1
|
Ferreira M, Pinto M, Aires-da-Silva F, Bettencourt A, Gaspar MM, Aguiar SI. Rifabutin: a repurposed antibiotic with high potential against planktonic and biofilm staphylococcal clinical isolates. Front Microbiol 2024; 15:1475124. [PMID: 39450290 PMCID: PMC11499150 DOI: 10.3389/fmicb.2024.1475124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Staphylococcus aureus poses a significant threat as an opportunistic pathogen in humans, and animal medicine, particularly in the context of hospital-acquired infections (HAIs). Effective treatment is a significant challenge, contributing substantially to the global health burden. While antibiotic therapy remains the primary approach for staphylococcal infections, its efficacy is often compromised by the emergence of resistant strains and biofilm formation. The anticipated solution is the discovery and development of new antibacterial agents. However, this is a time consuming and expensive process with limited success rates. One potential alternative for addressing this challenge is the repurposing of existing antibiotics. This study investigated the potential of rifabutin (RFB) as a repurposed antibiotic for treating S. aureus infections. The minimum inhibitory concentration (MIC) of rifabutin was assessed by the broth microdilution method, in parallel to vancomycin, against 114 clinical isolates in planktonic form. The minimum biofilm inhibitory concentration (MBIC50) was determined by an adaptation of the broth microdilution method, followed by MTT assay, against a subset of selected 40 clinical isolates organized in biofilms. The study demonstrated that RFB MIC ranged from 0.002 to 6.250 μg/mL with a MIC50 of 0.013 μg/mL. RFB also demonstrated high anti-biofilm activity in the subset of 40 clinical isolates, with confirmed biofilm formation, with no significant MBIC50 differences observed between the MSSA and MRSA strains, in contrast to that observed for the VAN. These results highlight the promising efficacy of RFB against staphylococcal clinical isolates with different resistance patterns, whether in planktonic and biofilm forms.
Collapse
Affiliation(s)
- Magda Ferreira
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Margarida Pinto
- Laboratório de Microbiologia do Serviço de Patologia Clínica do Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Ana Bettencourt
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
- Faculty of Sciences, Institute of Biophysics and Biomedical Engineering (IBEB), Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Isabel Aguiar
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Pinho JO, Ferreira M, Coelho M, Pinto SN, Aguiar SI, Gaspar MM. Liposomal Rifabutin-A Promising Antibiotic Repurposing Strategy against Methicillin-Resistant Staphylococcus aureus Infections. Pharmaceuticals (Basel) 2024; 17:470. [PMID: 38675432 PMCID: PMC11053623 DOI: 10.3390/ph17040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (M RSA) infections, in particular biofilm-organized bacteria, remain a clinical challenge and a serious health problem. Rifabutin (RFB), an antibiotic of the rifamycins class, has shown in previous work excellent anti-staphylococcal activity. Here, we proposed to load RFB in liposomes aiming to promote the accumulation of RFB at infected sites and consequently enhance the therapeutic potency. Two clinical isolates of MRSA, MRSA-C1 and MRSA-C2, were used to test the developed formulations, as well as the positive control, vancomycin (VCM). RFB in free and liposomal forms displayed high antibacterial activity, with similar potency between tested formulations. In MRSA-C1, minimal inhibitory concentrations (MIC) for Free RFB and liposomal RFB were 0.009 and 0.013 μg/mL, respectively. Minimum biofilm inhibitory concentrations able to inhibit 50% biofilm growth (MBIC50) for Free RFB and liposomal RFB against MRSA-C1 were 0.012 and 0.008 μg/mL, respectively. Confocal microscopy studies demonstrated the rapid internalization of unloaded and RFB-loaded liposomes in the bacterial biofilm matrix. In murine models of systemic MRSA-C1 infection, Balb/c mice were treated with RFB formulations and VCM at 20 and 40 mg/kg of body weight, respectively. The in vivo results demonstrated a significant reduction in bacterial burden and growth index in major organs of mice treated with RFB formulations, as compared to Control and VCM (positive control) groups. Furthermore, the VCM therapeutic dose was two fold higher than the one used for RFB formulations, reinforcing the therapeutic potency of the proposed strategy. In addition, RFB formulations were the only formulations associated with 100% survival. Globally, this study emphasizes the potential of RFB nanoformulations as an effective and safe approach against MRSA infections.
Collapse
Affiliation(s)
- Jacinta O. Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.O.P.); (M.F.); (M.C.)
| | - Magda Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.O.P.); (M.F.); (M.C.)
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Mariana Coelho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.O.P.); (M.F.); (M.C.)
| | - Sandra N. Pinto
- iBB-Institute for Bioengineering and Biosciences and Associate Laboratory i4HB−Institute for Health and Bioeconomy at Department of Bioengineering, Instituto SuperiorTécnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Sandra I. Aguiar
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.O.P.); (M.F.); (M.C.)
- IBEB, Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Gonçalves T, Marques AT, Manageiro V, Tanoeiro L, Vital JS, Duarte A, Vítor JMB, Caniça M, Gaspar MM, Vale FF. Antimicrobial activity of prophage endolysins against critical Enterobacteriaceae antibiotic-resistant bacteria. Int J Pharm 2024; 651:123758. [PMID: 38160991 DOI: 10.1016/j.ijpharm.2023.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Enterobacteriaceae species are part of the 2017 World Health Organization antibiotic-resistant priority pathogens list for development of novel medicines. Multidrug-resistant Klebsiella pneumoniae is an increasing threat to public health and has become a relevant human pathogen involved in life-threatening infections. Phage therapy involves the use of phages or their lytic endolysins as bioagents for the treatment of bacterial infectious diseases. Gram-negative bacteria have an outer membrane, making difficult the access of endolysins to the peptidoglycan. Here, three endolysins from prophages infecting three distinct Enterobacterales species, Kp2948-Lys from K. pneumoniae, Ps3418-Lys from Providencia stuartii, and Kaer26608-Lys from Klebsiella aerogenes, were purified and exhibited antibacterial activity against their specific bacterium species verified by zymogram assays. These three endolysins were successfully associated to liposomes composed of dimyristoyl phosphatidyl choline (DMPC), dioleoyl phosphatidyl ethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) at a molar ratio (4:4:2), with an encapsulation efficiency ranging from 24 to 27%. Endolysins encapsulated in liposomes resulted in higher antibacterial activity compared to the respective endolysin in the free form, suggesting that the liposome-mediated delivery system enhances fusion with outer membrane and delivery of endolysins to the target peptidoglycan. Obtained results suggest that Kp2948-Lys appears to be specific for K. pneumoniae, while Ps3418-Lys and Kaer26608-Lys appear to have a broader antibacterial spectrum. Endolysins incorporated in liposomes constitute a promising weapon, applicable in the several dimensions (human, animals and environment) of the One Health approach, against multidrug-resistant Enterobacteriaceae.
Collapse
Affiliation(s)
- Tiago Gonçalves
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Andreia T Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Luis Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Joana S Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior Egas Moniz, Quinta da Granja, 2829-511 Monte da Caparica, Portugal
| | - Jorge M B Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Faculty of Pharmacy, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Maria Manuela Gaspar
- Advanced Technologies for Drug Delivery, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
4
|
Richter R, Lehr CM. Extracellular vesicles as novel assay tools to study cellular interactions of anti-infective compounds - A perspective. Adv Drug Deliv Rev 2021; 173:492-503. [PMID: 33857554 DOI: 10.1016/j.addr.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Sudden outbreaks of novel infectious diseases and the persistent evolution of antimicrobial resistant pathogens make it necessary to develop specific tools to quickly understand pathogen-cell interactions and to study appropriate drug delivery strategies. Extracellular vesicles (EVs) are cell-specific biogenic transport systems, which are gaining more and more popularity as either diagnostic markers or drug delivery systems. Apart from that, there are emerging possibilities for EVs as tools to study drug penetration, drug-membrane interactions as well as pathogen-membrane interactions. However, it appears that the potential of EVs for such applications has not been fully exploited yet. Considering the vast variety of cells that can be involved in an infection, vesicle-based analytical methods are just emerging and the number of reported applications is still relatively small. Aim of this review is to discuss the current state of the art of EV-based assays, especially in the context of antimicrobial research and therapy, and to present some new perspectives for a more exhaustive and creative exploration in the future.
Collapse
Affiliation(s)
- Robert Richter
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Bhat M, Pukale S, Singh S, Mittal A, Chitkara D. Nano-enabled topical delivery of anti-psoriatic small molecules. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Ferreira M, Pinto SN, Aires-da-Silva F, Bettencourt A, Aguiar SI, Gaspar MM. Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Staphylococcus aureus Biofilms. Pharmaceutics 2021; 13:pharmaceutics13030321. [PMID: 33801281 PMCID: PMC7999762 DOI: 10.3390/pharmaceutics13030321] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus biofilm-associated infections are a major public health concern. Current therapies are hampered by reduced penetration of antibiotics through biofilm and low accumulation levels at infected sites, requiring prolonged usage. To overcome these, repurposing antibiotics in combination with nanotechnological platforms is one of the most appealing fast-track and cost-effective approaches. In the present work, we assessed the potential therapeutic benefit of three antibiotics, vancomycin, levofloxacin and rifabutin (RFB), through their incorporation in liposomes. Free RFB displayed the utmost antibacterial effect with MIC and MBIC50 below 0.006 µg/mL towards a methicillin susceptible S. aureus (MSSA). RFB was selected for further in vitro studies and the influence of different lipid compositions on bacterial biofilm interactions was evaluated. Although positively charged RFB liposomes displayed the highest interaction with MSSA biofilms, RFB incorporated in negatively charged liposomes displayed lower MBIC50 values in comparison to the antibiotic in the free form. Preliminary safety assessment on all RFB formulations towards osteoblast and fibroblast cell lines demonstrated that a reduction on cell viability was only observed for the positively charged liposomes. Overall, negatively charged RFB liposomes are a promising approach against biofilm S. aureus infections and further in vivo studies should be performed.
Collapse
Affiliation(s)
- Magda Ferreira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sandra N. Pinto
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Frederico Aires-da-Silva
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
| | - Ana Bettencourt
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sandra I. Aguiar
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.F.); (F.A.-d.-S.)
- Correspondence: (S.I.A.); (M.M.G.)
| | - Maria Manuela Gaspar
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Correspondence: (S.I.A.); (M.M.G.)
| |
Collapse
|
7
|
Ferreira M, Aguiar S, Bettencourt A, Gaspar MM. Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors. Drug Deliv Transl Res 2020; 11:72-85. [PMID: 32514703 DOI: 10.1007/s13346-020-00791-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone infections caused by Staphylococcus aureus are a major concern in medical care, particularly when associated with orthopedic-implant devices. The ability of the bacteria to form biofilms and their capacity to invade and persist within osteoblasts turn the infection eradication into a huge challenge. The reduction of antibiotic penetration through bacterial biofilms associated with the presence of persistent cells, ability to survive in the host, and high tolerance to antibiotics are some of the reasons for the difficult treatment of these infections. Effective therapeutic approaches are urgently needed. In this sense, lipid-based nanosystems, such as liposomes, have been investigated as an innovative and alternative strategy for the treatment of implant-associated S. aureus infections, due to their preferential accumulation at infected sites and interaction with S. aureus. This review highlights the recent advances on antibiotic-loaded liposome formulations both in vitro and in vivo and how the interaction with S. aureus biofilms may be improved by modulating the liposomal external surface. Graphical Abstract.
Collapse
Affiliation(s)
- Magda Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Sandra Aguiar
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
8
|
Minakshi P, Ghosh M, Brar B, Kumar R, Lambe UP, Ranjan K, Manoj J, Prasad G. Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance. Curr Pharm Des 2020; 25:1554-1579. [PMID: 31218956 DOI: 10.2174/1381612825666190620094041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Biochemistry, Ranchi Veterinary College, Birsa Agricultural University, Ranchi-834 006, Jharkhand, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology, COVAS, KVASU, Pookode, Wayanad- 673576, Kerala, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | | | - Jinu Manoj
- RVDEC Mahendergarh, LUVAS, Haryana, India
| | - Gaya Prasad
- SVP University of Agriculture and Technology, Meerut, India
| |
Collapse
|
9
|
Grenha A, Alves AD, Guerreiro F, Pinho J, Simões S, Almeida AJ, Gaspar MM. Inhalable locust bean gum microparticles co-associating isoniazid and rifabutin: Therapeutic assessment in a murine model of tuberculosis infection. Eur J Pharm Biopharm 2020; 147:38-44. [DOI: 10.1016/j.ejpb.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022]
|
10
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
11
|
Alshubaily FA, Al-Zahrani MH. Appliance of fungal chitosan/ceftriaxone nano-composite to strengthen and sustain their antimicrobial potentiality against drug resistant bacteria. Int J Biol Macromol 2019; 135:1246-1251. [PMID: 31181276 DOI: 10.1016/j.ijbiomac.2019.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022]
Abstract
Nano-biopolymers could be employed for the delivery of active compounds to increase their stability, bioavailability, efficacy and sustainability. The bioactive chitosan polymer (Cts) was extracted from grown fungus, Cunninghamella elegans, and used for loading ceftriaxone (CFT) and forming the nano-conjugates using tripolyphosphate (TPP) - ionic crosslinking method. The characterization of synthesized CFT/chitosan nanoparticles (NCT) revealed that they chemically crosslinked and had particles' size mean of 56 nm. The CFT loading capacity onto NCT was 54.37%, while its entrapment efficiency was apparently high (79.43%); the maximum released of CFT was 78% from NCT composite after 90 h from dialysis. The CFT/NCT antibacterial activity was confirmed against 3 strains of Staphylococcus aureus (methicillin resistants), using disc diffusion and scanning images of electron microscope, which elucidate that CFT/NCT nano-composite had a vigorous action toward bacterial cells; most cells were ruptured and exploded after 6 h of exposure and entirely lysed after 9 h. The formulation of CFT/NCT nano-composite is exceedingly recommended for enhancing drug biocidal activity, especially against resistant bacterial strains.
Collapse
Affiliation(s)
- Fawzia A Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Maryam H Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
de Souza A, Marins DSS, Mathias SL, Monteiro LM, Yukuyama MN, Scarim CB, Löbenberg R, Bou-Chacra NA. Promising nanotherapy in treating leishmaniasis. Int J Pharm 2018; 547:421-431. [PMID: 29886097 DOI: 10.1016/j.ijpharm.2018.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
Leishmaniases are infectious diseases caused by an intracellular protozoan in humans by 20 different species of Leishmania among more than 53 species. There are at least twelve million cases of infections worldwide and three hundred and fifty million people are at risk in at least 98 developing countries in Africa, South-East Asia, and the Americas. Only Brazil presented high burden for both visceral leishmaniasis (VL) and cutaneous (CL). Chemotherapy is the main means of dealing with this infection. Nevertheless, only a few effective drugs are available, and each has a particular disadvantage; toxicity and long-term regimens compromise most chemotherapeutic options, which decreases patient compliance and adherence to the treatment and consequently the emergence of drug-resistant strains. Nano drug delivery systems (NanoDDS) can direct antileishmanial drug substances for intracellular localization in macrophage-rich organs such as bone marrow, liver, and spleen. This strategy can improve the therapeutic efficacy and reduce the toxic effects of several antileishmanial drug substances. This review is an effort to comprehensively compile recent findings, with the aim of advancing understanding of the importance of nanotechnology for treating leishmaniases.
Collapse
Affiliation(s)
- Aline de Souza
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| | - Débora Soares Souza Marins
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| | - Samir Leite Mathias
- Federal University of São Carlos, Department of Physics, Chemistry and Mathematics, João Leme dos Santos Highway, Km 110, 18052-780 Sorocaba, SP, Brazil
| | - Lis Marie Monteiro
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil
| | - Megumi Nishitani Yukuyama
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil
| | - Cauê Benito Scarim
- São Paulo State University "Júlio de Mesquita Filho" - UNESP, Faculty of Pharmaceutical Sciences, Department of Drugs and Medicines, Rodovia Araraquara Jaú, Km 01 - s/n, 14800-903 Araraquara, SP, Brazil
| | - Raimar Löbenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB T6G 2N8, Canada.
| | - Nádia Araci Bou-Chacra
- University of São Paulo, Faculty of Pharmaceutical Sciences, Prof. Lineu Prestes Avenue, 580, Bl-13/15, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Silva JP, Gonçalves C, Costa C, Sousa J, Silva-Gomes R, Castro AG, Pedrosa J, Appelberg R, Gama FM. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J Control Release 2016; 235:112-124. [PMID: 27261333 DOI: 10.1016/j.jconrel.2016.05.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 01/21/2023]
Abstract
Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, recently joined HIV/AIDS on the top rank of deadliest infectious diseases. Low patient compliance due to the expensive, long-lasting and multi-drug standard therapies often results in treatment failure and emergence of multi-drug resistant strains. In this scope, antimicrobial peptides (AMPs) arise as promising candidates for TB treatment. Here we describe the ability of the exogenous AMP LLKKK18 to efficiently kill mycobacteria. The peptide's potential was boosted by loading into self-assembling Hyaluronic Acid (HA) nanogels. These provide increased stability, reduced cytotoxicity and degradability, while potentiating peptide targeting to main sites of infection. The nanogels were effectively internalized by macrophages and the peptide presence and co-localization with mycobacteria within host cells was confirmed. This resulted in a significant reduction of the mycobacterial load in macrophages infected in vitro with the opportunistic M. avium or the pathogenic M. tuberculosis, an effect accompanied by lowered pro-inflammatory cytokine levels (IL-6 and TNF-α). Remarkably, intra-tracheal administration of peptide-loaded nanogels significantly reduced infection levels in mice infected with M. avium or M. tuberculosis, after just 5 or 10 every other day administrations. Considering the reported low probability of resistance acquisition, these findings suggest a great potential of LLKKK18-loaded nanogels for TB therapeutics.
Collapse
Affiliation(s)
- João P Silva
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Carine Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - César Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Jeremy Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Appelberg
- Department of Immunophysiology, University of Porto, 4050-313 Porto, Portugal
| | - F Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
14
|
Silva JP, Appelberg R, Gama FM. Antimicrobial peptides as novel anti-tuberculosis therapeutics. Biotechnol Adv 2016; 34:924-940. [PMID: 27235189 DOI: 10.1016/j.biotechadv.2016.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed.
Collapse
Affiliation(s)
- João P Silva
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Rui Appelberg
- Department of Immunophysiology, University of Porto, 4050-313 Porto, Portugal
| | - Francisco Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
15
|
Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, Bauchan G, Lease RA, Mohammadi H, Harty WJ, Simmons C, Schmelcher M, Camp M, Dong S, Baker JR, Sheen TR, Doran KS, Pritchard DG, Almeida RA, Nelson DC, Marriott I, Lee JC, Donovan DM. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus. Sci Rep 2016; 6:25063. [PMID: 27121552 PMCID: PMC4848530 DOI: 10.1038/srep25063] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics.
Collapse
Affiliation(s)
| | | | | | - Yang Shen
- Institute for Bioscience and Biotechnology Research, University of MD, Rockville, MD, USA.,Department of Veterinary Medicine, University of MD, College Park, MD, USA
| | | | | | - Gary Bauchan
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | | | | | | | - Chad Simmons
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | | | - Mary Camp
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | - Shengli Dong
- Biochemistry, Univ. Alabama, Birmingham, Birmingham, AL, USA
| | - John R Baker
- Biochemistry, Univ. Alabama, Birmingham, Birmingham, AL, USA
| | | | - Kelly S Doran
- Biology, San Diego State University, San Diego, CA, USA
| | | | | | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of MD, Rockville, MD, USA.,Department of Veterinary Medicine, University of MD, College Park, MD, USA
| | - Ian Marriott
- Biology, Univ. North Carolina, Charlotte, Charlotte, NC, USA
| | - Jean C Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
16
|
Miller RD, Yusoff RM, Swope WC, Rice JE, Carr AC, Parker AJ, Sly J, Appel EA, Nguyen T, Piunova V. Water soluble, biodegradable amphiphilic polymeric nanoparticles and the molecular environment of hydrophobic encapsulates: Consistency between simulation and experiment. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Gaspar MM, Calado S, Pereira J, Ferronha H, Correia I, Castro H, Tomás AM, Cruz MEM. Targeted delivery of paromomycin in murine infectious diseases through association to nano lipid systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1851-60. [PMID: 26169150 DOI: 10.1016/j.nano.2015.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 05/09/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED Treatment of intracellular infections such as those caused by Mycobacterium spp. and Leishmania spp. is often hampered by limited access of drugs to infected cells. This is the case of paromomycin (PRM), an antibiotic with broad spectrum in vitro activity against protozoa and mycobacteria. Association of chemotherapeutics to liposomes is a worthy strategy to circumvent poor drug accessibility. Six different PRM liposomal formulations were produced, physicochemically characterized and biologically evaluated in a macrophagic cell line confirming their adequacy for in vivo studies. Biodistribution profiles of PRM liposomes revealed preferential targeting of the antibiotic to the liver, spleen and lungs, relative to free PRM, which translated into an enhanced therapeutic effect in murine models infected with Mycobacterium avium and Leishmania infantum and an absence of toxic effects. Our findings demonstrate the advantages of associating PRM to liposomes indicating their potential as an alternative therapeutic strategy for mycobacterial and parasite infections. FROM THE CLINICAL EDITOR Infections caused by intracellular organisms such as Mycobacterium and Leishmania remain a significant problem worldwide. Although effective drugs are available, their actions are limited by access into the intracellular compartment. In this article, the authors developed different liposomal formulations as drug carriers of paromomycin and investigated their efficacy in a mouse model. The positive should provide another treatment option for these organisms in the near future.
Collapse
Affiliation(s)
- Maria Manuela Gaspar
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Susana Calado
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Pereira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Ferronha
- Unidade de Investigação de Patologia e Microbiologia Animal, Instituto Nacional de Investigação Agrária e Veterinária, Lisboa, Portugal
| | - Ivone Correia
- Unidade de Investigação de Patologia e Microbiologia Animal, Instituto Nacional de Investigação Agrária e Veterinária, Lisboa, Portugal
| | - Helena Castro
- IBMC, Instituto de Biologia Molecular Celular, Porto, Portugal
| | - Ana M Tomás
- IBMC, Instituto de Biologia Molecular Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Eugénia Meirinhos Cruz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
18
|
Veigas B, Fernandes AR, Baptista PV. AuNPs for identification of molecular signatures of resistance. Front Microbiol 2014; 5:455. [PMID: 25221547 PMCID: PMC4147832 DOI: 10.3389/fmicb.2014.00455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022] Open
Abstract
The increasing levels of drug resistance are one of biggest threats to overcome microbial infection. The ability to rapidly and accurately detect a given pathogen and its drug resistance profile is essential for the appropriate treatment of patients and for preventing further spread of drug-resistant strains. The predictive and informative value of these molecular markers needs to be translated into robust surveillance tools that correlate to the target and extent of resistance, monitor multiresistance and provide real time assessment at point-of-need. Rapid molecular assays for the detection of drug-resistance signatures in clinical specimens are based on the detection of specific nucleotide sequences and/or mutations within pre-selected biomarkers in the genome, indicative of the presence of the pathogen and/or associated with drug resistance. DNA and/or RNA based assays offer advantages over phenotypic assays, such as specificity and time from collection to result. Nanotechnology has provided new and robust tools for the detection of pathogens and more crucially to the fast and sensitive characterisation of molecular signatures of drug resistance. Amongst the plethora of nanotechnology based approaches, gold nanoparticles have prompt for the development of new strategies and platforms capable to provide valuable data at point-of-need with increased versatility but reduced costs. Gold nanoparticles, due to their unique spectral, optical and electrochemical properties, are one of the most widely used nanotechnology systems for molecular diagnostics. This review will focus on the use of gold nanoparticles for screening molecular signatures of drug resistance that have been reported thus far, and provide a critical evaluation of current and future developments of these technologies assisting pathogen identification and characterisation.
Collapse
Affiliation(s)
- Bruno Veigas
- Nanotheranostics, Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal ; Centro de Investigação em Materiais, Departamento de Ciências de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica, Portugal
| | - Alexandra R Fernandes
- Centro Química Estrutural, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica, Portugal
| | - Pedro V Baptista
- Nanotheranostics, Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
| |
Collapse
|
19
|
Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. J Control Release 2014; 184:36-50. [DOI: 10.1016/j.jconrel.2014.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/27/2023]
|
20
|
Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech 2012; 13:411-21. [PMID: 22359159 PMCID: PMC3364366 DOI: 10.1208/s12249-012-9758-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 02/01/2012] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to utilize chitosan (CS) nanoparticles for the intracellular delivery of the poorly cell-penetrating antibiotic, ceftriaxone sodium (CTX). In vitro characterization of (CTX-CS) nanoparticles was conducted leading to an optimized formula that was assessed for its biocompatibility to blood (hemolysis test) and cells (MTT assay). Progressively, confocal laser scanning microscopy (CLSM), cellular uptake (microfluorimetry), and antibacterial activity of the nanoparticles were investigated in two cell lines: Caco-2 and macrophages J774.2 pre-infected with Salmonella typhimurium. Results showed that the optimized formula had size 210 nm, positive zeta potential (+30 mV) and appreciable entrapment efficiency for CTX (45%) and included a biphasic release pattern. The nanoparticles were biocompatible and were internalized by cells as verified by CLSM whereas microfluorimetry indicated substantial cellular uptake. Moreover, the CTX-chitosan nanoparticles showed a significant reduction in the count of intracellular S. typhimurium in Caco-2 and macrophages J774.2. This reduction was significantly higher than that obtained in case of placebo nanoparticles, CTX, and CTX-chitosan solutions and might be attributed to enhanced endocytic uptake of the nanoaprticles and antibacterial effect of the chitosan polymer. In conclusion, the results provide evidence for the potential use of chitosan nanoparticles to enhance the intracellular delivery and antibacterial effect of CTX in enterocytes and macrophages.
Collapse
Affiliation(s)
- Noha M Zaki
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia.
| | | |
Collapse
|
21
|
A highly efficient Ziehl-Neelsen stain: identifying de novo intracellular Mycobacterium tuberculosis and improving detection of extracellular M. tuberculosis in cerebrospinal fluid. J Clin Microbiol 2012; 50:1166-70. [PMID: 22238448 DOI: 10.1128/jcm.05756-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tuberculous meningitis leads to a devastating outcome, and early diagnosis and rapid chemotherapy are vital to reduce morbidity and mortality. Since Mycobacterium tuberculosis is a kind of cytozoic pathogen and its numbers are very few in cerebrospinal fluid, detecting M. tuberculosis in cerebrospinal fluid from tuberculous meningitis patients is still a challenge for clinicians. Ziehl-Neelsen stain, the current feasible microbiological method for the diagnosis of tuberculosis, often needs a large amount of cerebrospinal fluid specimen but shows a low detection rate of M. tuberculosis. Here, we developed a modified Ziehl-Neelsen stain, involving cytospin slides with Triton processing, in which only 0.5 ml of cerebrospinal fluid specimens was required. This method not only improved the detection rate of extracellular M. tuberculosis significantly but also identified intracellular M. tuberculosis in the neutrophils, monocytes, and lymphocytes clearly. Thus, our modified method is more effective and sensitive than the conventional Ziehl-Neelsen stain, providing clinicians a convenient yet powerful tool for rapidly diagnosing tuberculous meningitis.
Collapse
|
22
|
Abstract
Diseases such as tuberculosis, hepatitis, and HIV/AIDS are caused by intracellular pathogens and are a major burden to the global medical community. Conventional treatments for these diseases typically consist of long-term therapy with a combination of drugs, which may lead to side effects and contribute to low patient compliance. The pathogens reside within intracellular compartments of the cell, which provide additional barriers to effective treatment. Therefore, there is a need for improved and more effective therapies for such intracellular diseases. This review will summarize, for the first time, the intracellular compartments in which pathogens can reside and discuss how nanomedicine has the potential to improve intracellular disease therapy by offering properties such as targeting, sustained drug release, and drug delivery to the pathogen’s intracellular location. The characteristics of nanomedicine may prove advantageous in developing improved or alternative therapies for intracellular diseases.
Collapse
Affiliation(s)
- Andrea L Armstead
- Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, USA
| | | |
Collapse
|
23
|
Hari BNV, Chitra KP, Bhimavarapu R, Karunakaran P, Muthukrishnan N, Rani BS. Novel technologies: A weapon against tuberculosis. Indian J Pharmacol 2011; 42:338-44. [PMID: 21189901 PMCID: PMC2991688 DOI: 10.4103/0253-7613.71887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/16/2010] [Accepted: 08/25/2010] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) is a leading chronic bacterial infection. Despite potentially curative pharmacotherapies being available for over 50 years, the length of the treatment and the pill burden can hamper patient lifestyle. Low compliance and adherence to administration schedules remain the main reasons for therapeutic failure and contribute to the development of multidrug-resistant strains. The design of novel antibiotics attempts to overcome drug resistance, to shorten the treatment course, and to reduce drug interactions. In this framework, nanotechnology appears as one of the promising approaches for the development of more effective medicines. The present review thoroughly overviews the development of novel microparticulate, encapsulation, and various other carrier-based drug delivery systems for incorporating the principal anti-TB agents. Drug delivery systems have been designed that either target the site of TB or reduce the dosing frequency with the aim of improving patient healthcare.
Collapse
Affiliation(s)
- B N Vedha Hari
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
24
|
Pandey R, Ahmad Z. Nanomedicine and experimental tuberculosis: facts, flaws, and future. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:259-72. [DOI: 10.1016/j.nano.2011.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 01/03/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
25
|
Kulikova GA, Parfenyuk EV, Ryabinina IV, Antsiferova YS, Sotnikova NY, Posiseeva LV, Eliseeva MA. In vitro studies of interaction of modified silica nanoparticles with different types of immunocompetent cells. J Biomed Mater Res A 2010; 95:434-9. [DOI: 10.1002/jbm.a.32855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Dartois V, Barry CE. Clinical pharmacology and lesion penetrating properties of second- and third-line antituberculous agents used in the management of multidrug-resistant (MDR) and extensively-drug resistant (XDR) tuberculosis. CURRENT CLINICAL PHARMACOLOGY 2010; 5:96-114. [PMID: 20156156 PMCID: PMC6344931 DOI: 10.2174/157488410791110797] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022]
Abstract
Failure of first-line chemotherapy to cure tuberculosis (TB) patients occurs, in part, because of the development of resistance to isoniazid (INH) and rifampicin (RIF) the two most sterilizing agents in the four-drug regimen used to treat primary infections. Strains resistant to both INH and RIF are termed multidrug-resistant (MDR). Treatment options for MDR patients involve a complex array of twenty different drugs only two classes of which are considered to be highly effective (fluoroquinolones and aminoglycosides). Resistance to these two classes results in strains known as extensively drug-resistant (XDR) and these types of infections are becoming increasingly common. Many of the remaining agents have poorly defined pharmacology but nonetheless are widely used in the treatment of this disease. Several of these agents are known to have highly variable exposures in healthy volunteers and little is known in the patients in which they must be used. Therapeutic drug monitoring (TDM) is infrequently used in the management of MDR or XDR disease yet the clinical pharmacokinetic studies that have been done suggest this might have a large impact on disease outcome. We review what is known about the pharmacologic properties of each of the major classes of second- and third-line antituberculosis agents and suggest where judicious use of TDM would have the maximum possible impact. We summarize the state of knowledge of drug-drug interactions (DDI) in these classes of agents and those that are currently in clinical trials. Finally we consider what little is known about the ability of TB drugs to reach their ultimate site of action--the interior of a granuloma by penetrating the diseased lung area. Careful consideration of the pharmacology of these agents is essential if we are to avoid further fueling the growing epidemic of highly drug-resistant TB and critical in the development of new antituberculosis drugs.
Collapse
Affiliation(s)
- Véronique Dartois
- The Novartis Institute for Tropical Diseases, Biopolis, Singapore, Singapore.
| | | |
Collapse
|
27
|
Sosnik A, Carcaboso ÁM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 2010; 62:547-59. [PMID: 19914315 DOI: 10.1016/j.addr.2009.11.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
Tuberculosis (TB) is the second most deadly infectious disease. Despite potentially curative pharmacotherapies being available for over 50 years, the length of the treatment and the pill burden can hamper patient lifestyle. Thus, low compliance and adherence to administration schedules remain the main reasons for therapeutic failure and contribute to the development of multi-drug-resistant (MDR) strains. Pediatric patients constitute a high risk population. Most of the first-line drugs are not commercially available in pediatric form. The design of novel antibiotics attempts to overcome drug resistance, to shorten the treatment course and to reduce drug interactions with antiretroviral therapies. On the other hand, the existing anti-TB drugs are still effective. Overcoming technological drawbacks of these therapeutic agents as well as improving the effectiveness of the drug by targeting the infection reservoirs remains the central aims of Pharmaceutical Technology. In this framework, nanotechnologies appear as one of the most promising approaches for the development of more effective and compliant medicines. The present review thoroughly overviews the state-of-the-art in the development of nano-based drug delivery systems for encapsulation and release of anti-TB drugs and discusses the challenges that are faced in the development of a more effective, compliant and also affordable TB pharmacotherapy.
Collapse
|
28
|
Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho SN, Via LE, Barry CE. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 2009; 137:122-8. [PMID: 19749004 DOI: 10.1378/chest.09-0903] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The exact role of neutrophils in the pathogenesis of TB is poorly understood. Recent evidence suggests that neutrophils are not simply scavenging phagocytes in Mycobacterium tuberculosis (Mtb) infection. METHODS Three different types of clinical specimens from patients with active pulmonary TB who underwent lung surgery were examined: sputum, BAL fluid, and cavity contents. Differential cell separation and quantification were performed for intracellular and extracellular bacteria, and bacterial length was measured using microscopy. RESULTS Neutrophils were more abundant than macrophages in sputum (86.6% +/- 2.2% vs 8.4% +/- 1.3%) and in BAL fluid (78.8% +/- 5.8% vs 11.8% +/- 4.1%). Inside the cavity, lymphocytes (41.3% +/- 11.2%) were the most abundant cell type, followed by neutrophils (38.8% +/- 9.4%) and macrophages (19.5% +/- 7.5%). More intracellular bacilli were found in neutrophils than macrophages in sputum (67.6% +/- 5.6% vs 25.2% +/- 6.5%), in BAL fluid (65.1% +/- 14.4% vs 28.3% +/- 11.6%), and in cavities (61.8% +/- 13.3% vs 23.9% +/- 9.3%). The lengths of Mtb were shortest in cavities (1.9+/- 0.1 microm), followed by in sputum (2.9 +/- 0.1 microm) and in BAL fluid (3.6 +/- 0.2 microm). CONCLUSIONS Our results show that neutrophils are the predominant cell types infected with Mtb in patients with TB and that these intracellular bacteria appear to replicate rapidly. These results are consistent with a role for neutrophils in providing a permissive site for a final burst of active replication of the bacilli prior to transmission.
Collapse
Affiliation(s)
- Seok-Yong Eum
- International Tuberculosis Research Center, Division of Immunopathology and Cellular Immunology, 475-1, Gapo, Masan 631-320, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. TargetingBrucella melitensiswith polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett 2009; 294:24-31. [DOI: 10.1111/j.1574-6968.2009.01530.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Chang JS, Sun Pan B, Kong ZL, Wu LC, Liang B. Chang K, Pan MH. Marine Functional Ingredients and Advanced Technology for Health Food Development. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|