1
|
Gao J, Xu Y, Yeh C, Zou Y, Hai Y. Cysteine S-conjugate sulfoxide β-lyase activity for human ACCS. FEBS J 2025; 292:2272-2286. [PMID: 39876065 PMCID: PMC12064363 DOI: 10.1111/febs.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure. In this study, through a biochemical profiling approach, we demonstrate that human ACCS possesses cysteine conjugate sulfoxide β-lyase activity. This function is unexpected but reasonable, as it somewhat parallels the activity of ACCS proteins found in non-seed plants. Structure-function relationship study of human ACCS, guided by an AlphaFold2 model, allowed us to identify key active site residues that are important for its β-lyase activity. Our biochemical study of human ACCS also provided insights into the function of other mammalian ACCS homologs.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yueqi Xu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Christopher Yeh
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Yike Zou
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
2
|
Kamenaga T, Shen J, Wu M, Brophy RH, Clohisy JC, O’Keefe RJ, Pascual-Garrido C. Epigenetic dysregulation of articular cartilage during progression of hip femoroacetabular impingement disease. J Orthop Res 2023; 41:1678-1686. [PMID: 36606425 PMCID: PMC10323039 DOI: 10.1002/jor.25513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Femoroacetabular impingement (FAI) is an important trigger of hip osteoarthritis (OA). Epigenetic changes in DNA methyltransferase 3B (DNMT3B) attenuate catabolic gene expression in cartilage hemostasis. This study aimed to examine the articular chondrocyte catabolic state and DNMT3B and 4-aminobutyrate aminotransferase promoter (ABAT) expression during OA progression in FAI. Cartilage samples were collected from the impingement zone of 12 patients with cam FAI (early-FAI) and 12 patients with advanced OA secondary to cam FAI (late-FAI-OA). Five healthy samples were procured from cadavers (ND: nondiseased). Explants were cultured under unstimulated conditions, catabolic stimulus (IL1β), or anabolic stimulus (TGFβ). Histology was performed with safranin-O/fast-green staining. Gene expression was analyzed via qPCR for GAPDH, DNMT3B, ABAT, MMP-13, COL10A1. Methylation specific PCR assessed methylation status at the ABAT promoter. Cartilage samples in early-FAI and late-FAI-OA showed a histological OA phenotype and increased catabolic marker expression (MMP13/COL10A1, ND vs. early-FAI, p = 0.004/p < 0.001, ND vs. late-FAI-OA, p < 0.001/p < 0.001). RT-PCR confirmed DNMT3B underexpression (ND vs. early-FAI, p < 0.001, early-FAI vs. late-FAI-OA, p = 0.016) and ABAT overexpression (ND vs. early-FAI, p < 0.001, early vs. late-FAI-OA, p = 0.035) with advanced disease. End-stage disease showed ABAT promoter hypomethylation. IL1β stimulus accentuated ABAT promoter hypomethylation and led to further ABAT and catabolic marker overexpression in early-FAI and late-FAI-OA while TGFβ normalized these alterations in gene expression. Catabolic and epigenetic molecule expression suggested less catabolism in early-stage disease. Sustained inflammation induced ABAT promoter hypo-methylation causing a catabolic phenotype. Suppression of ABAT by methylation control could be a new target for therapeutic intervention to prevent OA progression in hip FAI.
Collapse
Affiliation(s)
| | - Jie Shen
- Washington University School of Medicine, St. Louis, MO, USA
| | - May Wu
- Washington University School of Medicine, St. Louis, MO, USA
| | | | - John C. Clohisy
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
3
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
4
|
Kawakami R, Ohshida T, Hayashi J, Yoneda K, Furumoto T, Ohshima T, Sakuraba H. Crystal structure of a novel type of ornithine δ-aminotransferase from the hyperthermophilic archaeon Pyrococcus horikoshii. Int J Biol Macromol 2022; 208:731-740. [PMID: 35337912 DOI: 10.1016/j.ijbiomac.2022.03.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/05/2022]
Abstract
Ornithine δ-aminotransferase (Orn-AT) activity was detected for the enzyme annotated as a γ-aminobutyrate aminotransferase encoded by PH1423 gene from Pyrococcus horikoshii OT-3. Crystal structures of this novel archaeal ω-aminotransferase were determined for the enzyme in complex with pyridoxal 5'-phosphate (PLP), in complex with PLP and l-ornithine (l-Orn), and in complex with N-(5'-phosphopyridoxyl)-l-glutamate (PLP-l-Glu). Although the sequence identity was relatively low (28%), the main-chain coordinates of P. horikoshii Orn-AT monomer showed notable similarity to those of human Orn-AT. However, the residues recognizing the α-amino group of l-Orn differ between the two enzymes. In human Orn-AT, Tyr55 and Tyr85 recognize the α-amino group, whereas the side chains of Thr92* and Asp93*, which arise from a loop in the neighboring subunit, form hydrogen bonds with the α-amino group of the substrate in P. horikoshii enzyme. Site-directed mutagenesis suggested that Asp93* plays critical roles in maintaining high affinity for the substrate. This study provides new insight into the substrate binding of a novel type of Orn-AT. Moreover, the structure of the enzyme with the reaction-intermediate analogue PLP-l-Glu bound provides the first structural evidence for the "Glu switch" mechanism in the dual substrate specificity of Orn-AT.
Collapse
Affiliation(s)
- Ryushi Kawakami
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Tatsuya Ohshida
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Junji Hayashi
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, Tokushima 770-8513, Japan
| | - Kazunari Yoneda
- Department of Food and Life Sciences, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto 862-8652, Japan
| | - Toshio Furumoto
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
5
|
Klein A, Rovó P, Sakhrani VV, Wang Y, Holmes JB, Liu V, Skowronek P, Kukuk L, Vasa SK, Güntert P, Mueller LJ, Linser R. Atomic-resolution chemical characterization of (2x)72-kDa tryptophan synthase via four- and five-dimensional 1H-detected solid-state NMR. Proc Natl Acad Sci U S A 2022; 119:e2114690119. [PMID: 35058365 PMCID: PMC8795498 DOI: 10.1073/pnas.2114690119] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the β-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the β-subunit from solution.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Petra Rovó
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Varun V Sakhrani
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Patricia Skowronek
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Laura Kukuk
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rasmus Linser
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany;
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Gryzło B, Zaręba P, Malawska K, Mazur G, Rapacz A, Ła̧tka K, Höfner GC, Latacz G, Bajda M, Sałat K, Wanner KT, Malawska B, Kulig K. Novel Functionalized Amino Acids as Inhibitors of GABA Transporters with Analgesic Activity. ACS Chem Neurosci 2021; 12:3073-3100. [PMID: 34347423 PMCID: PMC8397297 DOI: 10.1021/acschemneuro.1c00351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Neuropathic pain
resistance to pharmacotherapy has encouraged researchers
to develop effective therapies for its treatment. γ-Aminobutyric
acid (GABA) transporters 1 and 4 (mGAT1 and mGAT4) have been increasingly
recognized as promising drug targets for neuropathic pain (NP) associated
with imbalances in inhibitory neurotransmission. In this context,
we designed and synthesized new functionalized amino acids as inhibitors
of GABA uptake and assessed their activities toward all four mouse
GAT subtypes (mGAT1–4). According to the obtained results,
compounds 2RS,4RS-39c (pIC50 (mGAT4) = 5.36), 50a (pIC50 (mGAT2) = 5.43), and 56a (with moderate subtype selectivity
that favored mGAT4, pIC50 (mGAT4) = 5.04) were of particular
interest and were therefore evaluated for their cytotoxic and hepatotoxic
effects. In a set of in vivo experiments, both compounds 50a and 56a showed antinociceptive properties
in three rodent models of NP, namely, chemotherapy-induced neuropathic
pain models (the oxaliplatin model and the paclitaxel model) and the
diabetic neuropathic pain model induced by streptozotocin; however
compound 56a demonstrated predominant activity. Since
impaired motor coordination is also observed in neuropathic pain conditions,
we have pointed out that none of the test compounds induced motor
deficits in the rotarod test.
Collapse
Affiliation(s)
- Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Rapacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kamil Ła̧tka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Georg C. Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
7
|
Morales JF, Chuguransky S, Alberca LN, Alice JI, Goicoechea S, Ruiz ME, Bellera CL, Talevi A. Positive Predictive Value Surfaces as a Complementary Tool to Assess the Performance of Virtual Screening Methods. Mini Rev Med Chem 2021; 20:1447-1460. [PMID: 32072906 DOI: 10.2174/1871525718666200219130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Since their introduction in the virtual screening field, Receiver Operating Characteristic (ROC) curve-derived metrics have been widely used for benchmarking of computational methods and algorithms intended for virtual screening applications. Whereas in classification problems, the ratio between sensitivity and specificity for a given score value is very informative, a practical concern in virtual screening campaigns is to predict the actual probability that a predicted hit will prove truly active when submitted to experimental testing (in other words, the Positive Predictive Value - PPV). Estimation of such probability is however, obstructed due to its dependency on the yield of actives of the screened library, which cannot be known a priori. OBJECTIVE To explore the use of PPV surfaces derived from simulated ranking experiments (retrospective virtual screening) as a complementary tool to ROC curves, for both benchmarking and optimization of score cutoff values. METHODS The utility of the proposed approach is assessed in retrospective virtual screening experiments with four datasets used to infer QSAR classifiers: inhibitors of Trypanosoma cruzi trypanothione synthetase; inhibitors of Trypanosoma brucei N-myristoyltransferase; inhibitors of GABA transaminase and anticonvulsant activity in the 6 Hz seizure model. RESULTS Besides illustrating the utility of PPV surfaces to compare the performance of machine learning models for virtual screening applications and to select an adequate score threshold, our results also suggest that ensemble learning provides models with better predictivity and more robust behavior. CONCLUSION PPV surfaces are valuable tools to assess virtual screening tools and choose score thresholds to be applied in prospective in silico screens. Ensemble learning approaches seem to consistently lead to improved predictivity and robustness.
Collapse
Affiliation(s)
- Juan F Morales
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sara Chuguransky
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Juan I Alice
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sofía Goicoechea
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - María E Ruiz
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Carolina L Bellera
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| |
Collapse
|
8
|
Zaręba P, Sałat K, Höfner GC, Łątka K, Bajda M, Latacz G, Kotniewicz K, Rapacz A, Podkowa A, Maj M, Jóźwiak K, Filipek B, Wanner KT, Malawska B, Kulig K. Development of tricyclic N-benzyl-4-hydroxybutanamide derivatives as inhibitors of GABA transporters mGAT1-4 with anticonvulsant, antinociceptive, and antidepressant activity. Eur J Med Chem 2021; 221:113512. [PMID: 34015586 DOI: 10.1016/j.ejmech.2021.113512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023]
Abstract
γ-Aminobutyric acid (GABA) neurotransmission has a significant impact on the proper functioning of the central nervous system. Numerous studies have indicated that inhibitors of the GABA transporters mGAT1-4 offer a promising strategy for the treatment of several neurological disorders, including epilepsy, neuropathic pain, and depression. Following our previous results, herein, we report the synthesis, biological evaluation, and structure-activity relationship studies supported by molecular docking and molecular dynamics of a new series of N-benzyl-4-hydroxybutanamide derivatives regarding their inhibitory potency toward mGAT1-4. This study allowed us to identify compound 23a (N-benzyl-4-hydroxybutanamide bearing a dibenzocycloheptatriene moiety), a nonselective GAT inhibitor with a slight preference toward mGAT4 (pIC50 = 5.02 ± 0.11), and compound 24e (4-hydroxy-N-[(4-methylphenyl)-methyl]butanamide bearing a dibenzocycloheptadiene moiety) with relatively high inhibitory activity toward mGAT2 (pIC50 = 5.34 ± 0.09). In a set of in vivo experiments, compound 24e successively showed predominant anticonvulsant activity and antinociception in the formalin model of tonic pain. In contrast, compound 23a showed significant antidepressant-like properties in mice. These results were consistent with the available literature data, which indicates that, apart from seizure control, GABAergic neurotransmission is also involved in the pathophysiology of several psychiatric diseases, however alternative mechanisms underlying this action cannot be excluded. Finally, it is worth noting that the selected compounds showed unimpaired locomotor skills that have been indicated to give reliable results in behavioral assays.
Collapse
Affiliation(s)
- Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland.
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Georg C Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr, 5-13, 81377, Munich, Germany
| | - Kamil Łątka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Krzysztof Kotniewicz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Anna Rapacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Adrian Podkowa
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093, Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093, Lublin, Poland
| | - Barbara Filipek
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstr, 5-13, 81377, Munich, Germany
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St, 30-688, Kraków, Poland
| |
Collapse
|
9
|
Mahootchi E, Raasakka A, Luan W, Muruganandam G, Loris R, Haavik J, Kursula P. Structure and substrate specificity determinants of the taurine biosynthetic enzyme cysteine sulphinic acid decarboxylase. J Struct Biol 2020; 213:107674. [PMID: 33253877 DOI: 10.1016/j.jsb.2020.107674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/03/2023]
Abstract
Pyridoxal 5́-phosphate (PLP) is an important cofactor for amino acid decarboxylases with many biological functions, including the synthesis of signalling molecules, such as serotonin, dopamine, histamine, γ-aminobutyric acid, and taurine. Taurine is an abundant amino acid with multiple physiological functions, including osmoregulation, pH regulation, antioxidative protection, and neuromodulation. In mammalian tissues, taurine is mainly produced by decarboxylation of cysteine sulphinic acid to hypotaurine, catalysed by the PLP-dependent cysteine sulphinic acid decarboxylase (CSAD), followed by oxidation of the product to taurine. We determined the crystal structure of mouse CSAD and compared it to other PLP-dependent decarboxylases in order to identify determinants of substrate specificity and catalytic activity. Recognition of the substrate involves distinct side chains forming the substrate-binding cavity. In addition, the backbone conformation of a buried active-site loop appears to be a critical determinant for substrate side chain binding in PLP-dependent decarboxylases. Phe94 was predicted to affect substrate specificity, and its mutation to serine altered both the catalytic properties of CSAD and its stability. Using small-angle X-ray scattering, we further showed that CSAD presents open/close motions in solution. The structure of apo-CSAD indicates that the active site gets more ordered upon internal aldimine formation. Taken together, the results highlight details of substrate recognition in PLP-dependent decarboxylases and provide starting points for structure-based inhibitor design with the aim of affecting the biosynthesis of taurine and other abundant amino acid metabolites.
Collapse
Affiliation(s)
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Weisha Luan
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Bergen Center of Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
10
|
Łątka K, Jończyk J, Bajda M. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int J Biol Macromol 2020; 158:S0141-8130(20)32987-1. [PMID: 32360967 DOI: 10.1016/j.ijbiomac.2020.04.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the nervous system. It plays a crucial role in many physiological processes. Upon release from the presynaptic element, it is removed from the synaptic cleft by reuptake due to the action of GABA transporters (GATs). GATs belong to a large SLC6 protein family whose characteristic feature is sodium-dependent relocation of neurotransmitters through the cell membrane. GABA transporters are characterized in many contexts, but their spatial structure is not fully known. They are divided into four types, which differ in occurrence and role. Herein, the special attention was paid to these transporting proteins. This comprehensive review presents the current knowledge about GABA transporters. Their distribution in the body, physiological functions and possible utilization in the therapy of different diseases were fully discussed. The important structural features were described based on published data, including sequence analysis, mutagenesis studies, and comparison with known SLC6 transporters for leucine (LeuT), dopamine (DAT) and serotonin (SERT). Moreover, the most important inhibitors of GABA transporters of various basic scaffolds, diverse selectivity and potency were presented.
Collapse
Affiliation(s)
- Kamil Łątka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Jakub Jończyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Marek Bajda
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland.
| |
Collapse
|
11
|
Zaręba P, Gryzło B, Malawska K, Sałat K, Höfner GC, Nowaczyk A, Fijałkowski Ł, Rapacz A, Podkowa A, Furgała A, Żmudzki P, Wanner KT, Malawska B, Kulig K. Novel mouse GABA uptake inhibitors with enhanced inhibitory activity toward mGAT3/4 and their effect on pain threshold in mice. Eur J Med Chem 2020; 188:111920. [DOI: 10.1016/j.ejmech.2019.111920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
|
12
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
13
|
Shen J, Wang C, Ying J, Xu T, McAlinden A, O’Keefe RJ. Inhibition of 4-aminobutyrate aminotransferase protects against injury-induced osteoarthritis in mice. JCI Insight 2019; 4:128568. [PMID: 31534049 PMCID: PMC6795381 DOI: 10.1172/jci.insight.128568] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
Recently we demonstrated that ablation of the DNA methyltransferase enzyme, Dnmt3b, resulted in catabolism and progression of osteoarthritis (OA) in murine articular cartilage through a mechanism involving increased mitochondrial respiration. In this study, we identify 4-aminobutyrate aminotransferase (Abat) as a downstream target of Dnmt3b. Abat is an enzyme that metabolizes γ-aminobutyric acid to succinate, a key intermediate in the tricarboxylic acid cycle. We show that Dnmt3b binds to the Abat promoter, increases methylation of a conserved CpG sequence just upstream of the transcriptional start site, and inhibits Abat expression. Dnmt3b deletion in articular chondrocytes results in reduced methylation of the CpG sequence in the Abat promoter, which subsequently increases expression of Abat. Increased Abat expression in chondrocytes leads to enhanced mitochondrial respiration and elevated expression of catabolic genes. Overexpression of Abat in murine knee joints via lentiviral injection results in accelerated cartilage degradation following surgical induction of OA. In contrast, lentiviral-based knockdown of Abat attenuates the expression of IL-1β-induced catabolic genes in primary murine articular chondrocytes in vitro and also protects against murine articular cartilage degradation in vivo. Strikingly, treatment with the FDA-approved small-molecule Abat inhibitor, vigabatrin, significantly prevents the development of injury-induced OA in mice. In summary, these studies establish Abat as an important new target for therapies to prevent OA.
Collapse
MESH Headings
- 4-Aminobutyrate Transaminase/antagonists & inhibitors
- 4-Aminobutyrate Transaminase/genetics
- 4-Aminobutyrate Transaminase/metabolism
- Animals
- Cartilage, Articular/cytology
- Cartilage, Articular/drug effects
- Cartilage, Articular/injuries
- Cartilage, Articular/pathology
- Cells, Cultured
- Chondrocytes/cytology
- Chondrocytes/drug effects
- Chondrocytes/immunology
- Chondrocytes/pathology
- CpG Islands/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methylation/genetics
- Disease Models, Animal
- Gene Knockdown Techniques
- Humans
- Interleukin-1beta/immunology
- Interleukin-1beta/metabolism
- Male
- Mice
- Mitochondria/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/etiology
- Osteoarthritis, Knee/pathology
- Oxidative Phosphorylation/drug effects
- Primary Cell Culture
- Promoter Regions, Genetic/genetics
- Transcription Initiation Site
- Transcription, Genetic
- Vigabatrin/pharmacology
- Vigabatrin/therapeutic use
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jun Ying
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Taotao Xu
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regis J. O’Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of Astrocytes in Alzheimer's Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front Mol Neurosci 2017; 10:427. [PMID: 29311817 PMCID: PMC5742194 DOI: 10.3389/fnmol.2017.00427] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a frequent and devastating neurodegenerative disease in humans, but still no curative treatment has been developed. Although many explicative theories have been proposed, precise pathophysiological mechanisms are unknown. Due to the importance of astrocytes in brain homeostasis they have become interesting targets for the study of AD. Changes in astrocyte function have been observed in brains from individuals with AD, as well as in AD in vitro and in vivo animal models. The presence of amyloid beta (Aβ) has been shown to disrupt gliotransmission, neurotransmitter uptake, and alter calcium signaling in astrocytes. Furthermore, astrocytes express apolipoprotein E and are involved in the production, degradation and removal of Aβ. As well, changes in astrocytes that precede other pathological characteristics observed in AD, point to an early contribution of astroglia in this disease. Astrocytes participate in the inflammatory/immune responses of the central nervous system. The presence of Aβ activates different cell receptors and intracellular signaling pathways, mainly the advanced glycation end products receptor/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, responsible for the transcription of pro-inflammatory cytokines and chemokines in astrocytes. The release of these pro-inflammatory agents may induce cellular damage or even stimulate the production of Aβ in astrocytes. Additionally, Aβ induces the appearance of oxidative stress (OS) and production of reactive oxygen species and reactive nitrogen species in astrocytes, affecting among others, intracellular calcium levels, NADPH oxidase (NOX), NF-κB signaling, glutamate uptake (increasing the risk of excitotoxicity) and mitochondrial function. Excessive neuroinflammation and OS are observed in AD, and astrocytes seem to be involved in both. The Aβ/NF-κB interaction in astrocytes may play a central role in these inflammatory and OS changes present in AD. In this paper, we also discuss therapeutic measures highlighting the importance of astrocytes in AD pathology. Several new therapeutic approaches involving phenols (curcumin), phytoestrogens (genistein), neuroesteroids and other natural phytochemicals have been explored in astrocytes, obtaining some promising results regarding cognitive improvements and attenuation of neuroinflammation. Novel strategies comprising astrocytes and aimed to reduce OS in AD have also been proposed. These include estrogen receptor agonists (pelargonidin), Bambusae concretio Salicea, Monascin, and various antioxidatives such as resveratrol, tocotrienol, anthocyanins, and epicatechin, showing beneficial effects in AD models.
Collapse
Affiliation(s)
- Rodrigo E González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio O Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Karina Vargas-Sánchez
- Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Daniel Ariza-Salamanca
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Laura Mora-Muñoz
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
15
|
Alejandre-García T, Peña-del Castillo JG, Hernández-Cruz A. GABAA receptor: a unique modulator of excitability, Ca2+ signaling, and catecholamine release of rat chromaffin cells. Pflugers Arch 2017; 470:67-77. [DOI: 10.1007/s00424-017-2080-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023]
|
16
|
Rasgado LAV, Villanueva I, Díaz FV. Effect of γ-ethyl-γ-phenyl-butyrolactone (EFBL), anticonvulsant and hypnotic drug, on mouse brain catecholamine levels. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2017; 67:215-226. [PMID: 28590911 DOI: 10.1515/acph-2017-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 11/15/2022]
Abstract
γ-Ethyl-γ-phenyl-butyrolactone (EFBL) is a structural combination of the anticonvulsant γ-hydroxy-γ-ethyl-γ-phenylbutyramide (HEPB) and the hypnotic γ-butyrolactone (GBL), which inherits both properties. To clarify its mechanism of action, the effects of EFBL, GBL and HEPB on dopamine (DA) and noradrenaline (NA) brain levels were investigated. Influences of chlorpromazine, phenelzine and aminooxyacetic acid were also studied. EFBL increased DA in a dose-dependent manner, remaining enhanced by 80 % over a period of 24 h and augmented NA by 54 % one hour after treatment. HEPB increased DA and NA approximately 2-fold after the first hour. GBL raised DA and NA after three and 24 h, resp. EFBL reversed chlorpromazine effects but potentiated those of phenelzine on DA. Amino-oxyacetic modified neither DA nor NA brain levels, not even in the presence of EFBL. The anticonvulsant and hypnotic properties of EFBL are attributed to its effect on presynaptic dopaminergic receptors and its lasting effect on ethyl and phenyl radicals that hinder its degradation. The results support the role of DA and NA in regulating seizure activity in the brain and indicate that EFBL offers a potential treatment for refractory epilepsy without complementary drugs and Parkinson's disease, without the drawbacks of oral therapies.
Collapse
Affiliation(s)
- Lourdes A. Vega Rasgado
- Laboratorio de Neuroquímica Departamento de Bioquímica Escuela Nacional de Ciencias Biológica Instituto Politécnico Nacional Carpio y Plan de Ayala S/N Colonia Casco de Santo Tomás C.P. 11340, México , D.F., México
| | - Iván Villanueva
- Departamento de Fisiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N Colonia Casco de Santo Tomás C.P. 11340, México , D.F., México
| | - Fernando Vega Díaz
- Laboratorio de Neuroquímica Departamento de Bioquímica Escuela Nacional de Ciencias Biológica Instituto Politécnico Nacional Carpio y Plan de Ayala S/N Colonia Casco de Santo Tomás C.P. 11340, México , D.F., México
| |
Collapse
|
17
|
Tzitzitlini AG, Pedro SC, Martha PAE, Rodolfo DL, Arturo HC. Modulation of spontaneous intracellular Ca²⁺ fluctuations and spontaneous cholinergic transmission in rat chromaffin cells in situ by endogenous GABA acting on GABAA receptors. Pflugers Arch 2015; 468:351-65. [PMID: 26490458 DOI: 10.1007/s00424-015-1744-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 10/04/2015] [Indexed: 12/30/2022]
Abstract
Using fluorescence [Ca(2+)]i imaging in rat adrenal slices, we characterized the effects of agonists and antagonists of the GABAA receptor (GABAA-R) on resting intracellular Ca(2+) ([Ca(2+)]i) and spontaneous [Ca(2+)]i fluctuations (SCFs) in hundreds of individual chromaffin cells (CCs) recorded simultaneously in situ. Muscimol, a GABAA-R agonist (20 μM; 25 s), induced an increase of resting [Ca(2+)]i in 43 ± 3 % of CCs, a decrease in 26 ± 2 %, and no response in 30 ± 5 %. In Ca(2+)-free external medium, SCFs ceased completely and muscimol failed to elicit [Ca(2+)]i rises. All muscimol-induced [Ca(2+)]i changes were blocked by the GABAA-R antagonist bicuculline, suggesting that they result from changes in membrane potential depending on the cell's Cl(-) equilibrium potential. Unexpectedly, bicuculline increased the amplitude and frequency of SCFs in 54 % of CCs, revealing a tonic inhibition of SCFs by ambient GABA acting through GABAA-R. Mecamylamine (a specific nicotinic cholinergic blocker) decreased basal SCF activity in 18 % of CCs and inhibited bicuculline-induced SCF intensification, suggesting that spontaneous acetylcholine (ACh) release from nerve endings contributes to SCF generation in CCs in situ and that blockade of presynaptic GABAA-Rs intensifies SCFs in part through the disinhibition of spontaneous cholinergic transmission. Electrophysiological experiments confirmed that spontaneous excitatory postsynaptic currents recorded from CCs in situ were enhanced by bicuculline. To our knowledge, this is the first description of a regulatory effect of endogenous GABA on synaptic currents and SCFs of adrenal CCs. These findings denote a novel GABA-mediated presynaptic and postsynaptic regulatory mechanism of CC activity which may participate in the control of catecholamine secretion.
Collapse
Affiliation(s)
- Alejandre-García Tzitzitlini
- Departamento Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM. Circuito de la Investigación Científica s/n, Ciudad Universitaria, México, D.F., C.P. 04510, México
| | - Segura-Chama Pedro
- Laboratorio Nacional de Canalopatías from Instituto de Fisiología Celular, México, México
- Unidad de Investigación en Medicina Experimental, México, México
| | - Pérez-Armendáriz E Martha
- Departamento de Biología Celular y Tisular, from Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., C.P. 04510, Mexico
| | - Delgado-Lezama Rodolfo
- Departamento de Fisiología Biofísica y Neurociencias, from Centro de Investigación y Estudios Avanzados del IPN, Ave. IPN 2508, México City, D.F., México
| | - Hernández-Cruz Arturo
- Departamento Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM. Circuito de la Investigación Científica s/n, Ciudad Universitaria, México, D.F., C.P. 04510, México.
- Laboratorio Nacional de Canalopatías from Instituto de Fisiología Celular, México, México.
| |
Collapse
|
18
|
Kolpakova ME, Veselkina OS, Vlasov TD. Creatine in Cell Metabolism and Its Protective Action in Cerebral Ischemia. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Sałat K, Podkowa A, Kowalczyk P, Kulig K, Dziubina A, Filipek B, Librowski T. Anticonvulsant active inhibitor of GABA transporter subtype 1, tiagabine, with activity in mouse models of anxiety, pain and depression. Pharmacol Rep 2014; 67:465-72. [PMID: 25933955 DOI: 10.1016/j.pharep.2014.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Tiagabine, a selective inhibitor of GABA transporter subtype 1 is used as an add-on therapy of partial seizures in humans but its mechanism of action suggests other potential medical indications for this drug. In this research we assess its pharmacological activity in several screening models of seizures, pain, anxiety and depression in mice. METHODS For pharmacological tests tiagabine was administered intraperitoneally 60 min before the assay. Behavioral tests were performed using models of chemically and electrically induced seizures, thermal acute pain and formalin-induced tonic pain. Anxiolytic-like properties were evaluated using the four plate test and the elevated plus maze test. Antidepressant-like activity was assessed in the forced swim test. In addition, to exclude false positive results in these assays, the influence of tiagabine on animals' locomotor activity and motor coordination was investigated, too. RESULTS Tiagabine demonstrated anticonvulsant properties in chemically induced seizures (pentylenetetrazole and pilocarpine seizures). At the dose of 100mg/kg it also elevated the seizure threshold for electrically induced seizures by 31.6% (p<0.01), but it had no activity in the maximal electroshock seizure test. Tiagabine showed anxiolytic-like and antidepressant-like effects. Although it apparently reduced animals' nociceptive responses in pain tests, these activities rather resulted from its sedative and motor-impairing properties demonstrated in the locomotor activity and the rotarod tests, respectively. CONCLUSIONS The results obtained in the present study suggest that tiagabine, apart its anticonvulsant effect, has anxiolytic-like, sedative and antidepressant-like properties. In view of this, it can be potentially used in the treatment of anxiety and mood disorders.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Kraków, Poland.
| | - Adrian Podkowa
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Kraków, Poland
| | - Paula Kowalczyk
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Jagiellonian University, Medical College, Kraków, Poland
| | - Katarzyna Kulig
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Jagiellonian University, Medical College, Kraków, Poland
| | - Anna Dziubina
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Kraków, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Kraków, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
20
|
Abstract
Chronic fatigue syndrome (CFS) is a poorly understood condition that presents as long-term physical and mental fatigue with associated symptoms of pain and sensitivity across a broad range of systems in the body. The poor understanding of the disorder comes from the varying clinical diagnostic definitions as well as the broad array of body systems from which its symptoms present. Studies on metabolism and CFS suggest irregularities in energy metabolism, amino acid metabolism, nucleotide metabolism, nitrogen metabolism, hormone metabolism, and oxidative stress metabolism. The overwhelming body of evidence suggests an oxidative environment with the minimal utilization of mitochondria for efficient energy production. This is coupled with a reduced excretion of amino acids and nitrogen in general. Metabolomics is a developing field that studies metabolism within a living system under varying conditions of stimuli. Through its development, there has been the optimisation of techniques to do large-scale hypothesis-generating untargeted studies as well as hypothesis-testing targeted studies. These techniques are introduced and show an important future direction for research into complex illnesses such as CFS.
Collapse
|
21
|
Muthukumar AK, Stork T, Freeman MR. Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nat Neurosci 2014; 17:1340-50. [PMID: 25151265 PMCID: PMC4176984 DOI: 10.1038/nn.3791] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/21/2014] [Indexed: 02/08/2023]
Abstract
Astrocytic uptake of GABA through GABA transporters (GATs) is an important mechanism regulating excitatory/inhibitory balance in the nervous system; however, mechanisms by which astrocytes regulate GAT levels are undefined. We found that at mid-pupal stages the Drosophila melanogaster CNS neuropil was devoid of astrocyte membranes and synapses. Astrocyte membranes subsequently infiltrated the neuropil coordinately with synaptogenesis, and astrocyte ablation reduced synapse numbers by half, indicating that Drosophila astrocytes are pro-synaptogenic. Shortly after synapses formed in earnest, GAT was upregulated in astrocytes. Ablation or silencing of GABAergic neurons or disruption of metabotropic GABA receptor 1 and 2 (GABA(B)R1/2) signaling in astrocytes led to a decrease in astrocytic GAT. Notably, developmental depletion of astrocytic GABA(B)R1/2 signaling suppressed mechanosensory-induced seizure activity in mutants with hyperexcitable neurons. These data reveal that astrocytes actively modulate GAT expression via metabotropic GABA receptor signaling and highlight the importance of precise regulation of astrocytic GAT in modulation of seizure activity.
Collapse
Affiliation(s)
- Allie K Muthukumar
- 1] Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tobias Stork
- 1] Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marc R Freeman
- 1] Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
22
|
Bejarano E, Rodríguez-Navarro JA. Autophagy and amino acid metabolism in the brain: implications for epilepsy. Amino Acids 2014; 47:2113-26. [DOI: 10.1007/s00726-014-1822-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
|
23
|
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014; 8:167. [PMID: 24987334 PMCID: PMC4070063 DOI: 10.3389/fncel.2014.00167] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD.
Collapse
Affiliation(s)
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| | - Javier Yajeya
- Department of Physiology and Pharmacology, University of Salamanca Salamanca, Spain
| | - Juan D Navarro-Lopez
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| |
Collapse
|
24
|
PLP-dependent enzymes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:856076. [PMID: 24527459 PMCID: PMC3914556 DOI: 10.1155/2014/856076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/18/2022]
|
25
|
What are the arguments for and against rational therapy for epilepsy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:295-308. [PMID: 25012386 DOI: 10.1007/978-94-017-8914-1_24] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although more than a dozen new anti-seizure drugs (ASDs) have entered the market since 1993, a substantial proportion of patients (~30 %) remain refractory to current treatments. Thus, a concerted effort to identify and develop new therapies that will help these patients continues. Until this effort succeeds, it is reasonable to re-assess the use of currently available therapies and to consider how these therapies might be utilized in a more efficacious manner. This applies to the selection of monotherapies in newly-diagnosed epilepsy, but perhaps, more importantly, to the choice of combination treatments in otherwise drug-refractory epilepsy. Rational polytherapy is a concept that is predicated on the combination of drugs with complementary mechanisms of action (MoAs) that work synergistically to maximize efficacy and minimize the potential for adverse events. Furthermore, rational polytherapy requires a detailed understanding of the MoA subclasses amongst available ASDs and an appreciation of the empirical evidence that supports the use of specific combinations. The majority of ASDs can be loosely categorized into those that target neurotransmission and network hyperexcitability, modulate intrinsic neuronal properties through ion channels, or possess broad-spectrum efficacy as a result of multiple mechanisms. Within each of these categories, there are discrete pharmacological profiles that differentiate individual ASDs. This chapter will consider how knowledge of MoA can help guide therapy in a rational manner, both in the selection of monotherapies for specific seizure types and syndromes, but also in the choice of drug combinations for patients whose epilepsy is not optimally controlled with a single ASD.
Collapse
|
26
|
Münster-Wandowski A, Gómez-Lira G, Gutiérrez R. Mixed neurotransmission in the hippocampal mossy fibers. Front Cell Neurosci 2013; 7:210. [PMID: 24319410 PMCID: PMC3837298 DOI: 10.3389/fncel.2013.00210] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/23/2013] [Indexed: 01/14/2023] Open
Abstract
The hippocampal mossy fibers (MFs), the axons of the granule cells (GCs) of the dentate gyrus, innervate mossy cells and interneurons in the hilus on their way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient up-regulation of the machinery for the synthesis and release of GABA in the glutamatergic GCs. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data are consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.
Collapse
|
27
|
Sałat K, Kulig K, Gajda J, Więckowski K, Filipek B, Malawska B. Evaluation of anxiolytic-like, anticonvulsant, antidepressant-like and antinociceptive properties of new 2-substituted 4-hydroxybutanamides with affinity for GABA transporters in mice. Pharmacol Biochem Behav 2013; 110:145-53. [PMID: 23850524 DOI: 10.1016/j.pbb.2013.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE The inhibition of plasma membrane GABA transporters (GATs) is responsible for anxiolytic-like, anticonvulsant, antinociceptive and antidepressant-like effects in mice. It also influences animals' motor coordination and their sensitivity to ethanol. The aim of this study was to assess the pharmacological activity of two novel 2-substituted 4-hydroxybutanamides (BM 130 and BM 131) in some screening models. An attempt has been made to establish the relationship between the inhibition of GAT subtype and the observed in vivo activity. METHODS The affinity for GAT subtypes was evaluated by means of [(3)H]GABA uptake assay. It indicated that BM 130 inhibited GAT1 and GAT2, whereas BM 131 inhibited GAT1 and GAT3. In mice anxiolytic-like, antidepressant-like, anticonvulsant and antinociceptive properties of the test compounds were assessed. Their influence on motor coordination, locomotor activity and the ability to potentiate effects of subnarcotic doses of ethanol was also tested. RESULTS Both compounds administered intraperitoneally exerted a significant anxiolytic-like effect in the four plate test with ED50 values 3.4 and 7.9 mg/kg, respectively. At 30 mg/kg they reduced duration of immobility in the forced swim test for 33% and 19%, respectively. They had no effect on electroconvulsive threshold or pain reactivity in the hot plate assay but they were antinociceptive in the acetic acid-induced writhing test (ED50 values were 12.7 and 18.6 mg/kg, respectively) and in both phases of the formalin test (ED50 values in the first phase were 10.2 and 2.1 mg/kg for BM 130 and BM 131, respectively). No motor adverse effects were observed in mice pretreated with the test compounds in the rotarod or chimney tests but BM 131 caused a transient but statistically significant decrease of animals' locomotor activity. CONCLUSIONS In mice BM 130 and BM 131 have anxiolytic-like, antidepressant-like and antinociceptive properties which can be attributed to their affinity for not only mGAT1 but also mGAT2-4.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Cracow, Poland.
| | | | | | | | | | | |
Collapse
|
28
|
Baglo Y, Gabrielsen M, Sylte I, Gederaas OA. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy. PLoS One 2013; 8:e65200. [PMID: 23762315 PMCID: PMC3676387 DOI: 10.1371/journal.pone.0065200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/23/2013] [Indexed: 12/28/2022] Open
Abstract
Photodynamic therapy (PDT) is a safe and effective method currently used in the treatment of skin cancer. In ALA-based PDT, 5-aminolevulinic acid (ALA), or ALA esters, are used as pro-drugs to induce the formation of the potent photosensitizer protoporphyrin IX (PpIX). Activation of PpIX by light causes the formation of reactive oxygen species (ROS) and toxic responses. Studies have indicated that ALA and its methyl ester (MAL) are taken up into the cells via γ-butyric acid (GABA) transporters (GATs). Uptake via GATs into peripheral sensory nerve endings may also account for one of the few adverse side effects of ALA-based PDT, namely pain. In the present study, homology models of the four human GAT subtypes were constructed using three x-ray crystal structures of the homologous leucine transporter (LeuT) as templates. Binding of the native substrate GABA and the possible substrates ALA and MAL was investigated by molecular docking of the ligands into the central putative substrate binding sites in the outward-occluded GAT models. Electrostatic potentials (ESPs) of the putative substrate translocation pathway of each subtype were calculated using the outward-open and inward-open homology models. Our results suggested that ALA is a substrate of all four GATs and that MAL is a substrate of GAT-2, GAT-3 and BGT-1. The ESP calculations indicated that differences likely exist in the entry pathway of the transporters (i.e. in outward-open conformations). Such differences may be exploited for development of inhibitors that selectively target specific GAT subtypes and the homology models may hence provide tools for design of therapeutic inhibitors that can be used to reduce ALA-induced pain.
Collapse
Affiliation(s)
- Yan Baglo
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | |
Collapse
|
29
|
Barry JD, Wills BK. Neurotoxic emergencies. Psychiatr Clin North Am 2013; 36:219-44. [PMID: 23688689 DOI: 10.1016/j.psc.2013.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article is intended for clinicians treating neurotoxic emergencies. Presented are causative agents of neurotoxic emergencies, many of which are easily mistaken for acute psychiatric disorders. Understanding the wide variety of agents responsible for neurotoxic emergencies and the neurotransmitter interactions involved will help the psychiatrist identify and treat this challenging population.
Collapse
Affiliation(s)
- J Dave Barry
- Emergency Medicine Residency Program, Naval Medical Center Portsmouth, Portsmouth, VA, USA.
| | | |
Collapse
|
30
|
Vlasov TD, Chefu SG, Baisa AE, Leko MV, Burov SV, Vesyolkina OS. Creatine Amides: Perspectives for Neuroprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11055-013-9756-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Ilg T, Berger M, Noack S, Rohwer A, Gaßel M. Glutamate decarboxylase of the parasitic arthropods Ctenocephalides felis and Rhipicephalus microplus: gene identification, cloning, expression, assay development, identification of inhibitors by high throughput screening and comparison with the orthologs from Drosophila melanogaster and mouse. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:162-177. [PMID: 23220582 DOI: 10.1016/j.ibmb.2012.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
Glutamate decarboxylase (l-glutamate 1-carboxylyase, E.C. 4.1.1.15, GAD) is the rate-limiting enzyme for the production of γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrates and invertebrates. We report the identification, isolation and characterization of cDNAs encoding GAD from the parasitic arthropods Ctenocephalides felis (cat flea) and Rhipicephalus microplus (cattle tick). Expression of the parasite GAD genes and the corresponding Drosophila melanogaster (fruit fly) GAD1 as well as the mouse GAD(65) and GAD(67) genes in Escherichia coli as maltose binding protein fusions resulted in functional enzymes in quantities compatible with the needs of high throughput inhibitor screening (HTS). A novel continuous coupled spectrophotometric assay for GAD activity based on the detection cascade GABA transaminase/succinic semialdehyde dehydrogenase was developed, adapted to HTS, and a corresponding screen was performed with cat flea, cattle tick and fruit fly GAD. Counter-screening of the selected 38 hit substances on mouse GAD(65) and GAD(67) resulted in the identification of non-specific compounds as well as inhibitors with preferences for arthropod GAD, insect GAD, tick GAD and the two mouse GAD forms. Half of the identified hits most likely belong to known classes of GAD inhibitors, but several substances have not been described previously as GAD inhibitors and may represent lead optimization entry points for the design of arthropod-specific parasiticidal compounds.
Collapse
Affiliation(s)
- Thomas Ilg
- MSD Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany.
| | | | | | | | | |
Collapse
|
32
|
Rausch C, Lerchner A, Schiefner A, Skerra A. Crystal structure of the ω-aminotransferase from Paracoccus denitrificans and its phylogenetic relationship with other class III aminotransferases that have biotechnological potential. Proteins 2013; 81:774-87. [PMID: 23239223 DOI: 10.1002/prot.24233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/12/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
Apart from their crucial role in metabolism, pyridoxal 5'-phosphate (PLP)-dependent aminotransferases (ATs) constitute a class of enzymes with increasing application in industrial biotechnology. To provide better insight into the structure-function relationships of ATs with biotechnological potential we performed a fundamental bioinformatics analysis of 330 representative sequences of pro- and eukaryotic Class III ATs using a structure-guided approach. The calculated phylogenetic maximum likelihood tree revealed six distinct clades of which the first segregates with a very high bootstrap value of 92%. Most enzymes in this first clade have been functionally well characterized, whereas knowledge about the natural functions and substrates of enzymes in the other branches is sparse. Notably, in those clades 2-6 members of the peculiar class of ω-ATs prevail, many of which have proven useful for the preparation of chiral amines or artificial amino acids. One representative is the ω-AT from Paracoccus denitrificans (PD ω-AT) which catalyzes, for example, the transamination in a novel biocatalytic process for the production of L-homoalanine from L-threonine. To gain structural insight into this important enzyme, its X-ray analysis was carried out at a resolution of 2.6 Å, including the covalently bound PLP as well as 5-aminopentanoate as a putative amino donor substrate. On the basis of this crystal structure in conjunction with our phylogenetic analysis, we have identified a generic set of active site residues of ω-ATs that are associated with a strong preference for aromatic substrates, thus guiding the discovery of novel promising enzymes for the biotechnological production of corresponding chiral amines.
Collapse
Affiliation(s)
- Christian Rausch
- Munich Center for integrated Protein Science (CiPSM) and Lehrstuhl für Biologische Chemie, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
33
|
Medina-Ceja L, Sandoval-García F, Morales-Villagrán A, López-Pérez SJ. Rapid compensatory changes in the expression of EAAT-3 and GAT-1 transporters during seizures in cells of the CA1 and dentate gyrus. J Biomed Sci 2012; 19:78. [PMID: 22931236 PMCID: PMC3438021 DOI: 10.1186/1423-0127-19-78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder produced by an imbalance between excitatory and inhibitory neurotransmission, in which transporters of both glutamate and GABA have been implicated. Hence, at different times after local administration of the convulsive drug 4-aminopyridine (4-AP) we analyzed the expression of EAAT-3 and GAT-1 transporter proteins in cells of the CA1 and dentate gyrus. METHODS Dual immunofluorescence was used to detect the co-localization of transporters and a neuronal marker. In parallel, EEG recordings were performed and convulsive behavior was rated using a modified Racine Scale. RESULTS By 60 min after 4-AP injection, EAAT-3/NeuN co-labelling had increased in dentate granule cells and decreased in CA1 pyramidal cells. In the latter, this decrease persisted for up to 180 min after 4-AP administration. In both the DG and CA1, the number of GAT-1 labeled cells increased 60 min after 4-AP administration, although by 180 min GAT-1 labeled cells decreased in the DG alone. The increase in EAAT-3/NeuN colabelling in DG was correlated with maximum epileptiform activity and convulsive behavior. CONCLUSIONS These findings suggest that a compensatory mechanism exists to protect against acute seizures induced by 4-AP, whereby EAAT-3/NeuN cells is rapidly up regulated in order to enhance the removal of glutamate from the extrasynaptic space, and attenuating seizure activity.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratorio de Neurofisiología y Neuroquímica, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Km, 15,5 Carretera Guadalajara-Nogales Predio "Las Agujas", Nextipac, Zapopan, Jalisco CP 45110, Mexico.
| | | | | | | |
Collapse
|
34
|
Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD. Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 2012; 37:2569-88. [PMID: 22926576 DOI: 10.1007/s11064-012-0868-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 12/26/2022]
Abstract
During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system.
Collapse
Affiliation(s)
- Sofie C Lange
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
35
|
Kreft M, Bak LK, Waagepetersen HS, Schousboe A. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro 2012; 4:e00086. [PMID: 22435484 PMCID: PMC3338196 DOI: 10.1042/an20120007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.
Collapse
Key Words
- amino acid
- astrocyte
- compartmentation
- energy
- metabolism
- α-kg, α-ketoglutarate
- aat, aspartate aminotransferase
- cfp, cyan fluorescence protein
- dab, diaminobenzidine
- fret, fluorescence resonance energy transfer
- [glc]i, intracellular glucose concentration
- gaba, γ-aminobutyric acid
- gaba-t, gaba aminotransferase
- gdh, glutamate dehydrogenase
- glut, glucose transporter
- gp, glycogen phosphorylase
- gs, glutamine synthetase
- gsk3, gs kinase 3
- pag, phosphate-activated glutaminase
- pi3k, phosphoinositide 3-kinase
- pkc, protein kinase c
- tca, tricarboxylic acid
- yfp, yellow fluorescence protein
Collapse
Affiliation(s)
- Marko Kreft
- *LNMCP, Institute of Pathophysiology, Faculty of Medicine and CPAE, Department of Biology, Biotechnical Faculty, University of Ljubljana and Celica Biomedical Center, Slovenia
| | - Lasse K Bak
- †Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Helle S Waagepetersen
- †Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Arne Schousboe
- †Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
36
|
Rowley NM, Madsen KK, Schousboe A, Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 2012; 61:546-58. [PMID: 22365921 DOI: 10.1016/j.neuint.2012.02.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/09/2012] [Indexed: 11/17/2022]
Abstract
The synthesis, release, reuptake, and metabolism of the excitatory and inhibitory neurotransmitters glutamate and GABA, respectively, are tightly controlled. Given the role that these two neurotransmitters play in normal and abnormal neurotransmission, it is important to consider the processes whereby they are regulated. This brief review is focused entirely on the metabolic aspects of glutamate and GABA synthesis and neurotransmission. It describes in limited detail the synthesis, release, reuptake, metabolism, cellular compartmentation and pharmacology of the glutamatergic and GABAergic synapse. This review also provides a summary and brief description of the pathologic and phenotypic features of the various genetic animal models that have been developed in an effort to provide a greater understanding of the role that each of the aforementioned metabolic processes plays in controlling excitatory and inhibitory neurotransmission and how their use will hopefully facilitate the development of safer and more efficacious therapies for the treatment of epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Nicole M Rowley
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
37
|
Analgesic and anticonvulsant activity of new derivatives of 2-substituted 4-hydroxybutanamides in mice. Pharmacol Rep 2012; 64:102-12. [DOI: 10.1016/s1734-1140(12)70736-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 09/15/2011] [Indexed: 01/18/2023]
|
38
|
|
39
|
δ-Aminolevulinic acid and its methyl ester induce the formation of Protoporphyrin IX in cultured sensory neurones. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:583-602. [PMID: 21947250 DOI: 10.1007/s00210-011-0683-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/14/2011] [Indexed: 12/20/2022]
Abstract
Application of δ-aminolevulinic acid (ALA) or its methyl ester (MAL) onto cutaneous tumours increases intracellular Protoporphyrin IX (PpIX), serving as photosensitizer in photodynamic therapy (PDT). While PDT is highly effective as treatment of neoplastic skin lesions, it may induce severe pain in some patients. Here, we investigated ALA and MAL uptake and PpIX formation in sensory neurones as potential contributor to the pain. PpIX formation was induced in cultured sensory neurones from rat dorsal root ganglion by incubation with ALA or MAL. Using inhibitors of GABA transporters (GAT), a pharmacological profile of ALA and MAL uptake was assessed. GAT mRNA expression in the cultures was determined by RT-PCR. Cultured sensory neurones synthesised Protoporphyrin IX (PpIX) from extracellularly administered ALA and MAL. PpIX formation was dose- and time-dependent with considerably different kinetics for both compounds. While partial inhibition occurred using L-arginine, PpIX formation from both ALA and MAL could be fully blocked by the GABA-Transporter (GAT)-2/3 inhibitor (S)-SNAP 5114 with similar K (i) (ALA: 195 ± 6 μM; MAL: 129 ± 13 μM). GAT-1 and GAT-3 could be detected in sensory neurons using RT-PCR on mRNA level and using [³H]-GABA uptake on protein level. Cultured sensory neurones take up ALA and MAL and synthesize PpIX from both, enabling a direct impact of photodynamic therapy on cutaneous free nerve endings. The pharmacological profile of ALA and MAL uptake in our test system was very similar and suggests uptake via GABA and amino acid transporters.
Collapse
|
40
|
|
41
|
Medina-Ceja L, Sandoval-García F, Pardo-Peña K. Effect of Early Glutamate Exposure on EAAT-3 and GAT-1 Protein Expression in Cells of the Dentate Gyrus and CA1 Region of the Adult Rat Hippocampus. Arch Med Res 2011; 42:433-8. [DOI: 10.1016/j.arcmed.2011.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
42
|
Jin XT, Galvan A, Wichmann T, Smith Y. Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia. Front Syst Neurosci 2011; 5:63. [PMID: 21847373 PMCID: PMC3148782 DOI: 10.3389/fnsys.2011.00063] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/13/2011] [Indexed: 02/04/2023] Open
Abstract
GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most data obtained so far relate to their role in the regulation of GABA(A) receptor-mediated postsynaptic tonic and phasic inhibition in the hippocampus, cerebral cortex and cerebellum. Taking into consideration the key role of GABAergic transmission within basal ganglia networks, and the importance for these systems to be properly balanced to mediate normal basal ganglia function, we analyzed in detail the localization and function of GAT-1 and GAT-3 in the globus pallidus of normal and Parkinsonian animals, in order to further understand the substrate and possible mechanisms by which GABA transporters may regulate basal ganglia outflow, and may become relevant targets for new therapeutic approaches for the treatment of basal ganglia-related disorders. In this review, we describe the general features of GATs in the basal ganglia, and give a detailed account of recent evidence that GAT-1 and GAT-3 regulation can have a major impact on the firing rate and pattern of basal ganglia neurons through pre- and post-synaptic GABA(A)- and GABA(B)-receptor-mediated effects.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| | - Adriana Galvan
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| | - Thomas Wichmann
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| | - Yoland Smith
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
43
|
Abstract
GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tone that counterbalances neuronal excitation. The identification and subsequent development of GABA-transport inhibitors has shown the important role that GABA transporters play in the control of the CNS. To date, four GABA transporters have been cloned (GAT1-4). Compounds that inhibit GABA uptake are targets for epilepsy treatment. Currently, they are also being investigated for other possible indications such as the treatment of psychosis, general anxiety and sleep disorders, drug addiction, acute and chronic pain. These and other issues are discussed in this article.
Collapse
|
44
|
Abstract
Antiepileptic drugs have a number of mechanisms of action that target brain excitability systems. The potentiation of GABAergic inhibitory neurotransmission represents a classic and well-known antiseizure effect. Currently available GABAergic antiepileptic drugs mainly target GABA(A) receptor-associated complexes, GABA reuptake or GABA catabolism. All these compounds, although generally effective, are limited by their deleterious effects on cognition and behavior. The challenge will be to find GABAergic drugs that exhibit the beneficial effects, without the adverse ones.
Collapse
|
45
|
Hack S, Wörlein B, Höfner G, Pabel J, Wanner KT. Development of imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors. Eur J Med Chem 2011; 46:1483-98. [PMID: 21353350 DOI: 10.1016/j.ejmech.2011.01.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 01/25/2011] [Indexed: 11/18/2022]
Abstract
A new series of potential GABA uptake inhibitors starting from of 1H-imidazol-4-ylacetic acid with the carboxylic acid side chain originating from different positions and varying in length have been synthesized and tested for the inhibitory potency at the four GABA uptake transporters mGAT1-4 stably expressed in HEK cells. Further two bicyclic compounds with a rigidified carboxylic acid side chain were included in this study. The results of the biological tests indicated that most ω-imidazole alkanoic and alkenoic acid derivatives exhibit the highest potencies as GABA uptake inhibitors at mGAT3.
Collapse
Affiliation(s)
- Silke Hack
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Kulig K, Więckowski K, Więckowska A, Gajda J, Pochwat B, Höfner GC, Wanner KT, Malawska B. Synthesis and biological evaluation of new derivatives of 2-substituted 4-hydroxybutanamides as GABA uptake inhibitors. Eur J Med Chem 2011; 46:183-90. [DOI: 10.1016/j.ejmech.2010.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/19/2010] [Accepted: 11/01/2010] [Indexed: 11/15/2022]
|
48
|
Liu D, Pozharski E, Fu M, Silverman RB, Ringe D. Mechanism of inactivation of Escherichia coli aspartate aminotransferase by (S)-4-amino-4,5-dihydro-2-furancarboxylic acid . Biochemistry 2010; 49:10507-15. [PMID: 21033689 PMCID: PMC3013228 DOI: 10.1021/bi101325z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a potential drug to treat neurological diseases, the mechanism-based inhibitor (S)-4-amino-4,5-dihydro-2-furancarboxylic acid (S-ADFA) has been found to inhibit the γ-aminobutyric acid aminotransferase (GABA-AT) reaction. To circumvent the difficulties in structural studies of a S-ADFA-enzyme complex using GABA-AT, l-aspartate aminotransferase (l-AspAT) from Escherichia coli was used as a model PLP-dependent enzyme. Crystal structures of the E. coli aspartate aminotransferase with S-ADFA bound to the active site were obtained via cocrystallization at pH 7.5 and 8. The complex structures suggest that S-ADFA inhibits the transamination reaction by forming adducts with the catalytic lysine 246 via a covalent bond while producing 1 equiv of pyridoxamine 5'-phosphate (PMP). Based on the structures, formation of the K246-S-ADFA adducts requires a specific initial binding configuration of S-ADFA in the l-AspAT active site, as well as deprotonation of the ε-amino group of lysine 246 after the formation of the quinonoid and/or ketimine intermediate in the overall inactivation reaction.
Collapse
Affiliation(s)
- Dali Liu
- Departments of Biochemistry and Chemistry, and Rosenstiel Basic Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Edwin Pozharski
- Departments of Biochemistry and Chemistry, and Rosenstiel Basic Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Mengmeng Fu
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, the Center for Molecular Innovation and Drug Discovery and Chemistry of Life Processes Institute, Northwestern University, and Evanston, Illinois 60208-3113
| | - Richard B. Silverman
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, the Center for Molecular Innovation and Drug Discovery and Chemistry of Life Processes Institute, Northwestern University, and Evanston, Illinois 60208-3113
| | - Dagmar Ringe
- Departments of Biochemistry and Chemistry, and Rosenstiel Basic Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
49
|
Bertsche A, Bruehl C, Pietz J, Draguhn A. Region- and pattern-specific effects of glutamate uptake blockers on epileptiform activity in rat brain slices. Epilepsy Res 2010; 88:118-26. [DOI: 10.1016/j.eplepsyres.2009.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 11/16/2022]
|
50
|
Eulenburg V, Gomeza J. Neurotransmitter transporters expressed in glial cells as regulators of synapse function. ACTA ACUST UNITED AC 2010; 63:103-12. [PMID: 20097227 DOI: 10.1016/j.brainresrev.2010.01.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 11/16/2022]
Abstract
Synaptic neurotransmission at high temporal and spatial resolutions requires efficient removal and/or inactivation of presynaptically released transmitter to prevent spatial spreading of transmitter by diffusion and allow for fast termination of the postsynaptic response. This action must be carefully regulated to result in the fine tuning of inhibitory and excitatory neurotransmission, necessary for the proper processing of information in the central nervous system. At many synapses, high-affinity neurotransmitter transporters are responsible for transmitter deactivation by removing it from the synaptic cleft. The most prevailing neurotransmitters, glutamate, which mediates excitatory neurotransmission, as well as GABA and glycine, which act as inhibitory neurotransmitters, use these uptake systems. Neurotransmitter transporters have been found in both neuronal and glial cells, thus suggesting high cooperativity between these cell types in the control of extracellular transmitter concentrations. The generation and analysis of animals carrying targeted disruptions of transporter genes together with the use of selective inhibitors have allowed examining the contribution of individual transporter subtypes to synaptic transmission. This revealed the predominant role of glial expressed transporters in maintaining low extrasynaptic neurotransmitter levels. Additionally, transport activity has been shown to be actively regulated on both transcriptional and post-translational levels, which has important implications for synapse function under physiological and pathophysiological conditions. The analysis of these mechanisms will enhance not only our understanding of synapse function but will reveal new therapeutic strategies for the treatment of human neurological diseases.
Collapse
Affiliation(s)
- Volker Eulenburg
- Department for Neurochemistry, Max-Planck Institute for Brain Research, 60529 Frankfurt, Germany.
| | | |
Collapse
|