1
|
Behl T, Gupta A, Sehgal A, Albarrati A, Albratty M, Meraya AM, Najmi A, Bhatia S, Bungau S. Exploring protein tyrosine phosphatases (PTP) and PTP-1B inhibitors in management of diabetes mellitus. Biomed Pharmacother 2022; 153:113405. [DOI: 10.1016/j.biopha.2022.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022] Open
|
2
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
3
|
Qian L, Wang Q, Wei C, Wang L, Yang Y, Deng X, Liu J, Qi F. Protein tyrosine phosphatase 1B regulates fibroblasts proliferation, motility and extracellular matrix synthesis via the MAPK/ERK signalling pathway in keloid. Exp Dermatol 2021; 31:202-213. [PMID: 34370343 DOI: 10.1111/exd.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Keloid is a fibroproliferative disorder resulting from trauma, characterized by abnormal activation of keloid fibroblasts and excessive deposition of extracellular matrix (ECM). It affects life quality of patients and lacks of effective therapeutic targets. Protein tyrosine phosphatase 1B (PTP1B) belongs to the protein tyrosine phosphatases and participates in many cellular processes such as metabolism, proliferation and motility. It has been reported that PTP1B negatively regulated diabetic wound healing and tumor progression. However, its effects in keloid remain unclear. Here, we aimed to evaluate the effects of PTP1B on keloid fibroblasts which play essential roles in keloids pathogenesis. Our results revealed that PTP1B expression was decreased both in keloid tissues and in keloid fibroblasts compared to healthy controls. Keloid fibroblasts (KFs) showed higher cell proliferation, motility, ECM production and ERK activity than normal fibroblasts (NFs). Overexpression of PTP1B in KFs and NFs inhibited cell proliferation, motility, ECM synthesis and the MAPK/ERK signalling pathway while knockdown of PTP1B showed converse effects. The rescue experiments with ERK inhibitor further verified that MAPK/ERK signalling pathway involved in PTP1B regulatory network. Taken together, our findings indicated that overexpression of PTP1B suppressed keloid fibroblasts bio-behaviours and promoted their phenotype switch to normal cells via inhibiting the MAPK/ERK signalling pathway, suggesting it may be a potential anti-keloid therapy.
Collapse
Affiliation(s)
- Leqi Qian
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Deng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Geronikaki A, Petrou A, Kartsev V, Eleftheriou P, Boga R, Bartolo B, Crespan E, Franco G, Maga G. Molecular docking, design, synthesis and biological evaluation of novel 2,3-aryl-thiazolidin-4-ones as potent NNRTIs. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:697-714. [PMID: 31542957 DOI: 10.1080/1062936x.2019.1653364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) remain the most promising anti-AIDS agents that target the HIV-1 reverse transcriptase enzyme (RT). However, the efficiency of approved NNRTI drugs has decreased by the appearance of drug-resistant viruses and side effects upon long-term usage. Thus, there is an urgent need for developing new, potent NNRTIs with broad spectrum against HIV-1 virus and with improved properties. In this study, a series of thiazolidinone derivatives was designed based on a butterfly mimicking scaffold consisting of a substituted benzothiazolyl moiety connected with a substituted phenyl ring via a thiazolidinone moiety. The most promising derivatives were selected using molecular docking analysis and PASS prediction program, synthesized and evaluated for HIV-1 RT inhibition. Five out of fifteen tested compounds exhibited good inhibitory action. It was observed that the presence of Cl or CN substituents at the position 6 of the benzothiazole ring in combination with two fluoro atoms at the ortho-positions or a hydrogen acceptor substituent at the 4-position of the phenyl ring are favourable for the HIV RT inhibitory activity.
Collapse
Affiliation(s)
- A Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - A Petrou
- School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | | | - P Eleftheriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University , Thessaloniki , Greece
| | - R Boga
- BogaR Laboratories LLC , Suwanee , USA
| | - B Bartolo
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| | - E Crespan
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| | - G Franco
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| | - G Maga
- Faculty of Sciences, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" IGM-CNR , Pavia , Italy
| |
Collapse
|
5
|
Geronikaki A. Trends in Enzyme Inhibition and Activation in Drug Design - Part II. Curr Top Med Chem 2019; 19:317-318. [DOI: 10.2174/156802661905190418152713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Athina Geronikaki
- School of Health, Faculty of Pharmacy Aristotle University of Thessaloniki Thessaloniki 54124, Greece
| |
Collapse
|