1
|
Lee HJ, Cho HR, Bang M, Lee YS, Kim YJ, Chong K. Potential Risk of Choline Alfoscerate on Isoflurane-Induced Toxicity in Primary Human Astrocytes. J Korean Neurosurg Soc 2024; 67:418-430. [PMID: 37859347 PMCID: PMC11220420 DOI: 10.3340/jkns.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE Isoflurane, a widely used common inhalational anesthetic agent, can induce brain toxicity. The challenge lies in protecting neurologically compromised patients from neurotoxic anesthetics. Choline alfoscerate (L-α-Glycerophosphorylcholine, α-GPC) is recognized for its neuroprotective properties against oxidative stress and inflammation, but its optimal therapeutic window and indications are still under investigation. This study explores the impact of α-GPC on human astrocytes, the most abundant cells in the brain that protect against oxidative stress, under isoflurane exposure. METHODS This study was designed to examine changes in factors related to isoflurane-induced toxicity following α-GPC administration. Primary human astrocytes were pretreated with varying doses of α-GPC (ranging from 0.1 to 10.0 μM) for 24 hours prior to 2.5% isoflurane exposure. In vitro analysis of cell morphology, water-soluble tetrazolium salt-1 assay, quantitative real-time polymerase chain reaction, proteome profiler array, and transcriptome sequencing were conducted. RESULTS A significant morphological damage to human astrocytes was observed in the group that had been pretreated with 10.0 mM of α-GPC and exposed to 2.5% isoflurane. A decrease in cell viability was identified in the group pretreated with 10.0 μM of α-GPC and exposed to 2.5% isoflurane compared to the group exposed only to 2.5% isoflurane. Quantitative real-time polymerase chain reaction revealed that mRNA expression of heme-oxygenase 1 and hypoxia-inducible factor-1α, which were reduced by isoflurane, was further suppressed by 10.0 μM α-GPC pretreatment. The proteome profiler array demonstrated that α-GPC pretreatment influenced a variety of factors associated with apoptosis induced by oxidative stress. Additionally, transcriptome sequencing identified pathways significantly related to changes in isoflurane-induced toxicity caused by α-GPC pretreatment. CONCLUSION The findings suggest that α-GPC pretreatment could potentially enhance the vulnerability of primary human astrocytes to isoflurane-induced toxicity by diminishing the expression of antioxidant factors, potentially leading to amplified cell damage.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Hye Rim Cho
- Department of Neurosurgery, Korea University Medicine, Korea University College of Medicine, Seoul, Korea
| | - Minji Bang
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeo Song Lee
- Department of Neurosurgery, Korea University Medicine, Korea University College of Medicine, Seoul, Korea
| | - Youn Jin Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyuha Chong
- Photo-Theranosis and Bioinformatics for Tumor Laboratory, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Munafò A, Cantone AF, Di Benedetto G, Torrisi SA, Burgaletto C, Bellanca CM, Gaudio G, Broggi G, Caltabiano R, Leggio GM, Bernardini R, Cantarella G. Pharmacological enhancement of cholinergic neurotransmission alleviates neuroinflammation and improves functional outcomes in a triple transgenic mouse model of Alzheimer's disease. Front Pharmacol 2024; 15:1386224. [PMID: 38595916 PMCID: PMC11002120 DOI: 10.3389/fphar.2024.1386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly population worldwide. Due to the multifactorial nature of the disease, involving impairment of cholinergic neurotransmission and immune system, previous attempts to find effective treatments have faced challenges. Methods: In such scenario, we attempted to investigate the effects of alpha-glyceryl-phosphoryl-choline (α-GPC), a cholinomimetic molecule, on neuroinflammation and memory outcome in the triple transgenic mouse model of AD (3xTg-AD). Mice were enrolled at 4 months of age, treated orally with α-GPC dissolved in drinking water at a concentration resulting in an average daily dose of 100 mg/kg for 8 months and sacrificed at 12 months of age. Thereafter, inflammatory markers, as well as cognitive parameters, were measured. Results: Chronic α-GPC treatment reduced accumulation of amyloid deposits and led to a substantial re-balance of the inflammatory response of resident innate immune cells, astrocytes and microglia. Specifically, fluorescent immunohistochemistry and Western blot analysis showed that α-GPC contributed to reduction of cortical and hippocampal reactive astrocytes and pro-inflammatory microglia, concurrently increasing the expression of anti-inflammatory molecules. Whereas α-GPC beneficially affect the synaptic marker synaptophysin in the hippocampus. Furthermore, we observed that α-GPC was effective in restoring cognitive dysfunction, as measured by the Novel Object Recognition test, wherein 3xTg-AD mice treated with α-GPC significantly spent more time exploring the novel object compared to 3xTg-AD untreated mice. Discussion: In conclusion, chronic treatment with α-GPC exhibited a significant anti-inflammatory activity and sustained the key function of hippocampal synapses, crucial for the maintenance of a regular cognitive status. In light of our results, we suggest that α-GPC could be exploited as a promising therapeutic approach in early phases of AD.
Collapse
Affiliation(s)
- Antonio Munafò
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Clinical Toxicology Unit, University Hospital of Catania, Catania, Italy
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Cantone AF, Burgaletto C, Di Benedetto G, Pannaccione A, Secondo A, Bellanca CM, Augello E, Munafò A, Tarro P, Bernardini R, Cantarella G. Taming Microglia in Alzheimer's Disease: Exploring Potential Implications of Choline Alphoscerate via α7 nAChR Modulation. Cells 2024; 13:309. [PMID: 38391922 PMCID: PMC10886565 DOI: 10.3390/cells13040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Alzheimer's disease (AD), marked by cognitive impairment, predominantly affects the brain regions regulated by cholinergic innervation, such as the cerebral cortex and hippocampus. Cholinergic dysfunction, a key contributor to age-related cognitive decline, has spurred investigations into potential therapeutic interventions. We have previously shown that choline alphoscerate (α-GPC), a cholinergic neurotransmission-enhancing agent, protects from Aβ-mediated neurotoxicity. Herein, we investigated the effects of α-GPC on the microglial phenotype in response to Aβ via modulation of the nicotinic alpha-7 acetylcholine receptor (α7 nAChR). BV2 microglial cells were pre-treated for 1 h with α-GPC and were treated for 24, 48, and 72 h with Aβ1-42 and/or α-BTX, a selective α7nAchR antagonist. Fluorescent immunocytochemistry and Western blot analysis showed that α-GPC was able to antagonize Aβ-induced inflammatory effects. Of note, α-GPC exerted its anti-inflammatory effect by directly activating the α7nAChR receptor, as suggested by the induction of an increase in [Ca2+]i and Ach-like currents. Considering that cholinergic transmission appears crucial in regulating the inflammatory profiles of glial cells, its modulation emerges as a potential pharmaco-therapeutic target to improve outcomes in inflammatory neurodegenerative disorders, such as AD.
Collapse
Affiliation(s)
- Anna Flavia Cantone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
| | - Chiara Burgaletto
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
| | - Giulia Di Benedetto
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (A.S.)
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (A.S.)
| | - Carlo Maria Bellanca
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Egle Augello
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
| | - Antonio Munafò
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
| | - Paola Tarro
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
| | - Renato Bernardini
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
- Clinical Toxicology Unit, University Hospital of Catania, 95123 Catania, Italy
| | - Giuseppina Cantarella
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (A.F.C.); (C.B.); (C.M.B.); (E.A.); (A.M.); (P.T.); (R.B.); (G.C.)
| |
Collapse
|
4
|
Kansakar U, Trimarco V, Mone P, Varzideh F, Lombardi A, Santulli G. Choline supplements: An update. Front Endocrinol (Lausanne) 2023; 14:1148166. [PMID: 36950691 PMCID: PMC10025538 DOI: 10.3389/fendo.2023.1148166] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
In this comprehensive review, we examine the main preclinical and clinical investigations assessing the effects of different forms of choline supplementation currently available, including choline alfoscerate (C8H20NO6P), also known as alpha-glycerophosphocholine (α-GPC, or GPC), choline bitartrate, lecithin, and citicoline, which are cholinergic compounds and precursors of acetylcholine. Extensively used as food supplements, they have been shown to represent an effective strategy for boosting memory and enhancing cognitive function.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | | | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- ASL Avellino, Montefiore Health System, New York, NY, United States
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | - Angela Lombardi
- Department of Microbiology and Immunology, Montefiore Health System, New York, NY, United States
- *Correspondence: Angela Lombardi,
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- University of Naples “Federico II”, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Montefiore Health System, New York, NY, United States
| |
Collapse
|