1
|
Ajmal A, Shahab M, Waqas M, Zheng G, Zulfat M, Bin Jardan YA, Wondmie GF, Bourhia M, Ali I. In silico design of peptide inhibitors for Dengue virus to treat Dengue virus-associated infections. Sci Rep 2024; 14:13130. [PMID: 38849372 PMCID: PMC11161489 DOI: 10.1038/s41598-024-63064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Dengue virus is a single positive-strand RNA virus that is composed of three structural proteins including capsid, envelope, and precursor membrane while seven non-structural proteins (NS1, NS2A, NS2B, NS3A, NS3B, NS4, and NS5). Dengue is a viral infection caused by the dengue virus (DENV). DENV infections are asymptomatic or produce only mild illness. However, DENV can occasionally cause more severe cases and even death. There is no specific treatment for dengue virus infections. Therapeutic peptides have several important advantages over proteins or antibodies: they are small in size, easy to synthesize, and have the ability to penetrate the cell membranes. They also have high activity, specificity, affinity, and less toxicity. Based on the known peptide inhibitor, the current study designs peptide inhibitors for dengue virus envelope protein using an alanine and residue scanning technique. By replacing I21 with Q21, L14 with H14, and V28 with K28, the binding affinity of the peptide inhibitors was increased. The newly designed peptide inhibitors with single residue mutation improved the binding affinity of the peptide inhibitors. The inhibitory capability of the new promising peptide inhibitors was further confirmed by the utilization of MD simulation and free binding energy calculations. The molecular dynamics simulation demonstrated that the newly engineered peptide inhibitors exhibited greater stability compared to the wild-type peptide inhibitors. According to the binding free energies MM(GB)SA of these developed peptides, the first peptide inhibitor was the most effective against the dengue virus envelope protein. All peptide derivatives had higher binding affinities for the envelope protein and have the potential to treat dengue virus-associated infections. In this study, new peptide inhibitors were developed for the dengue virus envelope protein based on the already reported peptide inhibitor.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Shahab
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, 616, Nizwa, Oman
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Maryam Zulfat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
2
|
Zerihun M, Rubin SJS, Silnitsky S, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part II: Peptides as Allosteric Protein Kinase C Modulators Targeting Protein-Protein Interactions. Int J Mol Sci 2023; 24:17504. [PMID: 38139336 PMCID: PMC10743673 DOI: 10.3390/ijms242417504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Human protein kinases are highly-sought-after drug targets, historically harnessed for treating cancer, cardiovascular disease, and an increasing number of autoimmune and inflammatory conditions. Most current treatments involve small molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP-binding pocket. As a result, these compounds are often poorly selective and highly toxic. Part I of this series reviews the role of PKC isoforms in various human diseases, featuring cancer and cardiovascular disease, as well as translational examples of PKC modulation applied to human health and disease. In the present Part II, we discuss alternative allosteric binding mechanisms for targeting PKC, as well as novel drug platforms, such as modified peptides. A major goal is to design protein kinase modulators with enhanced selectivity and improved pharmacological properties. To this end, we use molecular docking analysis to predict the mechanisms of action for inhibitor-kinase interactions that can facilitate the development of next-generation PKC modulators.
Collapse
Affiliation(s)
- Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed 1311502, Israel; (M.Z.); (S.S.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed 1311502, Israel; (M.Z.); (S.S.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed 1311502, Israel; (M.Z.); (S.S.)
| |
Collapse
|
3
|
Gao J, Pang X, Zhang L, Li S, Qin Z, Xie X, Liu J. Transcriptome analysis reveals the neuroprotective effect of Dlg4 against fastigial nucleus stimulation-induced ischemia/reperfusion injury in rats. BMC Neurosci 2023; 24:40. [PMID: 37525090 PMCID: PMC10391810 DOI: 10.1186/s12868-023-00811-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that electrical stimulation of the cerebellar fastigial nucleus (FNS) can considerably decrease infarction volume and improve neurofunction restoration following cerebral ischemia. Nevertheless, the molecular mechanism of the neuroprotective effect of FNS is still vague. METHODS In this study, we developed a rat model of ischemia/reperfusion that included 1 h FNS followed by reperfusion for 3, 6, 12, 24, and 72 h. The expression profile of molecular alterations in brain tissues was obtained by transcriptome sequencing at five different time points. The function and pathway of miRNA expression pattern and core genes were annotated by Allen Brain Atlas, STRING database and Cytoscape software, so as to explore the mechanism of FNS-mediated neuroprotection. RESULTS The results indicated that FNS is associated with the neurotransmitter cycle pathway. FNS may regulate the release of monoamine neurotransmitters in synaptic vesicles by targeting the corresponding miRNAs through core Dlg4 gene, stimulate the Alternative polyadenylation (APA) incident's anti -apoptosis effect on the brain, and stimulate the interaction activation of neurons in cerebellum, cortex/thalamus and other brain regions, regulate neurovascular coupling, and reduce cerebral damage. CONCLUSION FNS may activate neuronal and neurovascular coupling by regulating the release of neurotransmitters in synaptic vesicles through the methylation of core Dlg4 gene and the corresponding transcription factors and protein kinases, inducing the anti-apoptotic mechanism of APA events. The findings from our investigation offer a new perspective on the way brain tissue responds to FNS-driven neuroprotection.
Collapse
Affiliation(s)
- Jinggui Gao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiaomin Pang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Shenghua Li
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiaoyun Xie
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China.
| |
Collapse
|
4
|
Choi J. Narrow funnel-like interaction energy distribution is an indicator of specific protein interaction partner. iScience 2023; 26:106911. [PMID: 37305691 PMCID: PMC10250834 DOI: 10.1016/j.isci.2023.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Protein interaction networks underlie countless biological mechanisms. However, most protein interaction predictions are based on biological evidence that are biased to well-known protein interaction or physical evidence that exhibits low accuracy for weak interactions and requires high computational power. In this study, a novel method has been suggested to predict protein interaction partners by investigating narrow funnel-like interaction energy distribution. In this study, it was demonstrated that various protein interactions including kinases and E3 ubiquitin ligases have narrow funnel-like interaction energy distribution. To analyze protein interaction distribution, modified scores of iRMS and TM-score are introduced. Then, using these scores, algorithm and deep learning model for prediction of protein interaction partner and substrate of kinase and E3 ubiquitin ligase were developed. The prediction accuracy was similar to or even better than that of yeast two-hybrid screening. Ultimately, this knowledge-free protein interaction prediction method will broaden our understanding of protein interaction networks.
Collapse
Affiliation(s)
- Juyoung Choi
- Department of Life Science, Sogang University, Seoul 04017, South Korea
| |
Collapse
|
5
|
Samad A, Khurshid B, Mahmood A, Rehman AU, Khalid A, Abdalla AN, Algarni AS, Wadood A. Identification of novel peptide inhibitors for oncogenic KRAS G12D as therapeutic options using mutagenesis-based remodeling and MD simulations. J Biomol Struct Dyn 2023; 41:13425-13437. [PMID: 37010994 DOI: 10.1080/07391102.2023.2192298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/22/2023] [Indexed: 04/04/2023]
Abstract
The Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) serves as a molecular switch, cycling between guanosine triphosphate (GTP)-bound and inactive guanosine diphosphate (GDP)-bound states. KRAS modulates numerous signal transduction pathways including the conventional RAF-MEK-ERK pathway. Mutations in the RAS genes have been linked to the formation of malignant tumors. Human malignancies typically show mutations in the Ras gene including HRAS, KRAS, and NRAS. Among all the mutations in exon 12 and exon 13 of the KRAS gene, the G12D mutation is more prevalent in pancreatic and lung cancer and accounts for around 41% of all G12 mutations, making them potential anticancer therapeutic targets. The present study is aimed at repurposing the peptide inhibitor KD2 of the KRAS G12D mutant. We employed an in-silico mutagenesis approach to design novel peptide inhibitors from the experimentally reported peptide inhibitor, and it was found that substitutions (N8W, N8I, and N8Y) might enhance the peptide's binding affinity toward the KRAS. Molecular dynamics simulations and binding energy calculations confirmed that the newly designed peptide inhibitors are stable and that their binding affinities are stronger as compared to the wild-type peptide. The detailed analysis revealed that newly designed peptides have the potential to inhibit KRAS/Raf interaction and the oncogenic signal of the KRAS G12D mutant. Our findings strongly suggest that these peptides should be tested and clinically validated to combat the oncogenic activity of KRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California, USA
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
6
|
Zhou M, Ren G, Zhang B, Ma F, Fan J, Qiu Z. Screening and identification of a novel antidiabetic peptide from collagen hydrolysates of Chinese giant salamander skin: Network pharmacology, inhibition kinetics and protection of IR-HepG2 cells. Food Funct 2022; 13:3329-3342. [DOI: 10.1039/d1fo03527d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel peptide GPPGPA was screened from the collagen hydrolysates of Chinese giant salamander (Andrias davidianus) skin, and anti-diabetes mechanism was predicted by network pharmacology, and inhibitory...
Collapse
|
7
|
Wang B, Wu H, Hu C, Wang H, Liu J, Wang W, Liu Q. An overview of kinase downregulators and recent advances in discovery approaches. Signal Transduct Target Ther 2021; 6:423. [PMID: 34924565 PMCID: PMC8685278 DOI: 10.1038/s41392-021-00826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Since the clinical approval of imatinib, the discovery of protein kinase downregulators entered a prosperous age. However, challenges still exist in the discovery of kinase downregulator drugs, such as the high failure rate during development, side effects, and drug-resistance problems. With the progress made through multidisciplinary efforts, an increasing number of new approaches have been applied to solve the above problems during the discovery process of kinase downregulators. In terms of in vitro and in vivo drug evaluation, progress was also made in cellular and animal model platforms for better and more clinically relevant drug assessment. Here, we review the advances in drug design strategies, drug property evaluation technologies, and efficacy evaluation models and technologies. Finally, we discuss the challenges and perspectives in the development of kinase downregulator drugs.
Collapse
Affiliation(s)
- Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Haizhen Wang
- Hefei PreceDo pharmaceuticals Co., Ltd, Hefei, Anhui, 230088, People's Republic of China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
8
|
Carrasco E, Gomez-Gutierrez P, Campos PM, Messeguer A, Perez JJ, Vega M. Structure-Activity Studies of Novel di-substituted [1,2,5]oxadiazolo[3,4-b]pyrazine Analogs Targeting the A-loop Regulatory Site of p38 MAP Kinase. Curr Med Chem 2021; 29:1640-1653. [PMID: 34931978 DOI: 10.2174/0929867328666210712165659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In the quest for novel allosteric inhibitors of the p38 MAP kinase, we recently described the A-loop regulatory site, identified through molecular modeling studies together with the disclosure of a small molecule hit with a moderate inhibitory profile. Starting from this structure, we subsequently identified two additional hits with simpler molecular structures from an in silico screening study, using a substructure search in the SciFinder database. After corroboration of their inhibitory profile, analysis of their structures permitted to conclude about the suitability of the [1,2,5]oxadiazolo[3,4-b]pyrazine (furazano[3,4-b]pyrazine) scaffold for the development of potent A-loop regulatory site p38 MAP kinase inhibitors. Accordingly, we report the synthesis and pharmacological evaluation of a series of di-substituted analogs with a potent inhibitory profile of p38 MAP kinase, as shown by in vitro assays of their capability to inhibit IL-1β secretion in human monocyte-derived macrophages. BACKGROUND In the quest for novel allosteric inhibitors of the p38 MAP kinase, we recently described the A-loop regulatory site, identified through molecular modeling studies together with the disclosure of a small molecule hit with a moderate inhibitory profile. OBJECTIVE To find small molecule potent inhibitors of the p38 MAP kinase A-loop regulatory site. METHODS Starting from this structure, we subsequently identified two additional hits with simpler molecular structures from an in silico screening study, using a substructure search in the SciFinder database. After corroboration of their inhibitory profile, we carried out a hit-to-lead optimization process guided by molecular modeling using a [1,2,5]oxadiazolo[3,4-b]pyrazine (furazano[3,4-b]pyrazine) scaffold. RESULTS We report the synthesis and pharmacological evaluation of a series of di-substituted analogs with a potent inhibitory profile of p38 MAP kinase, as shown by in vitro assays of their capability to inhibit IL-1β secretion in human monocyte-derived macrophages. CONCLUSIONS We describe in the present work a series of [1,2,5]oxadiazolo[3,4-b]pyrazine (furazano[3,4-b]pyrazine), potent inhibitors of IL-1β secretion in human monocyte-derived macrophages allosteric modulators of the p38 MAP kinase A-loop regulatory site.
Collapse
Affiliation(s)
- Esther Carrasco
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049 Madrid, Spain
| | | | - Pedro M Campos
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049 Madrid, Spain
| | - Angel Messeguer
- IQAC CSIC, Institute of Advanced Chemistry of Catalonia, Dept. Biol. Chem., Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Juan Jesus Perez
- Dept. of Chemical Engineering, Universitat Politecnica de Catalunya, 08028 Barcelona, Spain
| | - Miguel Vega
- Allinky Biopharma, Campus de Cantoblanco, Faraday 7, 28049 Madrid, Spain
| |
Collapse
|
9
|
Li M, Yan Y, Zhang X, Zhang Y, Xu X, Zhang L, Lu L, Wang J, Zhang Y, Song Q, Zhao C. Scaffold compound L971 exhibits anti-inflammatory activities through inhibition of JAK/STAT and NFκB signalling pathways. J Cell Mol Med 2021; 25:6333-6347. [PMID: 34018320 PMCID: PMC8256347 DOI: 10.1111/jcmm.16609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
JAK/STAT and NFκB signalling pathways play essential roles in regulating inflammatory responses, which are important pathogenic factors of various serious immune-related diseases, and function individually or synergistically. To find prodrugs that can treat inflammation, we performed a preliminary high-throughput screening of 18 840 small molecular compounds and identified scaffold compound L971 which significantly inhibited JAK/STAT and NFκB driven luciferase activities. L971 could inhibit the constitutive and stimuli-dependent activation of STAT1, STAT3 and IκBα and could significantly down-regulate the proinflammatory gene expression in mouse peritoneal macrophages stimulated by LPS. Gene expression profiles upon L971 treatment were determined using high-throughput RNA sequencing, and significant differentially up-regulated and down-regulated genes were identified by DESeq analysis. The bioinformatic studies confirmed the anti-inflammatory effects of L971. Finally, L971 anti-inflammatory character was further verified in LPS-induced sepsis shock mouse model in vivo. Taken together, these data indicated that L971 could down-regulate both JAK/STAT and NFκB signalling activities and has the potential to treat inflammatory diseases such as sepsis shock.
Collapse
Affiliation(s)
- Mengyuan Li
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Yu Yan
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & EvaluationQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Yidan Zhang
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Xiaohan Xu
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Lei Zhang
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Liangliang Lu
- School of Life ScienceLanzhou UniversityLanzhouChina
| | - Jie Wang
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Yazhuo Zhang
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
| | - Qiaoling Song
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Innovation Platform of Marine Drug Screening & EvaluationQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Chenyang Zhao
- School of Medicine and PharmacyOcean University of ChinaQingdaoChina
- Innovation Platform of Marine Drug Screening & EvaluationQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
10
|
Dekel N, Eisenberg-Domovich Y, Karlas A, Meyer TF, Bracher F, Lebendiker M, Danieli T, Livnah O. Expression, purification and crystallization of CLK1 kinase - A potential target for antiviral therapy. Protein Expr Purif 2020; 176:105742. [PMID: 32866611 DOI: 10.1016/j.pep.2020.105742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Cdc-like kinase 1 (CLK1) is a dual-specificity kinase capable of autophosphorylation on tyrosine residues and Ser/Thr phosphorylation of its substrates. CLK1 belongs to the CLK kinase family that regulates alternative splicing through phosphorylation of serine-arginine rich (SR) proteins. Recent studies have demonstrated that CLK1 has an important role in the replication of influenza A and chikungunya viruses. Furthermore, CLK1 was found to be relevant for the replication of HIV-1 and the West Nile virus, making CLK1 an interesting cellular candidate for the development of a host-directed antiviral therapy that might be efficient for treatment of newly emerging viruses. We describe here our attempts and detailed procedures to obtain the recombinant kinase domain of CLK1 in suitable amounts for crystallization in complex with specific inhibitors. The key solution for the reproducibility of crystals resides in devising and refining expression and purification protocols leading to homogeneous protein. Co-expression of CLK1 with λ-phosphatase and careful purification has yielded crystals of CLK1 complexed with the KH-CB19 inhibitor that diffracted to 1.65 Å. These results paved the path to the screening of more structures of CLK1 complexed compounds, leading to further optimization of their inhibitory activity. Moreover, since kinases are desired targets in numerous pathologies, the approach we report here, the co-expression of kinases with λ-phosphatase, previously used in other kinases, can be adopted as a general protocol in numerous kinase targets for obtaining reproducible and homogenic non-phosphorylated (inactive) forms suitable for biochemical and structural studies thus facilitating the development of novel inhibitors.
Collapse
Affiliation(s)
- Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yael Eisenberg-Domovich
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Franz Bracher
- Ludwig-Maximilians University, Department of Pharmacy-Center for Drug Research, Butenandstrasse 5-13, 81377, Munich, Germany
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
11
|
Kim JH, Seo Y, Jo M, Jeon H, Lee WH, Yachie N, Zhong Q, Vidal M, Roth FP, Suk K. Yeast-Based Genetic Interaction Analysis of Human Kinome. Cells 2020; 9:cells9051156. [PMID: 32392905 PMCID: PMC7291280 DOI: 10.3390/cells9051156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Kinases are critical intracellular signaling proteins. To better understand kinase-mediated signal transduction, a large-scale human-yeast genetic interaction screen was performed. Among 597 human kinase genes tested, 28 displayed strong toxicity in yeast when overexpressed. En masse transformation of these toxic kinase genes into 4653 homozygous diploid yeast deletion mutants followed by barcode sequencing identified yeast toxicity modifiers and thus their human orthologs. Subsequent network analyses and functional grouping revealed that the 28 kinases and their 676 interaction partners (corresponding to a total of 969 genetic interactions) are enriched in cell death and survival (34%), small-molecule biochemistry (18%) and molecular transport (11%), among others. In the subnetwork analyses, a few kinases were commonly associated with glioma, cell migration and cell death/survival. Our analysis enabled the creation of a first draft of the kinase genetic interactome network and identified multiple drug targets for inflammatory diseases and cancer, in which deregulated kinase signaling plays a pathogenic role.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Yeojin Seo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Myungjin Jo
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Hyejin Jeon
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
| | - Won-Ha Lee
- School of Life Sciences, Brain Korea 21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea;
| | - Nozomu Yachie
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.Y.); (F.P.R.)
| | - Quan Zhong
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA;
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
| | - Frederick P. Roth
- Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto and Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada; (N.Y.); (F.P.R.)
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, and Department of Biomedical Sciences, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.-H.K.); (Y.S.); (M.J.); (H.J.)
- Correspondence:
| |
Collapse
|
12
|
Reikhardt BA, Shabanov PD. Catalytic Subunit of PKA as a Prototype of the Eukaryotic Protein Kinase Family. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:409-424. [PMID: 32569549 DOI: 10.1134/s0006297920040021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The catalytic subunit of protein kinase A (PKAc) is conserved in all eukaryotic protein kinases. PKAc consists of two lobes that form the catalytic cleft containing the ATP-binding, peptide-binding site, and catalytic sites. During folding, PKAc secondary structures organize so that the non-polar regions form a globular core, while mobile loops and tails are exposed and can act as regulatory elements. De novo synthesized PKAc is phosphorylated at the T-loop, resulting in the formation of the active center capable of high-affinity binding of co-substrates. The ATP-molecule "sticks" the two lobes together, whereas the binding of peptide substrate completes the active center formation. The resulting catalytic triad (γ-phosphate of ATP, hydroxyl of Ser/Thr residue of the protein substrate, and Asp166 carboxyl) occupies a position optimal for catalysis. During the catalytic cycle, dynamic reorganization of polar and hydrophobic interactions ensures PKAc transition from the open to the closed conformation and vice versa. Understanding the structural basis of functioning of eukaryotic protein kinases (ePKs) is essential for successful design of ePK modulators.
Collapse
Affiliation(s)
- B A Reikhardt
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia.
| | - P D Shabanov
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
13
|
Hassaninasab A, Hsieh LS, Su WM, Han GS, Carman GM. Yck1 casein kinase I regulates the activity and phosphorylation of Pah1 phosphatidate phosphatase from Saccharomyces cerevisiae. J Biol Chem 2019; 294:18256-18268. [PMID: 31645435 DOI: 10.1074/jbc.ra119.011314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Indexed: 11/06/2022] Open
Abstract
The PAH1-encoded phosphatidate phosphatase in Saccharomyces cerevisiae plays a major role in triacylglycerol synthesis and the control of phospholipid synthesis. For its catalytic function on the nuclear/endoplasmic reticulum membrane, Pah1 translocates to the membrane through its phosphorylation/dephosphorylation. Pah1 phosphorylation on multiple serine/threonine residues is complex and catalyzed by diverse protein kinases. In this work, we demonstrate that Pah1 is phosphorylated by the YCK1-encoded casein kinase I (CKI), regulating Pah1 catalytic activity and phosphorylation. Phosphoamino acid analysis coupled with phosphopeptide mapping of the CKI-phosphorylated Pah1 indicated that it is phosphorylated mainly on multiple serine residues. Using site-directed mutagenesis and phosphorylation analysis of Pah1, we identified eight serine residues (i.e. Ser-114, Ser-475, Ser-511, Ser-602, Ser-677, Ser-705, Ser-748, and Ser-774) as the target sites of CKI. Of these residues, Ser-475 and Ser-511 were specific for CKI, whereas the others were shared by casein kinase II (Ser-705), Cdc28-cyclin B (Ser-602), Pho85-Pho80 (Ser-114, Ser-602, and Ser-748), protein kinase A (Ser-667 and Ser-774), and protein kinase C (Ser-677). CKI-mediated phosphorylation of Pah1 stimulated both its phosphatidate phosphatase activity and its subsequent phosphorylation by casein kinase II. However, the CKI-mediated phosphorylation of Pah1 strongly inhibited its subsequent phosphorylation by Pho85-Pho80, protein kinase A, and protein kinase C. In a reciprocal analysis, Pah1 phosphorylation by Pho85-Pho80 inhibited subsequent phosphorylation by CKI. CKI-mediated Pah1 phosphorylation was also inhibited by a peptide containing the Pah1 residues 506-517, including the kinase-specific Ser-511 residue. These findings advance our understanding of how Pah1 catalytic activity and phosphorylation are regulated by multiple protein kinases.
Collapse
Affiliation(s)
- Azam Hassaninasab
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Lu-Sheng Hsieh
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Wen-Min Su
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901.
| |
Collapse
|
14
|
Gupta SP. Design and Development of Drugs Targeting Protein-Protein Interactions – Part-I. Curr Top Med Chem 2019; 19:393. [DOI: 10.2174/156802661906190502163737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Satya P. Gupta
- Department of Pharmaceutical Technology Meerut Institute of Engineering and Technology Meerut, India
| |
Collapse
|