1
|
Ultra-sensitive techniques for detecting neurological biomarkers: Prospects for early diagnosis. Biochem Biophys Res Commun 2021; 584:15-18. [PMID: 34753063 DOI: 10.1016/j.bbrc.2021.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
Identifying reliable biomarkers and ultra-sensitive techniques are crucial for the early detection of neurodegenerative disorders (NDDs) to improve the clinical diagnosis and development of effective disease-modifying treatments. Here, we discussed recent technological advancements that enabled scientists to monitor brain health by detecting biological molecules even at lower levels. These technologies enabled the detection of neurological biomarkers in blood, revolutionizing the diagnosis and prognosis of NDDs. Moreover, it provided a better understanding of disease pathology's long-term effects, resulting in fewer invasive tests, early diagnosis, faster drug development, and possibly more effective therapies as possible outcomes.
Collapse
|
2
|
Calleja-Felipe M, Wojtas MN, Diaz-González M, Ciceri D, Escribano R, Ouro A, Morales M, Knafo S. FORTIS: a live-cell assay to monitor AMPA receptors using pH-sensitive fluorescence tags. Transl Psychiatry 2021; 11:324. [PMID: 34045447 PMCID: PMC8160262 DOI: 10.1038/s41398-021-01457-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/09/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Abstract
The real-time live fluorescent monitoring of surface AMPA receptors (AMPARs) could open new opportunities for drug discovery and phenotypic screening concerning neuropsychiatric disorders. We have developed FORTIS, a tool based on pH sensitivity capable of detecting subtle changes in surface AMPARs at a neuronal population level. The expression of SEP-GluA1 or pHuji-GluA1 recombinant AMPAR subunits in mammalian neurons cultured in 96-well plates enables surface AMPARs to be monitored with a microplate reader. Thus, FORTIS can register rapid changes in surface AMPARs induced by drugs or genetic modifications without having to rely on conventional electrophysiology or imaging. By combining FORTIS with pharmacological manipulations, basal surface AMPARs, and plasticity-like changes can be monitored. We expect that employing FORTIS to screen for changes in surface AMPARs will accelerate both neuroscience research and drug discovery.
Collapse
Affiliation(s)
- María Calleja-Felipe
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| | - Magdalena Natalia Wojtas
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marta Diaz-González
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dalila Ciceri
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| | - Raúl Escribano
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Alberto Ouro
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Miguel Morales
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
3
|
Galaup C, Picard C, Couderc F, Gilard V, Collin F. Luminescent lanthanide complexes for reactive oxygen species biosensing and possible application in Alzheimer's diseases. FEBS J 2021; 289:2516-2539. [PMID: 33811448 DOI: 10.1111/febs.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Histopathological hallmarks of Alzheimer's disease (AD) are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the aggregated amyloid-beta peptide along with metal ions (copper, iron or zinc). In addition, oxidative stress is considered as an important factor in the etiology of AD and a multitude of metalloproteins and transporters is affected, leading to metal ion misregulation. Redox-active metal ions (e.g., copper) can catalyze the production of reactive oxygen species (ROS) in the presence of molecular oxygen and a reductant such as ascorbate. The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative stress conditions. Thus, detecting ROS in vivo or in biological models of AD is of interest for better understanding AD etiology. The use of biocompatible and highly specific and sensitive probes is needed for such a purpose, since ROS are transient species whose steady-state concentrations are very low. Luminescent lanthanide complexes are sensitive probes that can meet these criteria. The present review focuses on the recent advances in the use of luminescent lanthanide complexes for ROS biosensing. It shows why the use of luminescent lanthanide complexes is of particular interest for selectively detecting ROS ( O 2 · - , HO• , 1 O2 , H2 O2 , etc.) in biological samples in the µM-nM range. It particularly focuses on the most recent strategies and discusses what could be expected with the use of luminescent lanthanide complexes for better understanding some of the molecular mechanisms underlying the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Chantal Galaup
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Claude Picard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - François Couderc
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), Université Paul Sabatier-Toulouse III/CNRS (UMR5068), France
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| |
Collapse
|
4
|
Chang CW, Shao E, Mucke L. Tau: Enabler of diverse brain disorders and target of rapidly evolving therapeutic strategies. Science 2021; 371:371/6532/eabb8255. [PMID: 33632820 DOI: 10.1126/science.abb8255] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several lines of evidence implicate the protein tau in the pathogenesis of multiple brain disorders, including Alzheimer's disease, other neurodegenerative conditions, autism, and epilepsy. Tau is abundant in neurons and interacts with microtubules, but its main functions in the brain remain to be defined. These functions may involve the regulation of signaling pathways relevant to diverse biological processes. Informative disease models have revealed a plethora of abnormal tau species and mechanisms that might contribute to neuronal dysfunction and loss, but the relative importance of their respective contributions is uncertain. This knowledge gap poses major obstacles to the development of truly impactful therapeutic strategies. The current expansion and intensification of efforts to translate mechanistic insights into tau-related therapeutics should address this issue and could deliver better treatments for a host of devastating conditions.
Collapse
Affiliation(s)
- Che-Wei Chang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Eric Shao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA. .,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Abstract
Drug discovery is moving at a rapid pace and a fast turnaround of bioanalytical data is needed to sustain this pace. This article focuses on the evaluation of time-saving homogeneous proximity immunoassays such as Amplified Luminescent Proximity Homogeneous Assay, Time-Resolved Fluorescence Resonance Energy Transfer and Spatial Proximity Analyte Reagent Capture Luminescence as an alternative to industry popular platforms like mesoscale discovery (MSD) and Gyrolab®. Our evaluation showed that no one platform can be considered the best for all the parameters assessed. Homogeneous proximity platforms were found to be advantageous over MSD and Gyrolab for certain applications and are herein discussed. The factors affecting the performance of homogeneous assays and appropriate corrections are discussed. The homogeneous assays, due to their flexibility, hold a lot of untapped potential for the future of bioanalysis.
Collapse
|
6
|
Dominguez-Meijide A, Vasili E, König A, Cima-Omori MS, Ibáñez de Opakua A, Leonov A, Ryazanov S, Zweckstetter M, Griesinger C, Outeiro TF. Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization. Sci Rep 2020; 10:12827. [PMID: 32732936 PMCID: PMC7393090 DOI: 10.1038/s41598-020-69744-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are common neurodegenerative disorders of the elderly and, therefore, affect a growing number of patients worldwide. Both diseases share, as a common hallmark, the accumulation of characteristic protein aggregates, known as Lewy bodies (LB) in PD, and neurofibrillary tangles in AD. LBs are primarily composed of misfolded α-synuclein (aSyn), and neurofibrillary tangles are primarily composed of tau protein. Importantly, upon pathological evaluation, most AD and PD/Lewy body dementia cases exhibit mixed pathology, with the co-occurrence of both LB and neurofibrillary tangles, among other protein inclusions. Recent studies suggest that both aSyn and tau pathology can spread and propagate through neuronal connections. Therefore, it is important to investigate the mechanisms underlying aggregation and propagation of these proteins for the development of novel therapeutic strategies. Here, we assessed the effects of different pharmacological interventions on the aggregation and internalization of tau and aSyn. We found that anle138b and fulvic acid decrease aSyn and tau aggregation, that epigallocatechin gallate decreases aSyn aggregation, and that dynasore reduces tau internalization. Establishing the effects of small molecules with different chemical properties on the aggregation and spreading of aSyn and tau will be important for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany.,Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany
| | - Maria-Sol Cima-Omori
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Alain Ibáñez de Opakua
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
| | - Andrei Leonov
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Sergey Ryazanov
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany. .,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Screening of a neuronal cell model of tau pathology for therapeutic compounds. Neurobiol Aging 2019; 76:24-34. [DOI: 10.1016/j.neurobiolaging.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 11/20/2022]
|
8
|
Wang C, Ward ME, Chen R, Liu K, Tracy TE, Chen X, Xie M, Sohn PD, Ludwig C, Meyer-Franke A, Karch CM, Ding S, Gan L. Scalable Production of iPSC-Derived Human Neurons to Identify Tau-Lowering Compounds by High-Content Screening. Stem Cell Reports 2017; 9:1221-1233. [PMID: 28966121 PMCID: PMC5639430 DOI: 10.1016/j.stemcr.2017.08.019] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023] Open
Abstract
Lowering total tau levels is an attractive therapeutic strategy for Alzheimer's disease and other tauopathies. High-throughput screening in neurons derived from human induced pluripotent stem cells (iPSCs) is a powerful tool to identify tau-targeted therapeutics. However, such screens have been hampered by heterogeneous neuronal production, high cost and low yield, and multi-step differentiation procedures. We engineered an isogenic iPSC line that harbors an inducible neurogenin 2 transgene, a transcription factor that rapidly converts iPSCs to neurons, integrated at the AAVS1 locus. Using a simplified two-step protocol, we differentiated these iPSCs into cortical glutamatergic neurons with minimal well-to-well variability. We developed a robust high-content screening assay to identify tau-lowering compounds in LOPAC and identified adrenergic receptors agonists as a class of compounds that reduce endogenous human tau. These techniques enable the use of human neurons for high-throughput screening of drugs to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Chao Wang
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Michael E Ward
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| | - Robert Chen
- Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kai Liu
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Tara E Tracy
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Xu Chen
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Min Xie
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Peter Dongmin Sohn
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Connor Ludwig
- Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Anke Meyer-Franke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, 425 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Li Gan
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Selvaraj C, Sakkiah S, Tong W, Hong H. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food Chem Toxicol 2017; 112:495-506. [PMID: 28843597 DOI: 10.1016/j.fct.2017.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Sugunadevi Sakkiah
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicology Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
10
|
Xiong Y, Wu Y, Luo S, Gao Y, Xiong Y, Chen D, Deng H, Hao W, Liu T, Li M. Development of a novel immunoassay to detect interactions with the transactivation domain of p53: application to screening of new drugs. Sci Rep 2017; 7:9185. [PMID: 28835687 PMCID: PMC5569017 DOI: 10.1038/s41598-017-09574-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023] Open
Abstract
Tumor protein p53 acts as a trans-activator that negatively regulates cell division by controlling a set of genes required for cell cycle regulation, making it a tumor suppressor in different types of tumors. Because the transcriptional activity of p53 plays an important role in the occurrence and development of tumors, reactivation of p53 transcriptional activity has been sought as a novel cancer therapeutic strategy. There is great interest in developing high-throughput assays to identify inhibitors of molecules that bind the transcription-activation domain of p53, especially for wt p53-containing tumors. In the present study, taking MDM2 as an example, a novel amplified luminescent proximity homogeneous assay (AlphaLISA) was modified from a binding competition assay to detect the interactions between the transcription-activation domain of p53 and its ligands. This assay can be adapted as a high-throughput assay for screening new inhibitors. A panel of well-known p53-MDM2 binding inhibitors was used to validate this method, and demonstrated its utility, sensitivity and robustness. In summary, we have developed a novel protein-protein interaction detection immunoassay that can be used in a high-throughput format to screen new drug candidates for reactivation of p53. This assay has been successfully validated through a series of p53-MDM2 binding inhibitors.
Collapse
Affiliation(s)
- Yufeng Xiong
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yingsong Wu
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Shuhong Luo
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Department of Laboratory Medicine, School of Stomatology and Medicine, Foshan University, 5 Hebin Road, Chancheng District, Foshan, Guangdong Province, 528000, P. R. China
| | - Yang Gao
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yujing Xiong
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Daxiang Chen
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Hao Deng
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Wenbo Hao
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Tiancai Liu
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Ming Li
- State Key Laboratory of Organ Failure, Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Gong Q, Xi C, Nie F, Cao S, Tang B, Zhang L, Li X, Wang G, Chen D, Mu Z. Determination of Zearalanol and Its Analog Zearalanone in Muscle Tissues by Amplified Luminescent Proximity Homogeneous Assay (AlphaLISA). FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0586-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Medda X, Mertens L, Versweyveld S, Diels A, Barnham L, Bretteville A, Buist A, Verheyen A, Royaux I, Ebneth A, Cabrera-Socorro A. Development of a Scalable, High-Throughput-Compatible Assay to Detect Tau Aggregates Using iPSC-Derived Cortical Neurons Maintained in a Three-Dimensional Culture Format. ACTA ACUST UNITED AC 2016; 21:804-15. [PMID: 26984927 DOI: 10.1177/1087057116638029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/15/2016] [Indexed: 01/14/2023]
Abstract
Tau aggregation is the pathological hallmark that best correlates with the progression of Alzheimer's disease (AD). The presence of neurofibrillary tangles (NFTs), formed of hyperphosphorylated tau, leads to neuronal dysfunction and loss, and is directly associated with the cognitive decline observed in AD patients. The limited success in targeting β-amyloid pathologies has reinforced the hypothesis of blocking tau phosphorylation, aggregation, and/or spreading as alternative therapeutic entry points to treat AD. Identification of novel therapies requires disease-relevant and scalable assays capable of reproducing key features of the pathology in an in vitro setting. Here we use induced pluripotent stem cells (iPSCs) as a virtually unlimited source of human cortical neurons to develop a robust and scalable tau aggregation model compatible with high-throughput screening (HTS). We downscaled cell culture conditions to 384-well plate format and used Matrigel to introduce an extra physical protection against cell detachment that reduces shearing stress and better recapitulates pathological conditions. We complemented the assay with AlphaLISA technology for the detection of tau aggregates in a high-throughput-compatible format. The assay is reproducible across users and works with different commercially available iPSC lines, representing a highly translational tool for the identification of novel treatments against tauopathies, including AD.
Collapse
Affiliation(s)
- X Medda
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium Bordeaux University, Bordeaux, France
| | - L Mertens
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - S Versweyveld
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - A Diels
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - L Barnham
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - A Bretteville
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - A Buist
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - A Verheyen
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - I Royaux
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - A Ebneth
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - A Cabrera-Socorro
- Janssen Research & Development, a division of Janssen Pharmaceutica N.V., Beerse, Belgium
| |
Collapse
|
13
|
Ahn M, Kalume F, Pitstick R, Oehler A, Carlson G, DeArmond SJ. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases. J Neuropathol Exp Neurol 2016; 75:256-62. [PMID: 26851378 DOI: 10.1093/jnen/nlv025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases.
Collapse
Affiliation(s)
- Misol Ahn
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC).
| | - Franck Kalume
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - Rose Pitstick
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - Abby Oehler
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - George Carlson
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| | - Stephen J DeArmond
- From the Department of Pathology (MA, AO, SJD) and Institute for Neurodegenerative Diseases (MA, SJD), University of California San Francisco, California; Department of Pharmacology, University of Washington, Seattle, Washington (FK); and McLaughlin Research Institute, Great Falls, Montana (RP, GC)
| |
Collapse
|
14
|
Bernstock JD, Lee YJ, Peruzzotti-Jametti L, Southall N, Johnson KR, Maric D, Volpe G, Kouznetsova J, Zheng W, Pluchino S, Hallenbeck JM. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation. J Cereb Blood Flow Metab 2016; 36:426-41. [PMID: 26661196 PMCID: PMC4759677 DOI: 10.1177/0271678x15609939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/27/2015] [Indexed: 01/06/2023]
Abstract
The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family. This assay employs a SHSY5Y human neuroblastoma cell line stably transfected with a dual firefly-Renilla luciferase reporter system for identification of specific inhibitors of either miR-182 or miR-183. In this study, we have identified small molecules capable of inducing increased global conjugation of SUMO in both SHSY5Y cells and rat E18-derived primary cortical neurons. The protective effects of a number of the identified compounds were confirmed via an in vitro ischemic model (oxygen/glucose deprivation). Of note, this assay can be easily repurposed to allow high-throughput analyses of the potential drugability of other relevant miRNA(s) in ischemic pathobiology.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yang-ja Lee
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, Information Technology & Bioinformatics Program, Division of Intramural Research (DIR), (NINDS/NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Giulio Volpe
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health (NCATS/NIH), Bethesda, MD, USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| |
Collapse
|
15
|
Yasgar A, Jadhav A, Simeonov A, Coussens NP. AlphaScreen-Based Assays: Ultra-High-Throughput Screening for Small-Molecule Inhibitors of Challenging Enzymes and Protein-Protein Interactions. Methods Mol Biol 2016; 1439:77-98. [PMID: 27316989 DOI: 10.1007/978-1-4939-3673-1_5] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
AlphaScreen technology has been routinely utilized in high-throughput screening assays to quantify analyte accumulation or depletion, bimolecular interactions, and post-translational modifications. The high signal-to-background, dynamic range, and sensitivity associated with AlphaScreens as well as the homogenous assay format and reagent stability make the technology particularly well suited for high-throughput screening applications. Here, we describe the development of AlphaScreen assays to identify small-molecule inhibitors of enzymes and protein-protein interactions using the highly miniaturized 1536-well format. The subsequent implementation of counter assays to identify false-positive compounds is also discussed.
Collapse
Affiliation(s)
- Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building B, Rm. 1034E, Rockville, MD, 20850, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building B, Rm. 1034E, Rockville, MD, 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building B, Rm. 1034E, Rockville, MD, 20850, USA
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Building B, Rm. 1034E, Rockville, MD, 20850, USA.
| |
Collapse
|
16
|
Kim TW. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer's disease. Neurotherapeutics 2015; 12:132-42. [PMID: 25549849 PMCID: PMC4322062 DOI: 10.1007/s13311-014-0325-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and represents one of the highest unmet needs in medicine today. Drug development efforts for AD have been encumbered by largely unsuccessful clinical trials in the last decade. Drug repositioning, a process of discovering a new therapeutic use for existing drugs or drug candidates, is an attractive and timely drug development strategy especially for AD. Compared with traditional de novo drug development, time and cost are reduced as the safety and pharmacokinetic properties of most repositioning candidates have already been determined. A majority of drug repositioning efforts for AD have been based on positive clinical or epidemiological observations or in vivo efficacy found in mouse models of AD. More systematic, multidisciplinary approaches will further facilitate drug repositioning for AD. Some experimental approaches include unbiased phenotypic screening using the library of available drug collections in physiologically relevant model systems (e.g. stem cell-derived neurons or glial cells), computational prediction and selection approaches that leverage the accumulating data resulting from RNA expression profiles, and genome-wide association studies. This review will summarize several notable strategies and representative examples of drug repositioning for AD.
Collapse
Affiliation(s)
- Tae-Wan Kim
- Department of Pathology and Cell Biology, and Taub Institute of Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, 10032, USA,
| |
Collapse
|
17
|
Class B, Thorne N, Aguisanda F, Southall N, McKew JC, Zheng W. High-throughput viability assay using an autonomously bioluminescent cell line with a bacterial Lux reporter. ACTA ACUST UNITED AC 2014; 20:164-74. [PMID: 25447977 DOI: 10.1177/2211068214560608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cell viability assays are extensively used to determine cell health, evaluate growth conditions, and assess compound cytotoxicity. Most existing assays are endpoint assays, in which data are collected at one time point after termination of the experiment. The time point at which toxicity of a compound is evident, however, depends on the mechanism of that compound. An ideal cell viability assay allows the determination of compound toxicity kinetically without having to terminate the assay prematurely. We optimized and validated a reagent-addition-free cell viability assay using an autoluminescent HEK293 cell line that stably expresses bacterial luciferase and all substrates necessary for bioluminescence. This cell viability assay can be used for real-time, long-term measurement of compound cytotoxicity in live cells with a signal-to-basal ratio of 20- to 200-fold and Z-factors of ~0.6 after 24-, 48- 72-, or 96-h incubation with compound. We also found that the potencies of nine cytotoxic compounds correlated well with those measured by four other commonly used cell viability assays. The results demonstrated that this kinetic cell viability assay using the HEK293(lux) autoluminescent cell line is useful for high-throughput evaluation of compound cytotoxicity.
Collapse
Affiliation(s)
- Bradley Class
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Natasha Thorne
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Francis Aguisanda
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - John C McKew
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|