1
|
Mruczyk K, Molska M, Wójciak RW, Śliwicka E, Cisek-Woźniak A. Associated between cognition, brain-derived neurotrophic factor (BDNF) and macronutrients in normal and overweight postmenopausal women. Exp Gerontol 2024; 192:112449. [PMID: 38704127 DOI: 10.1016/j.exger.2024.112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
BDNF is a protein associated with cognitive dysfunction. The aim of the study was to determine the relationship between BDNF and cognitive functions and the intake of macronutrients in postmenopausal women. For this purpose, 72 postmenopausal women were recruited to the study and divided into two subgroups: overweight/obese and normal weight. Using a 3-day food record, nutrition was assessed. The markers studied were the level of BDNF, which was determined from the venous blood serum collected from women, and selected cognitive functions. We observed that in the normal BMI group macronutrient intake was correlated with BDNF levels, and only total fat and carbohydrate intake were inversely correlated with BDNF levels. There were inverse correlations observed among selected parameters of cognitive functioning. In the Ov/Ob group, macronutrient intake correlated with the BDNF level for several variables, e.g. vice versa with total protein, fat and carbohydrate intake, as well as dietary cholesterol. It has also been noted that there are links between the BDNF factor and excessive body weight.
Collapse
Affiliation(s)
- Kinga Mruczyk
- Department of Dietetics, Faculty of Physical Culture in Gorzów Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzów Wielkopolski, Poland.
| | - Marta Molska
- Department of Dietetics, Faculty of Physical Culture in Gorzów Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzów Wielkopolski, Poland.
| | - Rafał W Wójciak
- Department of Clinical Psychology, University of Medical Sciences, Poznań, Poland.
| | - Ewa Śliwicka
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland.
| | - Angelika Cisek-Woźniak
- Department of Dietetics, Faculty of Physical Culture in Gorzów Wlkp., Poznan University of Physical Education, Estkowskiego 13, 66-400 Gorzów Wielkopolski, Poland.
| |
Collapse
|
2
|
Nikolac Perkovic M, Borovecki F, Filipcic I, Vuic B, Milos T, Nedic Erjavec G, Konjevod M, Tudor L, Mimica N, Uzun S, Kozumplik O, Svob Strac D, Pivac N. Relationship between Brain-Derived Neurotrophic Factor and Cognitive Decline in Patients with Mild Cognitive Impairment and Dementia. Biomolecules 2023; 13:biom13030570. [PMID: 36979505 PMCID: PMC10046678 DOI: 10.3390/biom13030570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the last decade, increasing evidence has emerged linking alterations in the brain-derived neurotrophic factor (BDNF) expression with the development of Alzheimer's disease (AD). Because of the important role of BDNF in cognition and its association with AD pathogenesis, the aim of this study was to evaluate the potential difference in plasma BDNF concentrations between subjects with mild cognitive impairment (MCI; N = 209) and AD patients (N = 295) and to determine the possible association between BDNF plasma levels and the degree of cognitive decline in these individuals. The results showed a significantly higher (p < 0.001) concentration of plasma BDNF in subjects with AD (1.16; 0.13-21.34) compared with individuals with MCI (0.68; 0.02-19.14). The results of the present study additionally indicated a negative correlation between cognitive functions and BDNF plasma concentrations, suggesting higher BDNF levels in subjects with more pronounced cognitive decline. The correlation analysis revealed a significant negative correlation between BDNF plasma levels and both Mini-Mental State Examination (p < 0.001) and Clock Drawing test (p < 0.001) scores. In conclusion, the results of our study point towards elevated plasma BDNF levels in AD patients compared with MCI subjects, which may be due to the body's attempt to counteract the early and middle stages of neurodegeneration.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Fran Borovecki
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Filipcic
- Psychiatric Hospital "Sveti Ivan", 10090 Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Suzana Uzun
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
3
|
Qian F, Liu J, Yang H, Zhu H, Wang Z, Wu Y, Cheng Z. Association of plasma brain-derived neurotrophic factor with Alzheimer's disease and its influencing factors in Chinese elderly population. Front Aging Neurosci 2022; 14:987244. [PMID: 36425322 PMCID: PMC9680530 DOI: 10.3389/fnagi.2022.987244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE To explore the association of plasma brain-derived neurotrophic factor (BDNF) levels with Alzheimer's disease and its influencing factors. MATERIALS AND METHODS A total of 1,615 participants were included in the present study. Among all subjects, 660 were cognitive normal controls (CNCs), 571 were mild cognitive impairment (MCI) patients, and 384 were dementia with Alzheimer's type (DAT) patients. BDNF in blood samples collected from these subjects was analyzed via the Luminex assay. Additionally, DNA extraction and APOE4 genotyping were performed on leukocytes using a blood genotyping DNA extraction kit. All data were processed with SPSS 20.0 software. Analysis of variance (ANOVA) or analysis of covariance (ANCOVA) was used to compare differences among groups on plasma BDNF. Pearson and Spearman correlation analysis examined the correlation between BDNF and cognitive impairment, and linear regression analysis examined the comprehensive effects of diagnosis, gender, age, education, and sample source on BDNF. RESULTS BDNF levels in DAT patients were higher than those in CNC and MCI patients (P < 0.01). BDNF levels were significantly correlated with CDR, MMSE, and clinical diagnosis (P < 0.001). Age, education, occupation, and sample source had significant effects on BDNF differences among the CNC, MCI, and DAT groups (P < 0.001). BDNF first decreased and then increased with cognitive impairment in the ApoE4-negative group (P < 0.05). CONCLUSION Plasma BDNF levels decreased in the MCI stage and increased in the dementia stage and were affected by age, education, occupation, and sample source. Unless the effects of sample heterogeneity and methodological differences can be excluded, plasma BDNF is difficult to become a biomarker for the early screening and diagnosis of AD.
Collapse
Affiliation(s)
- Fuqiang Qian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jian Liu
- Hangzhou Seventh People’s Hospital, Hangzhou, China
| | - Hongyu Yang
- Shanghai Mental Health Center, Shanghai, China
| | - Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Zhiqiang Wang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Yue Wu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Zaohuo Cheng
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| |
Collapse
|
4
|
Increased plasma brain-derived neurotrophic factor (BDNF) as a potential biomarker for and compensatory mechanism in mild cognitive impairment: a case-control study. Aging (Albany NY) 2021; 13:22666-22689. [PMID: 34607976 PMCID: PMC8544315 DOI: 10.18632/aging.203598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
Background: Previous meta-analyses examining the continuum of Alzheimer’s disease (AD) concluded significantly decreased peripheral brain-derived neurotrophic factor (BDNF) in AD. However, across different meta-analyses, there remain inconsistent findings on peripheral BDNF levels in individuals with mild cognitive impairment (MCI). This issue has been attributed to the highly heterogenous clinical and laboratory factors. Thus, BDNF’s level, discriminative accuracy for identifying all-cause MCI and its subtypes, and its associations with other biomarkers and neurocognitive domains, remain largely unknown. Methods: To address this heterogeneity, we compared a healthy control cohort (n=56, 45 female) to an MCI cohort (n=40, 28 female), to determine whether plasma BDNF, hs-CRP, and DHEA-S can differentiate healthy from MCI individuals, including two MCI subtypes (amnestic [aMCI] and non-amnestic [non-aMCI]). The associations between BDNF with other biomarkers and neurocognitive tests were examined. Adults with cerebral palsy were included as sensitivity analyses. Results: Compared to healthy controls, BDNF was significantly higher in all-cause MCI, aMCI, and non-aMCI. Furthermore, BDNF had good (AUC=0.84, 95% CI=0.74 to 0.95, p<0.001) and excellent discriminative accuracies (AUC=0.92, 95% CI=0.84 to 1.00, p<0.001) for all-cause MCI and non-amnestic MCI, respectively. BDNF was significantly and positively associated with plasma hs-CRP (β=0.26, 95% CI=0.02 to 0.50, p=0.038), despite attenuated association upon controlling for BMI (β=0.15, 95% CI=-0.08 to 0.38, p=0.186). Multiple inverse associations between BDNF and detailed neurocognitive tests were also detected. Conclusions: These findings suggest BDNF is increased as a compensatory mechanism in preclinical dementia, supporting the neurotrophic and partially the inflammatory hypotheses of cognitive impairment.
Collapse
|
5
|
Requena-Ocaña N, Araos P, Flores M, García-Marchena N, Silva-Peña D, Aranda J, Rivera P, Ruiz JJ, Serrano A, Pavón FJ, Suárez J, Rodríguez de Fonseca F. Evaluation of neurotrophic factors and education level as predictors of cognitive decline in alcohol use disorder. Sci Rep 2021; 11:15583. [PMID: 34341419 PMCID: PMC8328971 DOI: 10.1038/s41598-021-95131-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cognitive reserve (CR) is the capability of an individual to cope with a brain pathology through compensatory mechanisms developed through cognitive stimulation by mental and physical activity. Recently, it has been suggested that CR has a protective role against the initiation of substance use, substance consumption patterns and cognitive decline and can improve responses to treatment. However, CR has never been linked to cognitive function and neurotrophic factors in the context of alcohol consumption. The present cross-sectional study aims to evaluate the association between CR (evaluated by educational level), cognitive impairment (assessed using a frontal and memory loss assessment battery) and circulating levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in patients with alcohol use disorder (AUD). Our results indicated that lower educational levels were accompanied by earlier onset of alcohol consumption and earlier development of alcohol dependence, as well as impaired frontal cognitive function. They also suggest that CR, NT-3 and BDNF may act as compensatory mechanisms for cognitive decline in the early stages of AUD, but not in later phases. These parameters allow the identification of patients with AUD who are at risk of cognitive deterioration and the implementation of personalized interventions to preserve cognitive function.
Collapse
Affiliation(s)
- Nerea Requena-Ocaña
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain.
- School of Psychology, Complutense University of Madrid, Madrid, Spain.
- Laboratorio de Investigación, IBIMA, Hospital Universitario Regional de Málaga, Avenida Carlos Haya 82, 29010, Málaga, Spain.
| | - Pedro Araos
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, School of Psychology, University of Málaga, 29010, Málaga, Spain
| | - María Flores
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Nuria García-Marchena
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Daniel Silva-Peña
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Jesús Aranda
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
- School of Medicine, University of Málaga, 29071, Málaga, Spain
| | - Patricia Rivera
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Juan Jesús Ruiz
- Provincial Drug Addiction Center of Málaga, Provincial Council of Málaga, Málaga, Spain
| | - Antonia Serrano
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
| | - Francisco Javier Pavón
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain
- Cardiac Clinical Management Unit, IBIMA, University Hospital Virgen de la Victoria, 29010, Málaga, Spain
| | - Juan Suárez
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain.
- Department of Human Anatomy, Legal Medicine and History of Science, IBIMA, Facultad de Medicina, University of Málaga, Bulevar Louis Pausteur, 29071, Málaga, Spain.
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Malaga-IBIMA, Regional University Hospital of Málaga, 29010, Málaga, Spain.
| |
Collapse
|
6
|
Manzine PR, Vatanabe IP, Peron R, Grigoli MM, Pedroso RV, Nascimento CMC, Cominetti MR. Blood-based Biomarkers of Alzheimer's Disease: The Long and Winding Road. Curr Pharm Des 2020; 26:1300-1315. [PMID: 31942855 DOI: 10.2174/1381612826666200114105515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Blood-based biomarkers can be very useful in formulating new diagnostic and treatment proposals in the field of dementia, especially in Alzheimer's disease (AD). However, due to the influence of several factors on the reproducibility and reliability of these markers, their clinical use is still very uncertain. Thus, up-to-date knowledge about the main blood biomarkers that are currently being studied is extremely important in order to discover clinically useful and applicable tools, which could also be used as novel pharmacological strategies for the AD treatment. METHODS A narrative review was performed based on the current candidates of blood-based biomarkers for AD to show the main results from different studies, focusing on their clinical applicability and association with AD pathogenesis. OBJECTIVE The aim of this paper was to carry out a literature review on the major blood-based biomarkers for AD, connecting them with the pathophysiology of the disease. RESULTS Recent advances in the search of blood-based AD biomarkers were summarized in this review. The biomarkers were classified according to the topics related to the main hallmarks of the disease such as inflammation, amyloid, and tau deposition, synaptic degeneration and oxidative stress. Moreover, molecules involved in the regulation of proteins related to these hallmarks were described, such as non-coding RNAs, neurotrophins, growth factors and metabolites. Cells or cellular components with the potential to be considered as blood-based AD biomarkers were described in a separate topic. CONCLUSION A series of limitations undermine new discoveries on blood-based AD biomarkers. The lack of reproducibility of findings due to the small size and heterogeneity of the study population, different analytical methods and other assay conditions make longitudinal studies necessary in this field to validate these structures, especially when considering a clinical evaluation that includes a broad panel of these potential and promising blood-based biomarkers.
Collapse
Affiliation(s)
- Patricia R Manzine
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Izabela P Vatanabe
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Rafaela Peron
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marina M Grigoli
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Renata V Pedroso
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Carla M C Nascimento
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of Sao Carlos, Rod. Washington Luis, Km 235, Monjolinho, CEP 13565-905, Sao Carlos, SP, Brazil
| |
Collapse
|
7
|
Sharif M, Noroozian M, Hashemian F. Do serum GDNF levels correlate with severity of Alzheimer's disease? Neurol Sci 2020; 42:2865-2872. [PMID: 33215334 DOI: 10.1007/s10072-020-04909-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION A growing body of evidence that glial cell line-derived neurotrophic factor (GDNF) levels are probably involved in pathogenesis and disease course of Alzheimer's disease (AD) suggested that its blood levels could potentially be used as a biomarker of AD. The aim of this study was to compare serum GDNF levels in patients with AD and age-matched controls. METHODS Serum concentrations of GDNF were compared in 25 AD patients and 25 healthy volunteers using a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). Severity of the disease in AD patients was assessed using Functional Assessment Staging (FAST). Cognitive assessment of the patients was done using the Mini-Mental State Examination (MMSE). RESULTS Mean GDNF levels were found to be 2.45 ± 0.93 ng/ml in AD patients and 4.61 ± 3.39 ng/ml in age-matched controls. There was a statistically significant difference in GDNF serum levels in patients with AD compared to age-matched controls (p = 0.001). Moreover, GDNF serum levels were significantly correlated with disease severity (p < 0.001) and cognitive impairment (p < 0.001). CONCLUSION This study showed that serum levels of GDNF are significantly decreased in AD patients in comparison with age-matched controls, thus suggesting a potential role of GDNF as a disease biomarker. However, a comprehensive study of changes in serum levels of multiple neurotrophic factors reflective of different neurobiological pathways in large-scale population studies is recommended.
Collapse
Affiliation(s)
- Maryam Sharif
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran
| | - Maryam Noroozian
- Memory and Behavioral Neurology Division, Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Hashemian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, 99 Yakhchal Street, Shariati Avenue, Tehran, 1941933111, Iran.
| |
Collapse
|
8
|
The BDNF Val66Met Polymorphism Modulates Resilience of Neurological Functioning to Brain Ageing and Dementia: A Narrative Review. Brain Sci 2020; 10:brainsci10040195. [PMID: 32218234 PMCID: PMC7226504 DOI: 10.3390/brainsci10040195] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotropic factor (BDNF) is an abundant and multi-function neurotrophin in the brain. It is released following neuronal activity and is believed to be particularly important in strengthening neural networks. A common variation in the BDNF gene, a valine to methionine substitution at codon 66 (Val66Met), has been linked to differential expression of BDNF associated with experience-dependent plasticity. The Met allele has been associated with reduced production of BDNF following neuronal stimulation, which suggests a potential role of this variation with respect to how the nervous system may respond to challenges, such as brain ageing and related neurodegenerative conditions (e.g., dementia and Alzheimer’s disease). The current review examines the potential of the BDNF Val66Met variation to modulate an individual’s susceptibility and trajectory through cognitive changes associated with ageing and dementia. On balance, research to date indicates that the BDNF Met allele at this codon is potentially associated with a detrimental influence on the level of cognitive functioning in older adults and may also impart increased risk of progression to dementia. Furthermore, recent studies also show that this genetic variation may modulate an individual’s response to interventions targeted at building cognitive resilience to conditions that cause dementia.
Collapse
|
9
|
Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RCM. Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer's Disease (AD): A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20020257. [PMID: 30634650 PMCID: PMC6358753 DOI: 10.3390/ijms20020257] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022] Open
Abstract
Findings from previous studies reporting the levels of serum brain-derived neurotrophic factor (BDNF) in patients with Alzheimer's disease (AD) and individuals with mild cognitive impairment (MCI) have been conflicting. Hence, we performed a meta-analysis to examine the aggregate levels of serum BDNF in patients with AD and individuals with MCI, in comparison with healthy controls. Fifteen studies were included for the comparison between AD and healthy control (HC) (n = 2067). Serum BDNF levels were significantly lower in patients with AD (SMD: -0.282; 95% confidence interval [CI]: -0.535 to -0.028; significant heterogeneity: I² = 83.962). Meta-regression identified age (p < 0.001) and MMSE scores (p < 0.001) to be the significant moderators that could explain the heterogeneity in findings in these studies. Additionally, there were no significant differences in serum BDNF levels between patients with AD and MCI (eight studies, n = 906) and between MCI and HC (nine studies, n = 5090). In all, patients with AD, but not MCI, have significantly lower serum BDNF levels compared to healthy controls. This meta-analysis confirmed the direction of change in serum BDNF levels in dementia. This finding suggests that a significant change in peripheral BDNF levels can only be detected at the late stage of the dementia spectrum. Molecular mechanisms, implications on interventional trials, and future directions for studies examining BDNF in dementia were discussed.
Collapse
Affiliation(s)
- Ted Kheng Siang Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Department of Psychological Medicine, National University Hospital, Singapore 119074, Singapore.
| | - Wilson Wai San Tam
- Alice Lee School of Nursing, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Ee Heok Kua
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Department of Psychological Medicine, National University Hospital, Singapore 119074, Singapore.
| | - Roger Chun-Man Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
- Department of Psychological Medicine, National University Hospital, Singapore 119074, Singapore.
- Biomedical Global Institute of Healthcare Research & Technology (BIGHEART), National University of Singapore, Singapore 119228, Singapore.
- Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam.
- Faculty of Education, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, Anhui, China.
| |
Collapse
|
10
|
Liou CJ, Tong M, Vonsattel JP, de la Monte SM. Altered Brain Expression of Insulin and Insulin-Like Growth Factors in Frontotemporal Lobar Degeneration: Another Degenerative Disease Linked to Dysregulation of Insulin Metabolic Pathways. ASN Neuro 2019; 11:1759091419839515. [PMID: 31081340 PMCID: PMC6535914 DOI: 10.1177/1759091419839515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is the third most common dementing neurodegenerative disease with nearly 80% having no known etiology. OBJECTIVE Growing evidence that neurodegeneration can be linked to dysregulated metabolism prompted us to measure a panel of trophic factors, receptors, and molecules that modulate brain metabolic function in FTLD. METHODS Postmortem frontal (Brodmann's area [BA]8/9 and BA24) and temporal (BA38) lobe homogenates were used to measure immunoreactivity to Tau, phosphorylated tau (pTau), ubiquitin, 4-hydroxynonenal (HNE), transforming growth factor-beta 1 (TGF-β1) and its receptor (TGF-β1R), brain-derived neurotrophic factor (BDNF), nerve growth factor, neurotrophin-3, neurotrophin-4, tropomyosin receptor kinase, and insulin and insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2) and their receptors by direct-binding enzyme-linked immunosorbent assay. RESULTS FTLD brains had significantly elevated pTau, ubiquitin, TGF-β1, and HNE immunoreactivity relative to control. In addition, BDNF and neurotrophin-4 were respectively reduced in BA8/9 and BA38, while neurotrophin-3 and nerve growth factor were upregulated in BA38, and tropomyosin receptor kinase was elevated in BA24. Lastly, insulin and insulin receptor expressions were elevated in the frontal lobe, IGF-1 was increased in BA24, IGF-1R was upregulated in all three brain regions, and IGF-2 receptor was reduced in BA24 and BA38. CONCLUSIONS Aberrantly increased levels of pTau, ubiquitin, HNE, and TGF-β1, marking neurodegeneration, oxidative stress, and neuroinflammation, overlap with altered expression of insulin/IGF signaling ligand and receptors in frontal and temporal lobe regions targeted by FTLD. Dysregulation of insulin-IGF signaling networks could account for brain hypometabolism and several characteristic neuropathologic features that characterize FTLD but overlap with Alzheimer's disease, Parkinson's disease, and Dementia with Lewy Body Disease.
Collapse
Affiliation(s)
- Connie J. Liou
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| | - Jean P. Vonsattel
- New York Brain Bank, Taub Institute, Columbia University, New York, NY, USA
| | - Suzanne M. de la Monte
- Warren Alpert Medical School of Brown University, Providence, RI, USA
- Division of Neuropathology, Departments of Pathology, Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, the Providence VA Medical Center, Providence, RI, USA
| |
Collapse
|
11
|
Balietti M, Giuli C, Conti F. Peripheral Blood Brain-Derived Neurotrophic Factor as a Biomarker of Alzheimer's Disease: Are There Methodological Biases? Mol Neurobiol 2018; 55:6661-6672. [PMID: 29330839 PMCID: PMC6061178 DOI: 10.1007/s12035-017-0866-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
Mounting evidence that alterations in brain-derived neurotrophic factor (BDNF) levels and signaling may be involved in the etiopathogenesis of Alzheimer's disease (AD) has suggested that its blood levels could be used as a biomarker of the disease. However, higher, lower, or unchanged circulating BDNF levels have all been described in AD patients compared to healthy controls. Although the reasons for such different findings are unclear, methodological issues are likely to be involved. The heterogeneity of participant recruitment criteria and the lack of control of variables that influence circulating BDNF levels regardless of dementia (depressive symptoms, medications, lifestyle, lack of overlap between serum and plasma, and experimental aspects) are likely to bias result and prevent study comparability. The present work reviews a broad panel of factors, whose close control could help reduce the inconsistency of study findings, and offers practical advice on their management. Research directed at elucidating the weight of each of these variables and at standardizing analytical methodologies is urgently needed.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, INRCA, Via Birarelli 8, 60121, Ancona, Italy.
| | - Cinzia Giuli
- Geriatrics Operative Unit, INRCA, Fermo, 63023, Italy
| | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA, Via Birarelli 8, 60121, Ancona, Italy
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, 60126, Italy
| |
Collapse
|
12
|
Balietti M, Giuli C, Fattoretti P, Fabbietti P, Papa R, Postacchini D, Conti F. Effect of a Comprehensive Intervention on Plasma BDNF in Patients with Alzheimer's Disease. J Alzheimers Dis 2018; 57:37-43. [PMID: 28222525 PMCID: PMC5345639 DOI: 10.3233/jad-161168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A comprehensive intervention (CI) on patients with Alzheimer’s disease was assessed by measuring plasmabrain-derived neurotrophic factor (pBDNF) and ADAS-Cog score (ADAS-Cogscore) before, immediately after (FU1), and 6 (FU2) and 24 months (FU3) after the CI. Baseline pBDNF was higher in patients with moderate AD (but not mild AD) than in healthy controls. At FU1, pBDNF and ADAS-Cogscore decreased significantly. At FU2 and FU3, patients’ cognitive status worsened and pBDNF further increased versus baseline, suggesting that CI interruption may be a stress event that prevents return to homeostasis. CI exerted positive short-term effects, but more information is needed on long-term consequences.
Collapse
Affiliation(s)
| | | | | | | | - Roberta Papa
- Center of Socio-economic Gerontological Research, INRCA, Ancona, Italy
| | | | - Fiorenzo Conti
- Center for Neurobiology of Aging, INRCA, Ancona, Italy.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
13
|
Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP, Cheng Y. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer's disease: a meta-analysis study (N=7277). Mol Psychiatry 2017; 22:312-320. [PMID: 27113997 DOI: 10.1038/mp.2016.62] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 12/30/2022]
Abstract
Studies suggest that dysfunction of brain-derived neurotrophic factor (BDNF) is a possible contributor to the pathology and symptoms of Alzheimer's disease (AD). Several studies report reduced peripheral blood levels of BDNF in AD, but findings are inconsistent. This study sought to quantitatively summarize the clinical BDNF data in patients with AD and mild cognitive impairment (MCI, a prodromal stage of AD) with a meta-analytical technique. A systematic search of Pubmed, PsycINFO and the Cochrane Library identified 29 articles for inclusion in the meta-analysis. Random-effects meta-analysis showed that patients with AD had significantly decreased baseline peripheral blood levels of BDNF compared with healthy control (HC) subjects (24 studies, Hedges' g=-0.339, 95% confidence interval (CI)=-0.572 to -0.106, P=0.004). MCI subjects showed a trend for decreased BDNF levels compared with HC subjects (14 studies, Hedges' g=-0.201, 95% CI=-0.413 to 0.010, P=0.062). No differences were found between AD and MCI subjects in BDNF levels (11 studies, Hedges' g=0.058, 95% CI=-0.120 to 0.236, P=0.522). Interestingly, the effective sizes and statistical significance improved after excluding studies with reported medication in patients (between AD and HC: 18 studies, Hedges' g=-0.492, P<0.001; between MCI and HC: 11 studies, Hedges' g=-0.339, P=0.003). These results strengthen the clinical evidence that AD or MCI is accompanied by reduced peripheral blood BDNF levels, supporting an association between the decreasing levels of BDNF and the progression of AD.
Collapse
Affiliation(s)
- X-Y Qin
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - C Cao
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - N X Cawley
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - T-T Liu
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - J Yuan
- Section on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Y P Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Y Cheng
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Kim BY, Lee SH, Graham PL, Angelucci F, Lucia A, Pareja-Galeano H, Leyhe T, Turana Y, Lee IR, Yoon JH, Shin JI. Peripheral Brain-Derived Neurotrophic Factor Levels in Alzheimer's Disease and Mild Cognitive Impairment: a Comprehensive Systematic Review and Meta-analysis. Mol Neurobiol 2016; 54:7297-7311. [PMID: 27815832 DOI: 10.1007/s12035-016-0192-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is becoming a growing global problem, and there is an urgent need to identify reliable blood biomarkers of the risk and progression of this condition. A potential candidate is the brain-derived neurotrophic factor (BDNF), which modulates major trophic effects in the brain. However, findings are apparently inconsistent regarding peripheral blood BDNF levels in AD patients vs. healthy people. We thus performed a systematic review and meta-analysis of the studies that have examined peripheral BDNF levels in patients with AD or mild cognitive impairment (MCI) and healthy controls. We searched articles through PubMed, EMBASE, and hand searching. Over a total pool of 2061 potential articles, 26 met all inclusion criteria (including a total of 1584 AD patients, 556 MCI patients, and 1294 controls). A meta-analysis of BDNF levels between early AD and controls showed statistically significantly higher levels (SMD [95 % CI]: 0.72 [0.31, 1.13]) with no heterogeneity. AD patients with a low (<20) mini-mental state examination (MMSE) score had lower peripheral BDNF levels compared with controls (SMD [95 % CI]: -0.33 [-0.60, -0.05]). However, we found no statistically significant difference in blood (serum/plasma) BDNF levels between all AD patients and controls (standard mean difference, SMD [95 % CI]: -0.16 [-0.4, 0.07]), and there was heterogeneity among studies (P < 0.0001, I 2 = 85.8 %). There were no differences in blood BDNF levels among AD or MCI patients vs. controls by subgroup analyses according to age, sex, and drug use. In conclusion, this meta-analysis shows that peripheral blood BDNF levels seem to be increased in early AD and decreased in AD patients with low MMSE scores respectively compared with their age- and sex-matched healthy referents. At present, however, this could not be concluded from individual studies.
Collapse
Affiliation(s)
- Bo Yi Kim
- College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seon Heui Lee
- Department of Nursing Science, College of Nursing, Gachon University, Incheon, South Korea
| | - Petra L Graham
- Department of Statistics, Macquarie University, Sydney, Australia
| | - Francesco Angelucci
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alejandro Lucia
- Research Institute of Hospital 12 de Octubre (i+12), European University of Madrid, Madrid, Spain
| | - Helios Pareja-Galeano
- Research Institute of Hospital 12 de Octubre (i+12), European University of Madrid, Madrid, Spain
| | - Thomas Leyhe
- Center of Old Age Psychiatry, Psychiatric University Hospital, Basel, Switzerland
| | - Yuda Turana
- Department of Neurology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - I Re Lee
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seoul, 120-752, Republic of Korea
| | - Ji Hye Yoon
- College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, 50 Yonsei-Ro, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
15
|
Alvarez A, Aleixandre M, Linares C, Masliah E, Moessler H. Apathy and APOE4 are associated with reduced BDNF levels in Alzheimer's disease. J Alzheimers Dis 2015; 42:1347-55. [PMID: 25024337 DOI: 10.3233/jad-140849] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reduced brain-derived neurotrophic factor (BDNF) signaling is considered as a pathogenic event in early Alzheimer's disease (AD), but the influence of apathy and apolipoprotein E ε4 allele (APOE4) on serum BDNF values was not previously investigated in AD. We evaluated serum BDNF levels in AD, amnestic mild cognitive impairment (MCI), and control subjects. Baseline BDNF levels were similar in AD, MCI, and controls. AD patients having apathy showed lower BDNF values than patients without apathy (p < 0.05). After correction for the influence of apathy, APOE4 carriers showed lower BDNF levels (p < 0.01) and MMSE scores (p < 0.01) than non-APOE4 carriers in the subgroup of AD females, but not in males. Significant (p < 0.05) positive correlations between BDNF values and MMSE scores were only observed in subgroups of AD males and of AD patients without apathy. These results are showing the association of apathy and APOE4 with reduced serum BDNF levels in AD, and are suggesting that BDNF reductions might contribute to the worse cognitive performance exhibited by AD apathetic patients and female APOE4 carriers.
Collapse
Affiliation(s)
- Antón Alvarez
- Medinova Institute of Neurosciences, Clínica RehaSalud, A Coruña, Spain
| | | | | | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | | |
Collapse
|
16
|
Liu YH, Jiao SS, Wang YR, Bu XL, Yao XQ, Xiang Y, Wang QH, Wang L, Deng J, Li J, Zhou XF, Zhou HD, Wang YJ. Associations Between ApoEε4 Carrier Status and Serum BDNF Levels—New Insights into the Molecular Mechanism of ApoEε4 Actions in Alzheimer’s Disease. Mol Neurobiol 2014; 51:1271-7. [DOI: 10.1007/s12035-014-8804-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/22/2014] [Indexed: 12/11/2022]
|
17
|
Passaro A, Dalla Nora E, Morieri ML, Soavi C, Sanz JM, Zurlo A, Fellin R, Zuliani G. Brain-derived neurotrophic factor plasma levels: relationship with dementia and diabetes in the elderly population. J Gerontol A Biol Sci Med Sci 2014; 70:294-302. [PMID: 24621946 DOI: 10.1093/gerona/glu028] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms linking diabetes and cognitive impairment/dementia, two common conditions of elderly people, are not completely known. Brain-derived neurotrophic factor (BDNF) has antidiabetic properties, and reduced circulating BDNF was associated with dementia. We investigated the relationship between plasma BDNF levels, dementia, and diabetes in a sample of 164 community-dwelling elderly individuals, including 50 participants with vascular dementia, 44 with late onset Alzheimer's disease, 23 with cerebrovascular disease not dementia, and 47 controls (C). Presence/absence of diabetes was registered; new diagnoses of diabetes were made by the American Diabetes Association criteria. BDNF plasma levels were measured by ELISA. Both diagnosis of dementia and diabetes were associated with lower BDNF plasma values compared with the respective controls; moreover, dementia and diabetes correlated with BDNF plasma levels, independent of possible confounders. A progressive reductions of BDNF plasma levels from C (383.9 ± 204.6 pg/mL), to cerebrovascular disease not dementia (377.1 ± 130.2), to vascular dementia (313.3 ± 114.8), to late onset Alzheimer's disease (264.7 ± 147.7) was observed, (late onset Alzheimer's disease vs C, p: .03; late onset Alzheimer's disease vs cerebrovascular disease not dementia, p: .002). Demented patients affected by diabetes had the lowest BDNF mean levels (264.9 pg/mL) among individuals enrolled in this sample, suggesting the existence of a "synergistic" effect of dementia and diabetes on BDNF levels.
Collapse
Affiliation(s)
- Angela Passaro
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, Gerontology and Clinical Nutrition, University of Ferrara, Italy
| | - Edoardo Dalla Nora
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, Gerontology and Clinical Nutrition, University of Ferrara, Italy
| | - Mario L Morieri
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, Gerontology and Clinical Nutrition, University of Ferrara, Italy
| | - Cecilia Soavi
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, Gerontology and Clinical Nutrition, University of Ferrara, Italy
| | - Juana M Sanz
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, Gerontology and Clinical Nutrition, University of Ferrara, Italy
| | - Amedeo Zurlo
- Operative Unit of Geriatrics, Arcispedale S. Anna, Ferrara, Italy
| | - Renato Fellin
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, Gerontology and Clinical Nutrition, University of Ferrara, Italy
| | - Giovanni Zuliani
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, Gerontology and Clinical Nutrition, University of Ferrara, Italy.
| |
Collapse
|