1
|
Jiang C, Weng X, Chen Y, Yang J. Pulrodemstat, a selective inhibitor of KDM1A, suppresses head and neck squamous cell carcinoma growth by triggering apoptosis. BMC Pharmacol Toxicol 2024; 25:89. [PMID: 39567962 PMCID: PMC11580532 DOI: 10.1186/s40360-024-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Chemotherapy is often ineffective as a first-line treatment for head and neck squamous cell carcinoma (HNSCC), and a more precise and effective therapeutic option is urgently needed. METHODS High-throughput screening of a histone demethylase inhibitor library was performed to identify potential drugs for treating HNSCC. The Cancer Genome Atlas (TCGA) and single-cell sequencing were used to evaluate the potential diagnostic value and expression distribution of candidate drug targets. Colony formation, transwell assays, and flow cytometry analyses were used to assess the antitumor function of the potential drugs. The CCK-8 assay was used to compare the antitumor activity of the candidate drug and the traditional chemotherapy drug. Bioinformatic analysis based on TCGA database was used for unveiling the upstream signaling. RESULTS Pulrodemstat, a selective KDM1A inhibitor that is ongoing clinical trial, stood out as the most effective candidate anti-HNSCC drug based on the high-throughput screening. IC50 analysis revealed that Pulrodemstat might possess stronger anti-tumor activity than 5-Fu. Additionally, Pulrodemstat dramatically suppressed HNSCC cell proliferation and migration without inducing toxicity in normal cells. TCGA analysis revealed that KDM1A is positively associated with tumor proliferation, DNA repair, and DNA replication in HNSCC. Consistent with these results, Pulrodemstat substantially induced apoptosis in the HNSCC cells. Furthermore, TCGA analysis revealed that KDM1A was aberrantly overexpressed in HNSCC, positively correlated with malignancy, and negatively associated with the clinical outcomes of HNSCC patients. Notably, single-cell analysis indicated that KDM1A was mainly distributed in the malignant cells of HNSCC samples, highlighting that Pulrodemstat may be a more precise therapeutic option for HNSCC. In addition, methylation occupancies in the KDM1A promoter were substantially low in HNCC tumors, and low methylation occupancies in the KDM1A promoter predicted poor clinical outcomes in HNSCC. These data are consistent with the KDM1A expression in HNSCC. Moreover, TET3, a DNA demethylase, was strongly and positively correlated with KDM1A expression. CONCLUSIONS Pulrodemstat is an effective therapeutic drug for HNSCC. Thus, the TET3/KDM1A axis may account for the malignant phenotype of HNSCC.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Clinical Laboratory, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Xiaofeng Weng
- Department of Clinical Laboratory, Taihu Sanatorium of Jiangsu Province, Wuxi, Jiangsu, 214086, China
| | - Yuqing Chen
- Children's ENT Department, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Junjun Yang
- Department of Laboratory Medicine, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, Jiangsu, 214000, China.
| |
Collapse
|
2
|
Santhosh Kumar S, Naseri NN, Pather SR, Hallacli E, Ndayisaba A, Buenaventura C, Acosta K, Roof J, Fazelinia H, Spruce LA, Luk K, Khurana V, Rhoades E, Shalem O. Sequential CRISPR screening reveals partial NatB inhibition as a strategy to mitigate alpha-synuclein levels in human neurons. SCIENCE ADVANCES 2024; 10:eadj4767. [PMID: 38335281 PMCID: PMC10857481 DOI: 10.1126/sciadv.adj4767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Alpha-synuclein (αSyn) protein levels correlate with the risk and severity of Parkinson's disease and related neurodegenerative diseases. Lowering αSyn is being actively investigated as a therapeutic modality. Here, we systematically map the regulatory network that controls endogenous αSyn using sequential CRISPR-knockout and -interference screens in an αSyn gene (SNCA)-tagged cell line and induced pluripotent stem cell-derived neurons (iNeurons). We uncover αSyn modifiers at multiple regulatory layers, with amino-terminal acetyltransferase B (NatB) enzymes being the most potent endogenous αSyn modifiers in both cell lines. Amino-terminal acetylation protects the cytosolic αSyn from rapid degradation by the proteasome in a Ube2w-dependent manner. Moreover, we show that pharmacological inhibition of methionyl-aminopeptidase 2, a regulator of NatB complex formation, attenuates endogenous αSyn in iNeurons carrying SNCA triplication. Together, our study reveals several gene networks that control endogenous αSyn, identifies mechanisms mediating the degradation of nonacetylated αSyn, and illustrates potential therapeutic pathways for decreasing αSyn levels in synucleinopathies.
Collapse
Affiliation(s)
- Saranya Santhosh Kumar
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nima N. Naseri
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarshan R. Pather
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erinc Hallacli
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Chris Buenaventura
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen Acosta
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Roof
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A. Spruce
- Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Khurana
- Division of Movement Disorders and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Tang L, Peng L, Tan C, Liu H, Chen P, Wang H. Role of HOXA9 in solid tumors: mechanistic insights and therapeutic potential. Cancer Cell Int 2022; 22:349. [PMID: 36376832 PMCID: PMC9664671 DOI: 10.1186/s12935-022-02767-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
HOXA9 functioning as a transcription factor is one of the members of HOX gene family, which governs multiple cellular activities by facilitating cellular signal transduction. In addition to be a driver in AML which has been widely studied, the role of HOXA9 in solid tumor progression has also received increasing attention in recent years, where the aberrant expression of HOXA9 is closely associated with the prognosis of patient. This review details the signaling pathways, binding partners, post-transcriptional regulation of HOXA9, and possible inhibitors of HOXA9 in solid tumors, which provides a reference basis for further study on the role of HOXA9 in solid tumors.
Collapse
|
4
|
Lysine-Specific Demethylase 1 (LSD1/KDM1A) Inhibition as a Target for Disease Modification in Myelofibrosis. Cells 2022; 11:cells11132107. [PMID: 35805191 PMCID: PMC9265913 DOI: 10.3390/cells11132107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
Myelofibrosis (MF) is the most symptomatic form of myeloproliferative neoplasm and carries the worst outcome. Allogeneic hematopoietic stem cell transplantation is the only therapy with potential for cure at present, but is limited by significant mortality and morbidity. JAK inhibition is the mainstay of treatment for intermediate- and high-risk MF. Ruxolitinib is the most widely used JAK1/2 inhibitor and provides durable effects in controlling symptom burden and spleen volumes. Nevertheless, ruxolitinib may not adequately address the underlying disease biology. Its effects on mutant allele burden, bone marrow fibrosis, and the prevention of leukemic transformation are minimal. Multiple small molecules are being tested in multiple phase 2 and 3 studies as either monotherapy or in combination with JAK2 inhibitors. In this review, the role of LSD1/KDM1A inhibition as a potential disease-modification strategy in patients with myelofibrosis is described and discussed.
Collapse
|
5
|
Ojha R, Chen IC, Hsieh CM, Nepali K, Lai RW, Hsu KC, Lin TE, Pan SL, Chen MC, Liou JP. Installation of Pargyline, a LSD1 Inhibitor, in the HDAC Inhibitory Template Culminated in the Identification of a Tractable Antiprostate Cancer Agent. J Med Chem 2021; 64:17824-17845. [PMID: 34908406 DOI: 10.1021/acs.jmedchem.1c00966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pragmatic insertion of pargyline, a LSD1 inhibitor, as a surface recognition part in the HDAC inhibitory pharmacophore was planned in pursuit of furnishing potent antiprostate cancer agents. Resultantly, compound 14 elicited magnificent cell growth inhibitory effects against the PC-3 and DU-145 cell lines and led to remarkable suppression of tumor growth in human prostate PC-3 and DU-145 xenograft nude mouse models. The outcome of the enzymatic assays ascertained that the substantial antiproliferative effects of compound 14 were mediated through HDAC6 isoform inhibition as well as selective MAO-A and LSD1 inhibition. Moreover, the signatory feature of LSD1 inhibition by 14 in the context of H3K4ME2 accumulation was clearly evident from the results of western blot analysis. Gratifyingly, hydroxamic acid 14 demonstrates good human hepatocytic stability and good oral bioavailability in rats and exhibits enough promise to emerge as a therapeutic for the treatment of prostate cancer in the near future.
Collapse
Affiliation(s)
- Ritu Ojha
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - I-Chung Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan
| | - Row-Wen Lai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Tony Eight Lin
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110031, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mei-Chuan Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110031, Taiwan.,Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan.,TMU Research Center of Drug Discovery, Taipei Medical University, Taipei 110031, Taiwan
| |
Collapse
|
6
|
Liu L, Liu J, Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review). Exp Ther Med 2021; 22:723. [PMID: 34007332 DOI: 10.3892/etm.2021.10155] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Histone lysine demethylation modification is a critical epigenetic modification. Lysine demethylase 2A (KDM2A), a Jumonji C domain-containing demethylase, demethylates the dimethylated H3 lysine 36 (H3K36) residue and exerts little or no activity on monomethylated and trimethylated H3K36 residues. KDM2A expression is regulated by several factors, such as microRNAs, and the phosphorylation of KDM2A also plays a vital role in its function. KDM2A mainly recognizes the unmethylated region of CpG islands and subsequently demethylates histone H3K36 residues. In addition, KDM2A recognizes and binds to phosphorylated proteins, and promotes their ubiquitination and degradation. KDM2A plays an important role in chromosome remodeling and gene transcription, and is involved in cell proliferation and differentiation, cell metabolism, heterochromosomal homeostasis and gene stability. Notably, KDM2A is crucial for tumorigenesis and progression. In the present review, the documented biological functions of KDM2A in physiological and pathological processes are comprehensively summarized.
Collapse
Affiliation(s)
- Lisheng Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
7
|
Ren C, Lin Y, Liu X, Yan D, Xu X, Zhu D, Kong L, Han C. Target separation and antitumor metastasis activity of sesquiterpene-based lysine-specific demethylase 1 inhibitors from zedoary turmeric oil. Bioorg Chem 2021; 108:104666. [PMID: 33550070 DOI: 10.1016/j.bioorg.2021.104666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Lysine-specific histone demethylase 1 (LSD1) was the first histone demethylase identified in epigenetics and has recently emerged as an attractive therapeutic target for treating tumors. To date, almost all reported LSD1 inhibitors have been chemosynthesized; however, natural products possess pharmacological and biological activity and can be sources for drug development. Here, we established a target separation countercurrent chromatography technique to isolate LSD1 inhibitors from zedoary turmeric oil. Four sesquiterpene-based LSD1 inhibitors were efficiently obtained with an inhibition ratio equal to or less than that of the positive control drug. Compound 2 showed the most potent inhibitory activity, with a half-maximal inhibitory concentration of 3.97 μM, and was further tested to determine its ability to inhibit LSD1 and its antitumor metastatic effects in MDA-MB-231 cells. These four compounds are the first sesquiterpene-based natural LSD1 inhibitors to be characterized. Our findings provide a new molecular framework for studying LSD1 inhibitors and offer a template for designing more sesquiterpene-based LSD1 inhibitors with potential antitumor activity.
Collapse
Affiliation(s)
- Chunling Ren
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yaolan Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiaoqin Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dongrong Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
8
|
Ma L, Wang H, You Y, Ma C, Liu Y, Yang F, Zheng Y, Liu H. Exploration of 5-cyano-6-phenylpyrimidin derivatives containing an 1,2,3-triazole moiety as potent FAD-based LSD1 inhibitors. Acta Pharm Sin B 2020; 10:1658-1668. [PMID: 33088686 PMCID: PMC7563019 DOI: 10.1016/j.apsb.2020.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Histone lysine specific demethylase 1 (LSD1) has become a potential therapeutic target for the treatment of cancer. Discovery and develop novel and potent LSD1 inhibitors is a challenge, although several of them have already entered into clinical trials. Herein, for the first time, we reported the discovery of a series of 5-cyano-6-phenylpyrimidine derivatives as LSD1 inhibitors using flavin adenine dinucleotide (FAD) similarity-based designing strategy, of which compound 14q was finally identified to repress LSD1 with IC50 = 183 nmol/L. Docking analysis suggested that compound 14q fitted well into the FAD-binding pocket. Further mechanism studies showed that compound 14q may inhibit LSD1 activity competitively by occupying the FAD binding sites of LSD1 and inhibit cell migration and invasion by reversing epithelial to mesenchymal transition (EMT). Overall, these findings showed that compound 14q is a suitable candidate for further development of novel FAD similarity-based LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- Anticancer
- EMT, epithelial to mesenchymal transition
- ESI, electrospray ionization
- FAD, flavin adenine dinucleotide
- FBS, fetal bovine serum
- Flavin adenine dinucleotide (FAD)
- Gastric cancer
- HRMS, high resolution mass spectra
- IC50, half maximal inhibitory concentration
- LSD1 inhibitors
- LSD1, histone lysine specific demethylase 1
- MOE, molecular operating environment
- PAINS, pan assay interference compounds
- PDB, the Protein Data Bank
- Pyrimidine
- RLU, relative light units
- SARs, structure–activity relationship studies
- TCP, tranylcypromine
- VDW, van der Waals
Collapse
Affiliation(s)
| | | | - Yinghua You
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chaoya Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuejiao Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Yang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Liu Z, Zhao T, Li Z, Sun K, Fu Y, Cheng T, Guo J, Yu B, Shi X, Liu H. Discovery of [1,2,3]triazolo[4,5- d]pyrimidine derivatives as highly potent, selective, and cellularly active USP28 inhibitors. Acta Pharm Sin B 2020; 10:1476-1491. [PMID: 32963944 PMCID: PMC7488365 DOI: 10.1016/j.apsb.2019.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/20/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin specific peptidase 28 (USP28) is closely associated to the occurrence and development of various malignancies, and thus has been validated as a promising therapeutic target for cancer therapy. To date, only few USP28 inhibitors with moderate inhibitory activity have been reported, highly potent and selective USP28 inhibitors with new chemotypes remain to be discovered for pathologically investigating the roles of deubiquitinase. In this current study, we reported the synthesis and biological evaluation of new [1,2,3]triazolo[4,5-d]pyrimidine derivatives as potent USP28 inhibitors. Especially, compound 19 potently inhibited USP28 (IC50 = 1.10 ± 0.02 μmol/L, Kd = 40 nmol/L), showing selectivity over USP7 and LSD1 (IC50 > 100 μmol/L). Compound 19 was cellularly engaged to USP28 in gastric cancer cells. Compound 19 reversibly bound to USP28 and directly affected its protein levels, thus inhibiting the proliferation, cell cycle at S phase, and epithelial-mesenchymal transition (EMT) progression in gastric cancer cell lines. Docking studies were performed to rationalize the potency of compound 19. Collectively, compound 19 could serve as a new tool compound for the development of new USP28 inhibitors for exploring the roles of deubiquitinase in cancers.
Collapse
Key Words
- BLI, biolayer interferometry technology
- CHX, cycloheximide
- DUBs, deubiquitinating enzymes
- Deubiquitination
- EMT, epithelial-mesenchymal transition
- EdU, 5-ethynyl-2′-deoxyuridine
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- Gastric cancer
- IC50, half maximal inhibitory concentration
- Kd, dissociation constant
- LSD1, lysine specific demethylase 1
- MG132, proteasome inhibitor
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazoliumbromide
- NSCLC, non-small cell lung cancer
- Tris, 2-amino-2-(hydroxymethyl)-1,3-propanediol
- USP28 inhibitors
- USP28, ubiquitin specific peptidase 28
- USP7, ubiquitin specific peptidase 7
- Ub, ubiquitin
- Ub-AMC, ubiquitin-7-amido-4-methylcoumarin
- [1,2,3]Triazolo[4,5-d]pyrimidine derivatives
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yu
- Corresponding authors. Tel./fax: +86 371 67781908.
| | - Xiaojing Shi
- Corresponding authors. Tel./fax: +86 371 67781908.
| | - Hongmin Liu
- Corresponding authors. Tel./fax: +86 371 67781908.
| |
Collapse
|
10
|
Long M, Zhu Y, Chen Z, Lin S, Peng X, Luo D, Li H, Tan L. Lysine-Specific Demethylase 1 Affects the Progression of Papillary Thyroid Carcinoma via HIF1α and microRNA-146a. J Clin Endocrinol Metab 2020; 105:5821525. [PMID: 32303750 DOI: 10.1210/clinem/dgaa182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT Lysine-specific demethylase 1 (LSD1) stabilizes hypoxia-inducible factor 1α (HIF1α) to advance tumor progression, while HIF1α functions as a transcription factor to increase the expression of microRNA-146a (miR-146a). OBJECTIVE We aim to investigate whether LSD1 affects the development of papillary thyroid carcinoma (PTC) via HIF1α and miR-146a. DESIGN In vitro assays were performed with Nthy-ori 3-1, BHP5-16, BCPAP, K1, and BHP2-7 cell lines. In vivo assays were conducted with established xenograft tumors in nude mice. SETTING This study was conducted at our lab. PATIENTS AND MATERIALS PTC tissues and corresponding adjacent normal tissues were obtained from 45 patients hospitalized in Sun Yat-Sen Memorial Hospital. Assays were conducted using Nthy-ori 3-1, BHP5-16, BCPAP, K1, and BHP2-7 cell lines, as well as 50 male BALB/c nude mice. INTERVENTION Cells were transfected with sh-LSD1, sh-GABPA, oe-LSD1, oe-HIF1α, miR-146a mimic, and miR-146a inhibitor. In addition, K1 cells expressing lv-oe-LSD1, lv-miR-146a inhibitor, lv-oe-LSD1 or miR-146a inhibitor were injected into the right side of the mice. LSD1 gene and protein expression patterns were analyzed in 45 clinical PTC tissue samples. MAIN OUTCOME MEASURE Expression of LSD1, HIF1α, miR-146a, and GA-binding protein transcription factor alpha (GABPA), as well as their effects on PTC. RESULTS LSD1 was highly expressed in clinical PTC tissues. LSD1 stabilized HIF1α and inhibited the degradation of its ubiquitin proteasome. HIF1α was enriched in the promoter region of miR-146a, an upregulated miRNA in PTC. HIF1α increased miR-146a expression to promote PTC progression in vitro, which was achieved by inhibiting GABPA, a target gene of miR-146a. LSD1 upregulated miR-146a to enhance the development and metastasis of PTC in nude mice. CONCLUSION Our results show that LSD1 functions as an oncogene in PTC by upregulating HIF1α and miR-146a, elucidating an understanding of undefined mechanisms associated with tumor progression in PTC.
Collapse
Affiliation(s)
- Miaoyun Long
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Zhu
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zuhe Chen
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaojian Lin
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinzhi Peng
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dingyuan Luo
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Honghao Li
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Langping Tan
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Fang Y, Yang C, Yu Z, Li X, Mu Q, Liao G, Yu B. Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm Sin B 2020; 11:S2211-3835(20)30616-X. [PMID: 32837872 PMCID: PMC7305746 DOI: 10.1016/j.apsb.2020.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Natural products generally fall into the biologically relevant chemical space and always possess novel biological activities, thus making them a rich source of lead compounds for new drug discovery. With the recent technological advances, natural product-based drug discovery is now reaching a new era. Natural products have also shown promise in epigenetic drug discovery, some of them have advanced into clinical trials or are presently being used in clinic. The histone lysine specific demethylase 1 (LSD1), an important class of histone demethylases, has fundamental roles in the development of various pathological conditions. Targeting LSD1 has been recognized as a promising therapeutic option for cancer treatment. Notably, some natural products with different chemotypes including protoberberine alkaloids, flavones, polyphenols, and cyclic peptides have shown effectiveness against LSD1. These natural products provide novel scaffolds for developing new LSD1 inhibitors. In this review, we mainly discuss the identification of natural LSD1 inhibitors, analysis of the co-crystal structures of LSD1/natural product complex, antitumor activity and their modes of action. We also briefly discuss the challenges faced in this field. We believe this review will provide a landscape of natural LSD1 inhibitors.
Collapse
Key Words
- AML, acute myeloid leukemia
- CCC, cut countercurrent chromatography
- CD11b, integrin alpha M
- CD14, cluster of differentiation 14
- CD86, cluster of differentiation 86
- COVID-19, coronavirus disease
- Cancer therapy
- CoREST, RE1-silencing transcription factor co-repressor
- Drug discovery
- EMT, epithelial–mesenchymal transition
- EVOO, extra virgin olive oil
- EdU, 5-ethynyl-20-deoxyuridine
- Epigenetic regulation
- FAD, flavin adenine dinucleotide
- FDA, U.S. Food and Drug Administration
- GGA, geranylgeranoic acid
- H3K4, histone H3 lysine 4
- H3K9, histone H3 lysine 9
- HDAC, histone deacetylase
- HRP, horseradish peroxidase
- Histone demethylase
- Kt, competitive inhibition constant
- LSD1 inhibitors
- LSD1, lysine-specific histone demethylase 1A
- MAO-A, monoamine oxidase A
- MHC, myosin heavy chain
- MMA, methylmalonic acid
- NAD, nicotinamide adenine dinucleotide
- NTRK2, neurotrophic receptor tyrosine kinase 2
- Natural products
- PDX, patient-derived xenograft
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SARs, structure–activity relationship studies
- SIRT1, sirtuin 1
- SOX2, sex determining region Y-box 2
- SPR, surface plasmon resonance
- TCP, tranylcypromine
- THF, tetrahydrofolate
- Tm, melting temperature
- iPS, induced pluripotent stem
- mRNA, messenger RNA
- siRNA, small interfering RNA
- ΔΨm, mitochondrial transmembrane potential
- α-MG, α-mangostin
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chao Yang
- Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Li
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
12
|
Wang L, Li L, Han Q, Wang X, Zhao D, Liu J. Identification and biological evaluation of natural product Biochanin A. Bioorg Chem 2020; 97:103674. [DOI: 10.1016/j.bioorg.2020.103674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/28/2020] [Accepted: 02/15/2020] [Indexed: 12/27/2022]
|
13
|
Li Z, Yu B. HFIP-Promoted de Novo Synthesis of Biologically Relevant Nonnatural α-Arylated Amino Esters and Dipeptide Mimetics. Chemistry 2019; 25:16528-16532. [PMID: 31617627 DOI: 10.1002/chem.201904395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Indexed: 01/24/2023]
Abstract
Amino acids are fundamental building blocks, which have been extensively used in drug design and organic synthesis. However, nonnatural amino acids are relatively less studied. In this work, the authors report the first HFIP-promoted de novo synthesis of nonnatural α-arylated amino esters and dipeptide mimetics (27 examples, up to 99 % yield) from readily available amines, ethyl glyoxylate and electron-rich arenes under mild conditions, in which one C-C bond, one C-N bond and one chiral center were established simultaneously. The reaction was also performed on a gram scale, giving compound 4 a in 96 % yield. In addition, this protocol was successfully applied to the late-stage elaboration of drug molecules, such as tranylcypromine (TCP or PCPA) and troxipide. Interestingly, compound 4 h inactivated histone lysine specific demethylase 1 (LSD1) potently with an IC50 value of 0.296 μm. To the best of our knowledge, compound 4 h is the first LSD1 inhibitor derived from nonnatural α-arylated amino esters, and therefore could be used as a hit compound for the development of new LSD1 inhibitors. The synthesized nonnatural α-arylated amino esters and dipeptide mimetics as unique building blocks may have potential synthetic utilities.
Collapse
Affiliation(s)
- Zhonghua Li
- Scientific Research Center & Laboratory Animal Center, Henan University of Chinese Medicine, 156 Jinshui East Road, 450046, Zhengzhou, Henan, P. R. China
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Avenue, 450001, Zhengzhou, Henan, P. R. China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
14
|
Fang Y, Liao G, Yu B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 2019; 12:129. [PMID: 31801559 PMCID: PMC6894138 DOI: 10.1186/s13045-019-0811-9] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP, ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies, clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
Collapse
Affiliation(s)
- Yuan Fang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|