index, systolic pressure, diastolic pressure, fasting blood glucose and triglyceride in both groups (P < 0.001). Binary Logistic regression analysis showed that systolic pressure, diastolic pressure and triglyceride were risk factors affecting patients' prognosis (P < 0.05). Medical care combined with nursing based on targeted management mode has a remarkable control effect on blood glucose, and has a positive effect on improving cognitive function and living ability of elderly patients with T2DM and CI. In addition, attention should be paid to monitoring systolic and diastolic blood pressures, and triglyceride in patients to improve the prognosis.
Collapse
Affiliation(s)
- Hongyan Qin
- Medical Records Room, Jinan Authority Hospital, Jinan, Shandong, China
| | - Haiyan Du
- Community Health Service Center, Qingdao, Shandong, China
| | - Haizhen Wang
- Cadre Ward Section 1, The 960th Hospital of the People's Liberation Army, Jinan, Shandong, China
| | - Shan Li
- Health Section II, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
2
|
Kang T, Qin X, Lei Q, Yang Q. BRAP silencing protects against neuronal inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by promoting PON1 expression. ENVIRONMENTAL TOXICOLOGY 2023; 38:2645-2655. [PMID: 37647369 DOI: 10.1002/tox.23899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND BRCA1 associated protein (BRAP) participates in the regulation of myocardial infarction and atherosclerosis. But the function of BRAP in cerebral ischemia-reperfusion (CIR) injury has not been elucidated yet. METHODS BRAP expression in PC12 cells in response to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment was examined with Western blot assay. PC12 cells underwent OGD/R-treatment and were subsequently transfected with pcDNA-BRAP or sh-BRAP, followed by determination of viability, lactate dehydrogenase (LDH) production, apoptosis, inflammatory cytokine secretion, and oxidative stress marker protein levels. Paraoxonase 1 (PON1) promoter methylation was evaluated with methylation-specific PCR assay. the effect of BRAP/PON1 axis on CIR injury was investigated by rescue experiments. Additionally, sh-BRAP was injected into a middle cerebral artery occlusion (MCAO) rat model, and the changes of neurological damage were evaluated. RESULTS BRAP overexpression exacerbated OGD/R-induced viability reduction, LDH production, apoptosis, inflammatory cytokine secretion and oxidative stress in PC12 neuronal cells. In contrast, BRAP silencing showed the opposite results. Mechanistically, BRAP reduced PON1 expression by promoting DNA methyl transferase1 (DNMT1)-mediated PON1 promoter methylation. PON1 silencing reversed BRAP-mediated neuroprotection. Additionally, BRAP silencing alleviated CIR-induced neurological damage in MCAO rats. CONCLUSION BRAP silencing suppressed OGD/R-induced neuronal apoptosis, inflammation, and oxidative stress, and alleviated CIR-induced neurological damage in MCAO rats through facilitating PON1 expression.
Collapse
Affiliation(s)
- Tao Kang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiao Qin
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qi Lei
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Qian Yang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
3
|
Khalaf FK, Connolly J, Khatib-Shahidi B, Albehadili A, Tassavvor I, Ranabothu M, Eid N, Dube P, Khouri SJ, Malhotra D, Haller ST, Kennedy DJ. Paraoxonases at the Heart of Neurological Disorders. Int J Mol Sci 2023; 24:ijms24086881. [PMID: 37108044 PMCID: PMC10139148 DOI: 10.3390/ijms24086881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Paraoxonase enzymes serve as an important physiological redox system that participates in the protection against cellular injury caused by oxidative stress. The PON enzymes family consists of three members (PON-1, PON-2, and PON-3) that share a similar structure and location as a cluster on human chromosome 7. These enzymes exhibit anti-inflammatory and antioxidant properties with well-described roles in preventing cardiovascular disease. Perturbations in PON enzyme levels and their activity have also been linked with the development and progression of many neurological disorders and neurodegenerative diseases. The current review summarizes the available evidence on the role of PONs in these diseases and their ability to modify risk factors for neurological disorders. We present the current findings on the role of PONs in Alzheimer's disease, Parkinson's disease, and other neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
- Department of Medicine, University of Alkafeel College of Medicine, Najaf 54001, Iraq
| | - Jacob Connolly
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Bella Khatib-Shahidi
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Abdulsahib Albehadili
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
- Department of Computer Engineering Technology, College of Information Technology, Imam Ja'afar Al-Sadiq University, Najaf 54001, Iraq
| | - Iman Tassavvor
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Meghana Ranabothu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Noha Eid
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Samer J Khouri
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - Steven T Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| | - David J Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
5
|
Li YA, Liu ZG, Zhang YP, Hou HT, He GW, Xue LG, Yang Q, Liu XC. Differential expression profiles of circular RNAs in the rat hippocampus after deep hypothermic circulatory arrest. Artif Organs 2021; 45:866-880. [PMID: 33432632 DOI: 10.1111/aor.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 11/28/2022]
Abstract
Neurological dysfunction commonly occurs after cardiac surgery with deep hypothermic circulatory arrest (DHCA). The mechanisms underlying DHCA-associated brain injury remain poorly understood. This study determined the changes in expression profiles of circular RNAs (circRNAs) in the hippocampus in rats that underwent DHCA, with an attempt to explore the potential role of circRNAs in the brain injury associated with DHCA. Adult male Sprague Dawley rats were subjected to cardiopulmonary bypass with DHCA. Brain injury was evaluated by neurological severity scores and histological as well as transmission electron microscope examinations. The expression profiles of circRNAs in the hippocampal tissues were screened by microarray. Quantitative real-time PCR (RT-qPCR) was used to validate the reliability of the microarray results. Bioinformatic algorithms were applied to construct a competing endogenous RNA (ceRNA) network, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the potential biological roles of the circRNAs. Out of 14 145 circRNAs screened, 56 were differentially expressed in the hippocampus between the DHCA and sham-operated rats, including 30 upregulated and 26 downregulated circRNAs. The expression changes of six selected circRNAs (upregulated: rno_circRNA_011190, rno_circRNA_012988, rno_circRNA_000544; downregulated: rno_circRNA_010393, rno_circRNA_012043, rno_circRNA_015149) were further confirmed by RT-qPCR. Bioinformatics analysis showed the enrichment of these confirmed circRNAs and their potential target mRNAs in several KEGG pathways including histidine metabolism, adipocytokine signaling, and cAMP signaling. By revealing the change expression profiles of circRNAs in the brain after DHCA, this study indicates possible involvements of these dysregulated circRNAs in brain injury and suggests a potential of targeting circRNAs for prevention and treatment of neurological dysfunction associated with DHCA.
Collapse
Affiliation(s)
- Yi-Ai Li
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China
| | - You-Peng Zhang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China
| | - Hai-Tao Hou
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China.,Department of Cardiac Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,School of Pharmacy, Wannan Medical College, Wuhu, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Lan-Gang Xue
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China
| | - Qin Yang
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China
| | - Xiao-Cheng Liu
- Center for Basic Medical Research & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Tianjin, China
| |
Collapse
|
6
|
Wysocka A, Zwolak A. The Relevance of Noncoding DNA Variations of Paraoxonase Gene Cluster in Atherosclerosis-Related Diseases. Int J Mol Sci 2021; 22:ijms22042137. [PMID: 33670025 PMCID: PMC7926863 DOI: 10.3390/ijms22042137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
The human paraoxonase (PON) gene cluster is comprised of three contiguous genes (PON1, PON2 and PON3) of presumably common origin coding three lactonases of highly similar structure and substrate specificity. The catalytic activity of PON proteins is directed toward artificial organophosphates and in physiological conditions toward thiolactones and oxidized phospholipids. Consequently, PON enzymes are regarded as an effective defense against oxidative stress and, as a result, against atherosclerosis development. Additionally, both PON's serum activity and its concentration are influenced by several polymorphic variations in coding and noncoding DNA regions of the PON gene cluster remaining in linkage disequilibrium. Hence, the genetic polymorphism of the PON gene cluster may contribute to atherosclerotic process progression or deceleration. In this review the authors analyzed the relevance of noncoding DNA polymorphic variations of PON genes in atherosclerosis-related diseases involving coronary and peripheral artery disease, stroke, diabetes mellitus, dementia and renal disease and concluded that the effect of PON gene cluster' polymorphism has a considerable impact on the course and outcome in these conditions. The following PON genetic variations may serve as additional predictors of the risk of atherosclerosis in selected populations and individuals.
Collapse
Affiliation(s)
- Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Chair and Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland
- Correspondence: ; Tel.: +48-814487720
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Chair and Department of Endocrinology, Medical University of Lublin, 20-954 Lublin, Poland
| |
Collapse
|
7
|
Zhao L, Chen X, Zhou S, Lin Z, Yu X, Huang Y. DNA methylation of AHCY may increase the risk of ischemic stroke. Bosn J Basic Med Sci 2020; 20:471-476. [PMID: 32020847 PMCID: PMC7664786 DOI: 10.17305/bjbms.2020.4535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic factors play an important role in the pathogenesis of ischemic stroke. Of these, epigenetic modifications provide a new direction for the study of ischemic stroke pathogenesis. This study aimed to determine the correlation between DNA methylation of the gene encoding S-adenosylhomocysteine hydrolase (AHCY) and the risk of ischemic stroke in 64 ischemic stroke patients and 138 patients with traumatic brain injury (control group). The methylation level of AHCY was analyzed using quantitative methylation-specific polymerase chain reaction. Statistically significant differences in AHCY methylation levels were observed between the case group [medians (interquartile range): 0.13% (0.09%, 0.27%)] and the control group [0.06% (0.00%, 0.17%), p < 0.0001], and these associations remained significant in both male (p = 0.003) and female (p = 0.0005) subjects. A subgroup analysis by age revealed a considerably higher percentage of methylated AHCY in the case group than the control group in all age groups (age < 60 years, p = 0.007; age ≥ 60 years, p < 0.0001). A receiver operating characteristic (ROC) curve analysis revealed a trend toward a role for AHCY methylation as an indicator of risk in all ischemic patients [area under the curve (AUC) = 0.70, p = 0.0001], male patients (AUC = 0.67, p = 0.004), and female patients (AUC = 0.75, p = 0.0002). Our study confirmed a significant association between the AHCY DNA methylation level and the risk of ischemic stroke, suggesting that this gene methylation pattern may be a potential diagnostic marker of ischemic stroke.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xiaosheng Chen
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Zhiqing Lin
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| | - Xi Yu
- Key Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China; Ningbo Hospital, Zhejiang University School of Medicine, Ningbo, China
| |
Collapse
|
8
|
Li X, Bu S, Pan RR, Zhou C, Qu K, Ying X, Zhong J, Xiao J, Yuan Q, Zhang S, Tipton L, Wang Y, Deng Y, Duan S. The values of AHCY and CBS promoter methylation on the diagnosis of cerebral infarction in Chinese Han population. BMC Med Genomics 2020; 13:163. [PMID: 33138824 PMCID: PMC7607831 DOI: 10.1186/s12920-020-00798-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/16/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The goal of our study is to investigate whether the methylation levels of AHCY and CBS promoters are related to the risk of cerebral infarction by detecting the methylation level of AHCY and CBS genes. METHODS We extracted peripheral venous blood from 152 patients with cerebral infarction and 152 gender- and age-matched healthy controls, and determined methylation levels of AHCY and CBS promoters using quantitative methylation-specific polymerase chain reaction. We used the percentage of methylation reference (PMR) to indicate gene methylation level. RESULTS We compared the promoter methylation levels of two genes (AHCY and CBS) in peripheral blood DNA between the cerebral infarction case group and the control group. Our study showed no significant difference in AHCY promoter methylation between case and control. Subgroup analysis by gender showed that the methylation level of AHCY in males in the case group was lower than that in the control group, but the difference was not statistically significant in females. In a subgroup analysis by age, there was no significant difference in the AHCY methylation level between the case and control in the young group (≤44 years old). However, the level of AHCY gene methylation in the middle-aged group (45-59 years old) was significantly higher and the aged group (≥60 years old) was significantly lower than that in the control groups. However, CBS promoter methylation levels were significantly lower in the case group than in the control group (median PMR: 70.20% vs 104.10%, P = 3.71E-10). In addition, the CBS methylation levels of males and females in the case group were significantly lower than those in the control group (male: 64.33% vs 105%, P = 2.667E-08; female: 78.05% vs 102.8%, P = 0.003). We also found that the CBS levels in the young (23-44), middle-aged (45-59), and older (60-90) groups were significantly lower than those in the control group (young group: 69.97% vs 114.71%; P = 0.015; middle-aged group: 56.04% vs 91.71%; P = 6.744E-06; older group: 81.6% vs 119.35%; P = 2.644E-04). Our ROC curve analysis of CBS hypomethylation showed an area under the curve of 0.713, a sensitivity of 67.4%, and a specificity of 74.0%. CONCLUSION Our study suggests that hypomethylation of the CBS promoter may be closely related to the risk of cerebral infarction and may be used as a non-invasive diagnostic biomarker for cerebral infarction.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450006, Henan, China
| | - Shufang Bu
- Department of Neurology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450006, Henan, China
| | - Ran Ran Pan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Cong Zhou
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Kun Qu
- Department of Neurology, the 960th of Hospital of PLA, Zibo, 255330, Shandong, China
| | - Xiuru Ying
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jie Zhong
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhao Xiao
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Qian Yuan
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Simiao Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Laura Tipton
- Bioinformatics Core, Department of Complementary and Integrative Medicine and John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, 96822, USA
| | - Yunliang Wang
- Department of Neurology, the Second Affiliated Hospital, Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine and John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, 96822, USA.
| | - Shiwei Duan
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
9
|
Wu H, Huang Q, Yu Z, Wu H, Zhong Z. The SNPs rs429358 and rs7412 of APOE gene are association with cerebral infarction but not SNPs rs2306283 and rs4149056 of SLCO1B1 gene in southern Chinese Hakka population. Lipids Health Dis 2020; 19:202. [PMID: 32891149 PMCID: PMC7487494 DOI: 10.1186/s12944-020-01379-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 01/05/2023] Open
Abstract
Background Apolipoprotein E (ApoE) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) regulate lipid metabolism. However, the relationship between genetic polymorphisms of APOE and SLCO1B1 and cerebral infarction (CI) remains unclear. Methods A total of 938 CI patients and 1028 control participants were included in the study. The rs429358 and rs7412 single nucleotide polymorphisms (SNPs) in the APOE gene and rs2306283 and rs4149056 SNPs in the SLCO1B1 gene were analyzed by fluorescence polymerase chain reaction (PCR). Results The genotype ɛ3/ɛ3 was the most common APOE genotype, with ɛ3 being the allele with the highest frequency, followed by ɛ4 and ɛ2. Statistically significant differences of genotype ɛ2/ɛ2 (χ2 = 3.866, P = 0.049), ɛ2/ɛ3 (χ2 = 20.030, P < 0.001), ɛ3/ɛ4 (χ2 = 16.960, P < 0.001), and ɛ4/ɛ4 (χ2 = 4.786, P = 0.029) between CI patients and controls were detected. The SLCO1B1 genotype *1b/*1b and haplotype *1b showed the highest frequency in the study sample. There was no statistically significant difference in the frequencies of SLCO1B1 genotypes and haplotypes among CI patients comparing with controls. Moreover, ε4 carriers had significantly higher low-density lipoprotein-cholesterol (LDL-C) and apolipoprotein B (Apo-B) and lower apolipoprotein A1 (Apo-A1)/Apo-B levels than ε2 and ε3 carriers, but ε2 carriers showed lower LDL-C and Apo-B and higher Apo-A1/Apo-B than ε3 and ε4 carriers. Further, logistic regression analysis revealed that high LDL-C, high ApoB, smoking, hypertension and the ε4 allele were risks for the presence of CI. Conclusions This study indicated that the APOE SNPs rs429358 and rs7412 may be associated with susceptibility to cerebral infarction in southern Chinese Hakka population.
Collapse
Affiliation(s)
- Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China
| | - Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China
| | - Hailing Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China. .,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China. .,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China. .,Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China. .,Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Studies have shown the three-member paraoxonase (PON) multigene family to be involved in the development of a large variety of diseases with an inflammatory component. Environmental factors such as lifestyle-related factors differ widely between populations and it is important to consider that their impacts may be exerted through the epigenetic mechanisms, which connect genes, the environment and disease development and are a potential therapeutic avenue. RECENT FINDINGS In the review period, very little was published on epigenetics of PON2 or PON3, mostly on their diagnostic value in cancer by measuring methylation levels of these genes. However, the picture is more promising with PON1. Here, several studies have linked the epigenetic regulation of PON1 to various metabolic processes and particularly to the development of several diseases, including stroke, heart disease, aortic valve stenosis and chronic obstructive pulmonary disease. SUMMARY Studies into the epigenetic regulation of the PON family are in their infancy. However, recent studies linking epigenetic regulation of PON1 to disease development will encourage further research and open up the possibility for new potential therapeutic interventions.
Collapse
Affiliation(s)
- Abdolkarim Mahrooz
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|