1
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
2
|
Li L, Pan J, Huang M, Sun J, Wang C, Xu H. Metal-Phenolic Networks: A Promising Frontier in Cancer Theranostics. Int J Nanomedicine 2024; 19:11379-11395. [PMID: 39524920 PMCID: PMC11550784 DOI: 10.2147/ijn.s491421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The burgeoning field of cancer theranostics has been significantly advanced by the development of Metal-Phenolic Networks (MPNs), a new class of supramolecular architectures that integrate the advantages of metals and polyphenols. This review focuses on MPNs and their promising applications in cancer theranostics. Through a systematic literature search spanning from 2010 to 2023 in databases including PubMed, Scopus, and Web of Science. The period of search was justified by the rapid evolution of nanomaterials in cancer therapy, with MPNs emerging as a significant player in biomedical applications within the specified timeframe. This review discusses the classification and structure of polyphenolic compounds, as well as their mechanisms of action in cancer treatment. The applications of MPNs in chemotherapy drug delivery, photothermal therapy, chemodynamic therapy, biomedical imaging, and synergistic therapy are especially detailed. The authors emphasize the significance of MPNs in cancer nanomedicine and look forward to their future development directions.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Reproductive Medicine Center, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Mengwei Huang
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiamin Sun
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanjing Medical University (Changzhou No. 2 People’s Hospital), Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
3
|
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2023; 51:197-217. [PMID: 36368516 PMCID: PMC10491979 DOI: 10.1016/j.jare.2022.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Even with the advancement in the areas of cancer nanotechnology, prostate cancer still poses a major threat to men's health. Nanomaterials and nanomaterial-derived theranostic systems have been explored for diagnosis, imaging, and therapy for different types of cancer still, for prostate cancer they have not delivered at full potential because of the limitations like in vivo biocompatibility, immune responses, precise targetability, and therapeutic outcome associated with the nanostructured system. AIM OF REVIEW Functionalizing nanomaterials with different biomolecules and bioactive agents provides advantages like specificity towards cancerous tumors, improved circulation time, and modulation of the immune response leading to early diagnosis and targeted delivery of cargo at the site of action. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have emphasized the classification and comparison of various nanomaterials based on biofunctionalization strategy and source of biomolecules such that it can be used for possible translation in clinical settings and future developments. This review highlighted the opportunities for embedding highly specific biological targeting moieties (antibody, aptamer, oligonucleotides, biopolymer, peptides, etc.) on nanoparticles which can improve the detection of prostate cancer-associated biomarkers at a very low limit of detection, direct visualization of prostate tumors and lastly for its therapy. Lastly, special emphasis was given to biomimetic nanomaterials which include functionalization with extracellular vesicles, exosomes and viral particles and their application for prostate cancer early detection and drug delivery. The present review paves a new pathway for next-generation biofunctionalized nanomaterials for prostate cancer theranostic application and their possibility in clinical translation.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
4
|
Zhang J, Wang L, Ding M, You X, Wu J, Pang J. Impact of Poly(Ester Amide) Structure on Properties and Drug Delivery for Prostate Cancer Therapy. BME FRONTIERS 2023; 4:0025. [PMID: 37849660 PMCID: PMC10414751 DOI: 10.34133/bmef.0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 10/19/2023] Open
Abstract
Objective: We aim to develop a polymer library consisting of phenylalanine-based poly(ester amide)s (Phe-PEAs) for cancer therapy and investigate the structure-property relationship of these polymers to understand their impact on the drug delivery efficiency of corresponding nanoparticles (NPs). Impact Statement: Our study provides insights into the structure-property relationship of polymers in NP-based drug delivery applications and offers a potential polymer library and NP platform for enhancing cancer therapy. Introduction: Polymer NP-based drug delivery systems have demonstrated substantial potential in cancer therapy by improving drug efficacy and minimizing systemic toxicity. However, successful design and optimization of these systems require a comprehensive understanding of the relationship between polymer structure and physicochemical properties, which directly influence the drug delivery efficiency of the corresponding NPs. Methods: A series of Phe-PEAs with tunable structures was synthesized by varying the length of the methylene group in the diol part of the polymers. Subsequently, Phe-PEAs were formulated into NPs for doxorubicin (DOX) delivery in prostate cancer therapy. Results: Small adjustments in polymer structure induced the changes in the hydrophobicity and thermal properties of the PEAs, consequently NP size, drug loading capacity, cellular uptake efficacy, and cytotoxicity. Additionally, DOX-loaded Phe-PEA NPs demonstrated enhanced tumor suppression and reduced side effects in prostate tumor-bearing mice. Conclusion: Phe-PEAs, with their finely tunable structures, show great promise as effective and customizable nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Junfu Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Mengting Ding
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Mehta A. Tracking the Development of Cancer Care After 75 Years of Independence: India's Fight Against Cancer Since 1947. Indian J Surg Oncol 2022; 13:12-26. [PMID: 36691502 PMCID: PMC9859970 DOI: 10.1007/s13193-022-01689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
India is one of the fastest developing countries with tremendous growth in industrialization and healthcare facilities. Research and development in the field of healthcare improved the quality of life and well-being of our population. Despite the availability of healthcare facilities and infrastructure, we are still facing considerable challenges in the prevention, diagnosis, and treatment of cancer. The present review focuses on the history and development of cancer care facilities since independence. The advances in cancer diagnostics for early detection of cancer and developments in the field of conventional surgery, including laparoscopic and robotic surgeries, chemotherapy, and radiation therapy, are reviewed. Immunotherapy, vaccines, and selective targeting of tumor cells using nanotechnology are emerging areas in the field of cancer research.
Collapse
Affiliation(s)
- Ashok Mehta
- Nanavati Max Super Speciality Hospital, Mumbai, India
- L S Raheja Hospital, Mumbai, India
- HCG Cancer Centre Colaba, Mumbai, India
| |
Collapse
|
6
|
Iqubal MK, Kaur H, Md S, Alhakamy NA, Iqubal A, Ali J, Baboota S. A technical note on emerging combination approach involved in the onconanotherapeutics. Drug Deliv 2022; 29:3197-3212. [PMID: 36226570 PMCID: PMC9578464 DOI: 10.1080/10717544.2022.2132018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cancer is the second cause of mortality worldwide, and the currently available conventional treatment approach is associated with serious side effects and poor clinical outcomes. Based on the outcome of the exploratory preclinical and clinical studies, it was found that therapeutic response increases multiple folds when anticancer drugs are used in combination. However, the conventional combination of anticancer drugs was associated with various limitations such as increased cost of treatment, systemic toxicity, drug resistance, and reduced pharmacokinetic attributes. Hence, attempts were made to formulate nanocarrier fabricated combinatorial drugs (NFCDs) to effectively manage and treat cancer. This approach offers several advantages, such as improved stability, lower drug exposure, targeted drug delivery, low side effects, and improved clinical outcome. Hence, in this review, first time, we have discussed the recent advancement and various types of nano carrier-based combinatorial drug delivery systems in a different type of cancer and highlighted the personalized combinatorial theranostic medicine as a futuristic anticancer treatment approach.
Collapse
Affiliation(s)
- Mohammad Kashif Iqubal
- Product Development Department, Sentiss Research Centre, Sentiss Pharma Pvt Ltd, Gurugram, India.,Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Vaidya S, Jeengar MK, Wadaan MA, Mahboob S, Kumar P, Reece LM, Bathula SR, Dutta M. Design and In Vitro Evaluation of Novel Cationic Lipids for siRNA Delivery in Breast Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9231641. [PMID: 35707479 PMCID: PMC9192290 DOI: 10.1155/2022/9231641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cause of cancer mortality in Western nations, with a terrible prognosis. Many studies show that siRNA plays a role in the development of tumors by acting as a tumor suppressor and apoptosis inhibitor or both. siRNAs may be used as diagnostic and prognostic biomarkers in breast cancer. Antisurvivin siRNA was chosen as a therapeutic target in breast cancer treatment because it directly targets survivin, an inhibitor of apoptosis protein, that causes cell death. However, siRNA-based treatment has significant limitations, including a lack of tissue selectivity, a lack of effective delivery mechanisms, low cellular absorption, and the possibility of systemic toxicity. To address some of these issues, we provide a siRNA delivery method based on cationic lipids. In the recent past, cationic liposomes have displayed that they offer a remarkable perspective in proficient siRNA delivery. The presence of a positive charge plays a vital role in firm extracellular siRNA binding along with active intracellular siRNA separation and low biological adversities. Consequently, the methods for developing innovative cationic lipids through rendering and utilization of appropriate positive charges would certainly be helpful for benign and effective siRNA delivery. In the current study, an effort was made to synthesize a 3,4-dimethoxyaniline lipid (DMA) to improve the effectiveness and protection of successful siRNA delivery. DMA cationic lipid successfully delivered survivin siRNA that reduced the survivin mRNA expression, indicating the possibility of utilizing siRNA therapeutics for breast cancer. It is expected that this innovative quaternary amine-based liposome can open up new avenues in the process of developing an easy and extensively used platform for siRNA delivery. Cationic lipoplexes, a potential carrier system for siRNA-based therapies in the treatment of breast cancer, were proven by our data.
Collapse
Affiliation(s)
- Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology (IICT), Centre for Academy of Scientific and Innovative Research (AcSIR), Hyderabad 500007, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara, Kochi 682041, Kerala, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Pankaj Kumar
- Integrated Regional Office, Ministry of Environment, Forest & Climate Change (MoEFCC), Government of India, Saifabad, Hyderabad 500004, Telangana, India
| | - Lisa M. Reece
- Reece Life Science Consulting Service, 819 N Amburn Rd, Galveston, TX, USA
| | - Surender Reddy Bathula
- CSIR-Indian Institute of Chemical Technology (IICT), Centre for Academy of Scientific and Innovative Research (AcSIR), Hyderabad 500007, India
| | - Mycal Dutta
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
8
|
Hou K, Ning Z, Chen H, Wu Y. Nanomaterial Technology and Triple Negative Breast Cancer. Front Oncol 2022; 11:828810. [PMID: 35096628 PMCID: PMC8790081 DOI: 10.3389/fonc.2021.828810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a malignant breast cancer subtype that is prone to progression, with high associated metastasis and five-year mortality rates and an overall poor prognosis. Chemotherapy is usually administered to treat TNBC without additional targeted therapies. Novel nanomaterials have a variety of excellent physical and chemical properties and biological functions (including targeting specificity), and contrast agents and drug delivery vectors based on nanotechnology are progressing towards a more accurate and targeted direction. This review discusses the mechanisms of action and prospects for the use of nanotechnology in the treatment of TNBC, thus providing potential new strategies for the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng Ning
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Li Z, Huang J, Du T, Lai Y, Li K, Luo ML, Zhu D, Wu J, Huang H. Targeting the Rac1 pathway for improved prostate cancer therapy using polymeric nanoparticles to deliver of NSC23766. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.11.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Bicak B, Budama-Kilinc Y, Kecel-Gunduz S, Zorlud T, Akman G. Peptide based nano-drug candidate for cancer treatment: Preparation, characterization, in vitro and in silico evaluation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Lin W, Li C, Xu N, Watanabe M, Xue R, Xu A, Araki M, Sun R, Liu C, Nasu Y, Huang P. Dual-Functional PLGA Nanoparticles Co-Loaded with Indocyanine Green and Resiquimod for Prostate Cancer Treatment. Int J Nanomedicine 2021; 16:2775-2787. [PMID: 33880023 PMCID: PMC8052122 DOI: 10.2147/ijn.s301552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE With the advance of screening techniques, there is a growing number of low-risk or intermediate-risk prostate cancer (PCa) cases, remaining a serious threat to men's health. To obtain better efficacy, a growing interest has been attracted to develop such emerging treatments as immunotherapy and focal therapy. However, few studies offer guidance on whether and how to combine these modalities against PCa. This study was designed to develop dual-functional nanoparticles (NPs) which combined photothermal therapy (PTT) with immunotherapy and determine the anti-tumor efficacy for PCa treatment. METHODS By a double emulsion technique, the drug nanocarrier, poly(lactic-co-glycolic acid) or PLGA, was applied for co-loading of a fluorescent dye, indocyanine green (ICG) and a toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) to synthesize PLGA-ICG-R848 NPs. Next, we determined their characteristic features and evaluated whether they inhibited the cell viability in multiple PCa cell lines. After treatment with PLGA-ICG-R848, the maturation markers of bone marrow-derived dendritic cells (BMDCs) were detected by flow cytometry. By establishing a subcutaneous xenograft model of mouse PCa, we explored both the anti-tumor effect and immune response following the NPs-based laser ablation. RESULTS With a mean diameter of 157.7 nm, PLGA-ICG-R848 exhibited no cytotoxic effect in PCa cells, but they significantly decreased RM9 cell viability to (3.9±1.0)% after laser irradiation. Moreover, PLGA-ICG-R848 promoted BMDCs maturation with the significantly elevated proportions of CD11c+CD86+ and CD11c+CD80+ cells. Following PLGA-ICG-R848-based laser ablation in vivo, the decreased bioluminescent signals indicated a significant inhibition of PCa growth, while the ratio of splenic natural killer (NK) cells in PLGA-ICG-R848 was (3.96±1.88)% compared with (0.99±0.10)% in PBS group, revealing the enhanced immune response against PCa. CONCLUSION The dual-functional PLGA-ICG-R848 NPs under laser irradiation exhibit the anti-tumor efficacy for PCa treatment by combining PTT with immunotherapy.
Collapse
Affiliation(s)
- Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chaoming Li
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Ruizhi Xue
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, People’s Republic of China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Okayama Medical Innovation Center, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Targeting therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies. J Control Release 2021; 333:41-64. [PMID: 33450321 DOI: 10.1016/j.jconrel.2021.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
For the past few years, nanotechnology has provided a lot of new treatment opportunities for prostate cancer patients, and brilliant achievements have been acquired indeed. It not only prolonged circulation time in vivo but also increased bio-availability of drugs. Among them, nanoparticles with specificity ligand can be better targeted at prostate cancer, which improves the curative effect and reduces side effects. What's more, in terms of combined administration, the synergistic effect of chemotherapeutic drugs and hormones, or co-delivery two or more different drugs into the same delivery system, has achieved good therapeutic progress as well. In this paper, a comprehensive overview of nano-technology and the combination therapy for prostate cancer by pharmaceutical and clinical pharmaceutical strategies have been proposed to further appreciate and recommend the design and development of prostate cancer treatment.
Collapse
|
14
|
Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/β-catenin pathway. Cancer Cell Int 2020; 20:571. [PMID: 33292272 PMCID: PMC7694907 DOI: 10.1186/s12935-020-01665-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Prostate cancer (PC) is common male cancer with high mortality worldwide. Emerging evidence demonstrated that long noncoding RNAs (lncRNAs) play critical roles in various type of cancers including PC by serving as competing endogenous RNAs (ceRNAs) to modulate microRNAs (miRNAs). LncRNA activated by DNA damage (NORAD) was found to be upregulated in PC cells, while the detailed function and regulatory mechanism of NORAD in PC progression remains largely unclear. Methods Expression of NORAD in PC tissues and cell lines were detected by real-time quantitative PCR (qRT-PCR). NORAD was respectively overexpressed and knocked down by transfection with pcDNA-NORAD and NORAD siRNA into PC-3 and LNCap cells. Cell proliferation, invasion and apoptosis were determined by using CCK-8, Transwell and Flow cytometry assays, respectively. The target correlations between miR-30-5p and NORAD or RAB11A were confirmed by using dual luciferase reporter assay. Moreover, expression levels of RAB11A, the epithelial-mesenchymal transition (EMT) marker proteins and the Wnt pathway related proteins were measured by Western blotting. Tumor xenograft assay was used to study the effect of NORAD on tumor growth in vivo. Results NORAD was upregulated in PC tissues and cells. Overexpression of NORAD promoted cell proliferation, invasion, EMT, and inhibited cell apoptosis; while knockdown of NORAD had the opposite effect. NORAD was found to be functioned as a ceRNA to bind and downregulated miR-30a-5p that was downregulated in PC tumor tissues. Rescue experiments revealed that miR-30a-5p could weaken the NORAD-mediated promoting effects on cell proliferation, invasion and EMT. Furthermore, RAB11A that belongs to a member of RAS oncogene family was verified as a target of miR-30a-5p, and reintroduction of RAB11A attenuated the effects of miR-30a-5p overexpression on cell proliferation, invasion, EMT and apoptosis of PC cells. More importantly, silencing RAB11A partially reversed the promoting effects of NORAD overexpression on cell proliferation, invasion and EMT of PC cells via the WNT/β-catenin pathway. Lastly, tumorigenicity assay in vivo demonstrated that NORAD increased tumor volume and weight via miR-30a-5p /RAB11A pathway. Conclusion Our results indicated a significant role of NORAD in mechanisms associated with PC progression. NORAD promoted cell proliferation, invasion and EMT via the miR-30a-5p/RAB11A/WNT/β-catenin pathway, thus inducing PC tumor growth.
Collapse
Affiliation(s)
- Yunxia Zhang
- Department of Nursing, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China.
| | - Yang Li
- The Second Ward, Department of Urinary Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, People's Republic of China
| |
Collapse
|
15
|
Zhao Q, Sun XY, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Construction of biomimetic silver nanoparticles in the treatment of lymphoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111648. [PMID: 33321684 DOI: 10.1016/j.msec.2020.111648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Lymphoma is a well-known malignant tumor in the human body. Although many anticancer drugs have been developed to improve the survival rate of patients, about 40% of patients continue to be recurrent or refractory, a key issue needing remedy. Therefore, it is necessary to identify alternative treatments to reduce the disease's mortality. To this effect, a new type of anti-lymphoma nanocomplex FA@RBCm-AgNPs was prepared using AgNPs as the core of nanoparticles along with the targeting molecule folic acid inserted erythrocyte membrane as the shell. The biomimetic properties of red blood cell membrane (RBCm) endow F-RAN with good biocompatibility as well as the ability to evade clearance of the reticuloendothelial system. In addition, F-RAN was modified with folic acid to actively and selectively identify tumor cells. In vivo and in vitro experiments demonstrate that F-RAN can inhibit lymphoma cells and induce apoptosis of stem cells while promoting apoptosis of lymphoma with no obvious side effects. Hence, F-RAN may serve as a new treatment for lymphoma.
Collapse
Affiliation(s)
- Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China; Department of Hematology, The Qinghai Provincial People's Hospital, Xining 810007, PR China
| | - Xiao Ying Sun
- Nursing School, Soochow University, Suzhou 215000, PR China; Department of Emergency, The Qinghai Provincial People's Hospital, Xining 810007, PR China
| | - Bin Wu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China.
| |
Collapse
|
16
|
Tariq H, Bokhari SAI. Surface-functionalised hybrid nanoparticles for targeted treatment of cancer. IET Nanobiotechnol 2020; 14:537-547. [PMID: 33010128 PMCID: PMC8676046 DOI: 10.1049/iet-nbt.2020.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Despite the great advancement in understanding the pharmacology and biology of cancer, it still signifies one of the most serious human-health related problems. The current treatments for cancer may include surgery, radiotherapy, and chemotherapy, but these procedures have several limitations. Current studies have shown that nanoparticles (NPs) can be used as a novel strategy for cancer treatment. Developing nanosystems that allow lower doses of therapeutic agents, as well as their selective release in tumour cells, may resolve the challenges of targeted cancer therapy. In this review, the authors discuss the role of the size, shape, and surface modifications of NPs in cancer treatment. They also address the challenges associated with cancer therapies based on NPs. The overall purpose of this review is to summarise the recent developments in designing different hybrid NPs with promising therapeutic properties for different types of cancer.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Ali Imran Bokhari
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
17
|
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1696. [PMID: 32872181 PMCID: PMC7559844 DOI: 10.3390/nano10091696] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The fabrication and development of nanomaterials for the treatment of prostate cancer have gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted in greater biocompatibility and active targeting at cancer site. Despite all of the advances made over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa), PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been made over the past decade to design new biosensor-based strategies for biomolecules detection and PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to find a way to solve one of the most and long-standing problem, "early cancer detection". For early diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used. In this review, we provide a brief description of the latest achievements and advances in the use of nanoparticles for PCa biomarker diagnosis.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
18
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193/bibtex] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 PMCID: PMC7468194 DOI: 10.3389/fmolb.2020.00193] [Citation(s) in RCA: 512] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Panda PK, Saraf S, Tiwari A, Verma A, Raikwar S, Jain A, Jain SK. Novel Strategies for Targeting Prostate Cancer. Curr Drug Deliv 2020; 16:712-727. [PMID: 31433757 DOI: 10.2174/1567201816666190821143805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/24/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PCa) is a worldwide issue, with a rapid increase in its occurrence and mortality. Over the years, various strategies have been implemented to overcome the hurdles that exist in the treatment of PCa. Consistently, there is a change in opinion about the methodologies in clinical trial that have engrossed towards the treatment of PCa. Currently, there is a need to resolve these newly recognized challenges by developing newer rational targeting systems. The ongoing clinical protocol for the therapy using different targeting systems is undertaken followed by local targeting to cancer site. A number of new drug targeting systems like liposomes, nanoemulsions, magnetic nanoparticles (MNPs), solid lipid nanoparticles, drug-peptide conjugate systems, drug-antibody conjugate systems, epigenetic and gene therapy approaches, and therapeutic aptamers are being developed to suit this protocol. Recent advancements in the treatment of PCa with various nanocarriers have been reported with respect to newly identified biological barriers and intended to solve the contexts. This review encompasses the input of nanotechnology in particular targeting of PCa which might escape the lifethreatening side effects and potentially contribute to bring fruitful clinical outcomes.
Collapse
Affiliation(s)
- Pritish Kumar Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Sarjana Raikwar
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| | - Ankit Jain
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura (U.P.), 281 406, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Central University, Sagar (M.P.), 470 003, India
| |
Collapse
|
21
|
Fang Y, Lin S, Yang F, Situ J, Lin S, Luo Y. Aptamer-Conjugated Multifunctional Polymeric Nanoparticles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems for Treatment of Castration-Resistant Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9186583. [PMID: 32420382 PMCID: PMC7201588 DOI: 10.1155/2020/9186583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/30/2020] [Indexed: 02/05/2023]
Abstract
Nanoscopic therapeutic systems that incorporate therapeutic agents, molecular targeting, and imaging capabilities have gained momentum and exhibited significant therapeutic potential. In this study, multifunctional polymeric nanoparticles with controlled drug delivery, cancer-targeted capability, and efficient magnetic resonance imaging (MRI) contrast characteristics were formulated and applied in the treatment of castration-resistant prostate cancer (CRPC). The "core-shell" targeted nanoparticles (NPs) were synthesized by the self-assembly of a prefunctionalized amphiphilic triblock copolymer composed of poly(lactic-co-glycolic-acid) (PLGA), polyethylene glycol (PEG), and the Wy5a aptamer (Apt), which have been screened for targeting the CRPC cell line PC-3 by cell-SELEX technique as described in our previous study. Docetaxel (Dtxl) and a cluster of hydrophobic superparamagnetic iron oxide (SPIO) nanoparticles were simultaneously encapsulated into the targeted nanoparticles. The targeted NPs showed a controlled drug release and an increased contrast-enhanced MRI capability. The presence of Wy5a on the nanoparticle surface resulted in the cancer-targeted delivery to PC-3 cells in vitro and in vivo. In vitro MRI and cytotoxicity studies demonstrated the ultrasensitive MRI and increased cytotoxicity of these targeted NPs. In vivo studies revealed that the targeted NPs exhibited a more efficacious antitumor capability without significant systemic toxicity. Our data suggested that these targeted NPs may be a promising drug delivery system for the efficacious treatment of CRPC.
Collapse
Affiliation(s)
- Youqiang Fang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shaoxiong Lin
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jie Situ
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
22
|
Xia Q, Li J, Yang Z, Zhang D, Tian J, Gu B. Long non-coding RNA small nucleolar RNA host gene 7 expression level in prostate cancer tissues predicts the prognosis of patients with prostate cancer. Medicine (Baltimore) 2020; 99:e18993. [PMID: 32049793 PMCID: PMC7035107 DOI: 10.1097/md.0000000000018993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Long non-coding small nucleolar RNA host gene 7 (lncRNA SNHG7) is located on chromosome 9q34.3 in length of 984 bp. SNHG7 has been found to play the role of oncogene in varieties of cancers, and its dysregulation has been found to be associated with carcinogenesis and progression. In the present study, we examined the expression of SNHG7 in prostate cancer tissues and in paired adjacent normal prostate tissues, and we further explored the clinical significance and prognostic value of SNHG7 in prostate cancer patients.A total of 127 prostate cancer tissues were collected from prostate cancer patients who underwent radical prostatectomy between April 2011 and March 2019 at the department of urology, Pudong New Area People's Hospital. Real-time quantitative polymerase chain reaction experiment was performed to detect the relative expressions of SNHG7 in the prostate cancer tissues and normal prostate tissues. The Kaplan-Meier method was used to create survival curves and the log-rank test was used to determine statistical significance. A Cox proportional hazard analysis was used to evaluate the prognostic factors in univariate and multivariate analyses.Compared with paired adjacent normal prostatic tissues, SNHG7 expression was increased in prostate cancer tissues (P < .001). Increased SNHG7 expression correlated with Gleason score (P = .021), bone metastasis (P = .013), pelvic lymph node metastasis (P = .008), and TNM stage (P = .007). Multivariate Cox regression analyses revealed increased SNHG7 expression was independently associated with a poor prognosis of prostate cancer patients (hazard ratio [HR] = 2.839, 95% confidence interval [CI] = 1.921-8.382, P = .038).This study showed that lncRNA-SNHG7 was overexpressed in prostate cancer tissues, and it might contributes to the development and progression of prostate cancer. Furthermore, the SNHG7 expression was associated with the prognosis of prostate cancer, suggesting a potential target for the treatment and prognosis of prostate cancer. Nevertheless, the underlying modulatory mechanism by which SNHG7 aggravates prostate cancer progression need to be further studied.
Collapse
|
23
|
Han S, Huang K, Gu Z, Wu J. Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. NANOSCALE 2020; 12:413-436. [PMID: 31829394 DOI: 10.1039/c9nr08086d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The past years have witnessed promising clinical feedback for anti-cancer immunotherapies, which have become one of the hot research topics; however, they are limited by poor delivery kinetics, narrow patient response profiles, and systemic side effects. To the best of our knowledge, the development of cancer is highly associated with the immune system, especially the tumor immune microenvironment (TIME). Based on the comprehensive understanding of the complexity and diversity of TIME, drug delivery strategies focused on the modulation of TIME can be of great significance for directing and improving cancer immunotherapy. This review highlights the TIME modulation in cancer immunotherapy and summarizes the versatile TIME modulation-based cancer immunotherapeutic strategies, medicative principles and accessory biotechniques for further clinical transformation. Remarkably, the recent advances of cancer immunotherapeutic drug delivery systems and future prospects of TIME modulation-based drug delivery systems for much more controlled and precise cancer immunotherapy will be emphatically discussed.
Collapse
Affiliation(s)
- Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China.
| | | | | | | |
Collapse
|
24
|
Duan X, Yang X, Li C, Song L. Highly Water-Soluble Methotrexate-Polyethyleneglycol-Rhodamine Prodrug Micelle for High Tumor Inhibition Activity. AAPS PharmSciTech 2019; 20:245. [PMID: 31286294 DOI: 10.1208/s12249-019-1462-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Highly water-soluble prodrug micelle (50-fold compared with free MTX) of methotrexate-polyethyleneglycol-rhodamine (MTX-PEG-rhodamine) and MTX-mPEG was synthesized by the esterification reaction. The stability of the prodrug micelles was evaluated in phosphate buffer saline (PBS) with 10% fetal bovine serum (FBS). The tumor volume of the saline, MTX, and MTX-PEG-rhodamine groups was increased 3.7-fold, 2.8-fold, and 1.8-fold, respectively, compared with the initial tumor volume. TUNEL and drug distribution results further confirmed that the micelle of MTX-PEG-rhodamine possessed fewer side effects on the normal tissue compared with MTX. The prodrug micelle showed four advantages: retention of the drug activity site, higher water solubility of methotrexate (MTX), ease of preparation and application, and preferential accumulation in tumor tissues. These advantages of MTX-mPEG make it a promising drug delivery system (DDS) for clinical use.
Collapse
|
25
|
Park SE, Shamloo K, Kristedja TA, Darwish S, Bisoffi M, Parang K, Tiwari RK. EDB-FN Targeted Peptide-Drug Conjugates for Use against Prostate Cancer. Int J Mol Sci 2019; 20:3291. [PMID: 31277465 PMCID: PMC6651341 DOI: 10.3390/ijms20133291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men and is the leading cause of cancer-related male mortality. A disulfide cyclic peptide ligand [CTVRTSADC] 1 has been previously found to target extra domain B of fibronectin (EDB-FN) in the extracellular matrix that can differentiate aggressive PCa from benign prostatic hyperplasia. We synthesized and optimized the stability of ligand 1 by amide cyclization to obtain [KTVRTSADE] 8 using Fmoc/tBu solid-phase chemistry. Optimized targeting ligand 8 was found to be stable in phosphate buffered saline (PBS, pH 6.5, 7.0, and 7.5) and under redox conditions, with a half-life longer than 8 h. Confocal microscopy studies demonstrated increased binding of ligand 8 to EDB-FN compared to ligand 1. Therefore, we hypothesized that the EDB-FN targeted peptides (1 and 8) conjugated with an anticancer drug via a hydrolyzable linker would provide selective cytotoxicity to the cancer cells. To test our hypothesis, we selected both the normal prostate cell line, RWPE-1, and the cancerous prostate cell lines, PC3, DU-145, LNCaP, and C4-2, to evaluate the anticancer activity of synthesized peptide-drug conjugates. Docetaxel (Doce) and doxorubicin (Dox) were used as anticancer drugs. Dox conjugate 13 containing disulfide linkage showed comparable cytotoxicity versus Dox after 72 h incubation in all the cancer cell lines, whereas it was found to be less cytotoxic on RWPE-1, suggesting that it can act as a Dox prodrug. Doce conjugate 14 was found to be less cytotoxic in all the cell lines as compared to drug alone.
Collapse
Affiliation(s)
- Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Kiumars Shamloo
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Timothy A Kristedja
- Biochemistry and Molecular Biology, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Shaban Darwish
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
- Organometallic and Organometalloid Chemistry Department, Chemical Industries Research Division, National Research Centre, 33 EL Bohouth St. (former EL Tahrir st.) Dokki, Giza 12622, Egypt
| | - Marco Bisoffi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
- Biochemistry and Molecular Biology, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA 92618, USA.
| |
Collapse
|
26
|
Shen G, Li Y, Zhao L, Wu H. Functional Peptides and Small Molecules in Medicinal Chemistry-Part I. Curr Top Med Chem 2019; 19:2-3. [PMID: 30942146 DOI: 10.2174/156802661901190326145944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Guohua Shen
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu (610041), China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu (610065), China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, United States
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu (610041), China
| |
Collapse
|