1
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
2
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
3
|
Guan Y, Liu T, Xu F, Xie S, Gu W, Bie Y. Integration of 16S rRNA gene sequencing and LC/MS-based metabolomic analysis of early biomarkers of acute ischaemic stroke in Tibetan miniature pigs. J Microbiol Methods 2023; 215:106846. [PMID: 37863204 DOI: 10.1016/j.mimet.2023.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Acute ischaemic stroke (AIS) is a complex, systemic, pathological, and physiological process. Systemic inflammatory responses and disorders of the gut microbiome contribute to increased mortality and disability following AIS. We conducted 16S high-throughput sequencing and ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry-based non-targeted metabolomic analyses of the plasma from a Tibetan miniature pig middle cerebral artery occlusion (MCAO) model. A significant decrease in the abundance of Firmicutes and a significant increase in the abundance of Actinobacteria were observed after the onset of AIS. Among the plasma metabolites, the levels of phospholipids and amino acids were considerably altered. Loading values and differential metabolite-bacterial group association analyses of the metabolome and microbiome indicated a correlation between the microbiome and metabolome of Tibetan miniature pigs after MCAO. Furthermore, significant changes were observed in the ABC transporter pathway and purine metabolism in the gut microbiome-plasma metabolome during the early stage of AIS. Kyoto Encyclopaedia of Genes and Genomes enrichment analysis showed that arginine, proline, and cyanoamino acid metabolism was upregulated while ABC transporter metabolism pathway and carbohydrate digestion and absorption were substantially downregulated. The results of this study suggest that AIS affects the gut microbiota and plasma metabolites in Tibetan miniature pigs and that faecal microbiota transplantation could be a potential therapeutic approach for AIS.
Collapse
Affiliation(s)
- Yajin Guan
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Tianping Liu
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Fei Xu
- Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Shuilin Xie
- Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China.
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510000, China.
| | - Yanan Bie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510000, China.
| |
Collapse
|
4
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Computational prognostic evaluation of Alzheimer's drugs from FDA-approved database through structural conformational dynamics and drug repositioning approaches. Sci Rep 2023; 13:18022. [PMID: 37865690 PMCID: PMC10590448 DOI: 10.1038/s41598-023-45347-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Drug designing is high-priced and time taking process with low success rate. To overcome this obligation, computational drug repositioning technique is being promptly used to predict the possible therapeutic effects of FDA approved drugs against multiple diseases. In this computational study, protein modeling, shape-based screening, molecular docking, pharmacogenomics, and molecular dynamic simulation approaches have been utilized to retrieve the FDA approved drugs against AD. The predicted MADD protein structure was designed by homology modeling and characterized through different computational resources. Donepezil and galantamine were implanted as standard drugs and drugs were screened out based on structural similarities. Furthermore, these drugs were evaluated and based on binding energy (Kcal/mol) profiles against MADD through PyRx tool. Moreover, pharmacogenomics analysis showed good possible associations with AD mediated genes and confirmed through detail literature survey. The best 6 drug (darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar) further docked and analyzed their interaction behavior through hydrogen binding. Finally, MD simulation study were carried out on these drugs and evaluated their stability behavior by generating root mean square deviation and fluctuations (RMSD/F), radius of gyration (Rg) and soluble accessible surface area (SASA) graphs. Taken together, darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar displayed good lead like profile as compared with standard and can be used as possible therapeutic agent in the treatment of AD after in-vitro and in-vivo assessment.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA.
| |
Collapse
|
5
|
Wang Y, Huang J. Untargeted metabolomic analysis of metabolites related to body dysmorphic disorder (BDD). Funct Integr Genomics 2023; 23:70. [PMID: 36854840 PMCID: PMC9974688 DOI: 10.1007/s10142-023-00995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Body dysmorphic disorder (BDD) is a disorder associated with depression and eating disorders. It often arises from minor defects in appearance or an individual imagining that he or she is defective. However, the mechanisms causing BDD remain unclear, and its pathogenesis and adjuvant treatment methods still need to be explored. Here, we employed a liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach to identify key metabolic differences in BDD versus healthy patients. We obtained plasma samples from two independent cohorts (including eight BDD patients and eight healthy control patients). Raw data were analyzed using Compound Discoverer to determine peak alignment, retention time correction, and extraction of peak areas. Metabolite structure identification was also obtained using Compound Discoverer by of accurate mass matching (< 10 ppm) and secondary spectral matching queries of compound databases. Next, multidimensional statistical analyses were performed using the ropls R package. These analyses included: unsupervised principal component analysis, supervised partial Least-Squares Discriminant Analysis, and orthogonal partial Least-Squares Discriminant Analysis. We then identified the most promising metabolic signatures associated with BDD across all metabolomic datasets. Principal component analysis showed changes in small-molecule metabolites in patients, and we also found significant differences in metabolite abundance between the BDD and normal groups. Our findings suggest that the occurrence of BDD may be related to metabolites participating in the following KEGG pathways: ABC transporters, purine metabolism, glycine, serine and threonine metabolism, pyrimidine, pyrimidine metabolism, biosynthesis of 12-, 14-, and 16-membered macrolides, microbial metabolism in diverse environments, biosynthesis of secondary metabolites, and caffeine and insect hormone biosynthesis.
Collapse
Affiliation(s)
- Yawen Wang
- Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Jinlong Huang
- Department of Plastic Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
6
|
Poddar NK, Agarwal D, Agrawal Y, Wijayasinghe YS, Mukherjee A, Khan S. Deciphering the enigmatic crosstalk between prostate cancer and Alzheimer's disease: A current update on molecular mechanisms and combination therapy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166524. [PMID: 35985445 DOI: 10.1016/j.bbadis.2022.166524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) and prostate cancer (PCa) are considered the leading causes of death in elderly people worldwide. Although both these diseases have striking differences in their pathologies, a few underlying mechanisms are similar when cell survival is considered. In the current study, we employed an in-silico approach to decipher the possible role of bacterial proteins in the initiation and progression of AD and PCa. We further analyzed the molecular connections between these two life-threatening diseases. The androgen deprivation therapy used against PCa has been shown to promote castrate resistant PCa as well as AD. In addition, cell signaling pathways, such as Akt, IGF, and Wnt contribute to the progression of both AD and PCa. Besides, various proteins and genes are also common in disease progression. One such similarity is mTOR signaling. mTOR is the common downstream target for many signaling pathways and plays a vital role in both PCa and AD. Targeting mTOR can be a favorable line of treatment for both AD and PCa. However, drug resistance is one of the challenges in effective drug therapy. A few drugs that target mTOR have now become ineffective due to the development of resistance. In that regard, phytochemicals can be a rich source of novel drug candidates as they can act via multiple mechanisms. This review also presents mTOR targeting phytochemicals with promising anti-PCa, anti-AD activities, and approaches to overcome the issues associated with phytochemical-based therapies in clinical trials.
Collapse
Affiliation(s)
- Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India.
| | - Disha Agarwal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Yamini Agrawal
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Arunima Mukherjee
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation, NSW, Australia; Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; Department of Medical Lab Technology, Indian Institute of health and Technology (IIHT), Deoband, 247554 Saharanpur, UP, India.
| |
Collapse
|
7
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
10
|
Sepiani A, Cheraghzadeh M, Nazeri Z, Azizidoost S, Shalbafan B, Kheirollah A. Correlation of R219K polymorphism of ABCA1 gene and the risk of Alzheimer's disease in the southwest of Iran. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
12
|
Auzmendi J, Akyuz E, Lazarowski A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav 2021; 121:106590. [PMID: 31706919 DOI: 10.1016/j.yebeh.2019.106590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the major cause of death that affects patients with epilepsy. The risk of SUDEP increases according to the frequency and severity of uncontrolled seizures; therefore, SUDEP risk is higher in patients with refractory epilepsy (RE), in whom most antiepileptic drugs (AEDs) are ineffective for both seizure control and SUDEP prevention. Consequently, RE and SUDEP share a multidrug resistance (MDR) phenotype, which is mainly associated with brain overexpression of ABC-transporters such as P-glycoprotein (P-gp). The activity of P-gp can also contribute to membrane depolarization and affect the normal function of neurons and cardiomyocytes. Other molecular regulators of membrane potential are the inwardly rectifying potassium channels (Kir), whose genetic variants have been related to both epilepsy and heart dysfunctions. Although it has been suggested that dysfunctions of the cardiac, respiratory, and brainstem arousal systems are the causes of SUDEP, the molecular basis for explaining its dysfunctions remain unknown. In rats, repetitive seizures or status epilepticus induced high expression of P-gp and loss Kir expression in the brain and heart, and promoted membrane depolarization, malignant bradycardia, and the high rate of mortality. Here we reviewed clinical and experimental evidences suggesting that abnormal expression of depolarizing/repolarizing factors as P-gp and Kir could favor persistent depolarization of membranes without any rapid functional recovery capacity. This condition induced by convulsive stress could be the molecular mechanism leading to acquired severe bradycardia, as an ineffective heart response generating the appropriate scenario for SUDEP development. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; INFIBIOC, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Enes Akyuz
- Yozgat Bozok University, Medical Faculty, Department of Biophysics, Erdoğan Akdağ Yerleşkesi, 66100 Yozgat, Turkey
| | - Alberto Lazarowski
- INFIBIOC, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, Kumar P, Ambasta RK, Dureja H, Devkota HP, Gupta G, Chellappan DK, Singh SK, Dua K, Ruokolainen J, Kamal MA, Ojha S, Jha NK. CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. J Adv Res 2021; 40:207-221. [PMID: 36100328 PMCID: PMC9481950 DOI: 10.1016/j.jare.2021.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in APP, PSEN1 and PSEN2 are known factors for AD pathobiology. CRISPR/Cas9 genome editing approach hold promises in AD management. CRISPR/Cas9 is utilized to help correct anomalous genetic functions. Off-target mutations may impair the functionality of edited cells. Non-viral vectors show better efficacy and safety than viral vectors.
Background Alzheimer's disease (AD) is an insidious, irreversible, and progressive neurodegenerative health condition manifesting as cognitive deficits and amyloid beta (Aβ) plaques and neurofibrillary tangles. Approximately 50 million individuals are affected by AD, and the number is rapidly increasing globally. This review explores the role of CRISPR/Cas9 gene editing in the management of AD and its clinical manifestations. Aim of Review This review aims to provide a deep insight into the recent progress in CRISPR/Cas9-mediated genome editing and its use against neurodegenerative disorders, specifically AD. However, we have referred to its use against parkinsons’s disease (PD), Huntington’s disease (HD), and other human diseases, as is one of the most promising and emerging technologies for disease treatment. Key Scientific Concepts of Review The pathophysiology of AD is known to be linked with gene mutations, that is, presenilin (PSEN) and amyloid beta precursor protein (APP). However, clinical trials focused at the genetic level could not meet the desired efficiency. The CRISPR/Cas9 genome editing tool is one of the most powerful technologies for correcting inconsistent genetic signatures and now extensively used for AD management. It has significant potential for the correction of undesired gene mutations associated with AD. This technology has allowed the development of empirical AD models, therapeutic lines, and diagnostic approaches for better understanding the nervous system, from in vitro to in vivo models.
Collapse
Affiliation(s)
- Shanu Bhardwaj
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal road, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 17666, United Arab Emirates.
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| |
Collapse
|
14
|
Zhan J, Yang Q, Lin Z, Zheng T, Wang M, Sun W, Bu T, Tang Z, Li C, Han X, Zhao H, Wu Q, Shan Z, Chen H. Enhanced antioxidant capacity and upregulated transporter genes contribute to the UV-B-induced increase in blinin in Conyza blinii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13275-13287. [PMID: 33175358 DOI: 10.1007/s11356-020-11502-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Conyza blinii (C. blinii) is a traditional Chinese medicinal plant mainly grown in Sichuan, China. C. blinii is suitable for studying the mechanism of plant tolerance to UV-B due to its living conditions, characterized by a high altitude and exposure to strong ultraviolet radiation. Our results showed that the growth and photosynthetic activity of C. blinii were improved under a specific intensity of UV-B, rather than being significantly inhibited. Although UV-B increased the content of reactive oxygen species (ROS) in C. blinii, the activities of antioxidative enzymes were elevated, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), which contributed to the elimination of ROS. Additionally, the content of blinin, the characteristic diterpene in C. blinii, was markedly increased by UV-B. Furthermore, RNA sequencing analyses were used to explore the molecular mechanism of UV-B tolerance in C. blinii. According to the results, most of the key enzyme genes in the blinin synthesis pathway were upregulated by UV-B. In addition, 23 upregulated terpene transporter genes were identified, and these genes might participate in blinin transport during the response to UV-B. Taken together, these results implied that enhanced antioxidant capacity and upregulated transporter genes contributed to increased synthesis of blinin in response to UV-B in C. blinii.
Collapse
Affiliation(s)
- Junyi Zhan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qin Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhiyi Lin
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tianrun Zheng
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Maojia Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xueyi Han
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zhi Shan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China.
| |
Collapse
|
15
|
Li H, Sun Y, Chen R. Constructing and validating a diagnostic nomogram for multiple sclerosis via bioinformatic analysis. 3 Biotech 2021; 11:127. [PMID: 33680693 DOI: 10.1007/s13205-021-02675-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to identify biomarkers and construct a diagnostic prediction model for multiple sclerosis (MS). Microarray datasets in the Gene Expression Omnibus (GEO) were downloaded. Weighted gene coexpression analysis (WGCNA) was used to search for hub modules and biomarkers related to MS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to roughly define their biological functions and pathways. Least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression analysis were used to identify the diagnostic biomarkers and construct a nomogram. The calibration curve and receiver operating characteristic (ROC) curve were used to judge the diagnostic predictive ability. In addition, cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm was used to calculate the proportion of 22 kinds of immune cells. GSE41850 was used as the training set, and GSE17048 was used as the test set. WGCNA revealed one hub module containing 165 hub genes. Most of their biological functions and pathways are related to cell metabolism and immune cell activation. The diagnostic nomogram contained ARPC5, ROD1, UBQLN2, ZNF281, ABCA1 and FAS. The ROC curve and the calibration curve of the training set and test set confirmed that the nomogram had great prediction ability. In addition, monocytes and M0 macrophages were significantly different between MS patients and healthy people. The expression of ARPC5, ZNF281 and ABCA1 is correlated with M0 macrophages. The nomogram provides new insights and contributes to the accurate diagnosis of MS. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02675-1.
Collapse
Affiliation(s)
- Hao Li
- Department of Pediatrics, Hejiang People's Hospital, Sichuan, China
| | - Yong Sun
- Department of Pediatrics, Hejiang People's Hospital, Sichuan, China
| | - Rong Chen
- Department of Pediatrics, Hejiang People's Hospital, Sichuan, China
| |
Collapse
|
16
|
Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 2020; 213:107554. [PMID: 32320731 DOI: 10.1016/j.pharmthera.2020.107554] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.
Collapse
Affiliation(s)
- Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
17
|
Erdő F, Krajcsi P. Age-Related Functional and Expressional Changes in Efflux Pathways at the Blood-Brain Barrier. Front Aging Neurosci 2019; 11:196. [PMID: 31417399 PMCID: PMC6682691 DOI: 10.3389/fnagi.2019.00196] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
During the last decade, several articles have reported a relationship between advanced age and changes in the integrity of the blood-brain barrier (BBB). These changes were manifested not only in the morphology and structure of the cerebral microvessels but also in the expression and function of the transporter proteins in the luminal and basolateral surfaces of the capillary endothelial cells. Age-associated downregulation of the efflux pumps ATP-binding cassette transporters (ABC transporters) resulted in increased permeability and greater brain exposure to different xenobiotics and their possible toxicity. In age-related neurodegenerative pathologies like Alzheimer's disease (AD), the amyloid-β (Aβ) clearance decreased due to P-glycoprotein (P-gp) dysfunction, leading to higher brain exposure. In stroke, however, an enhanced P-gp function was reported in the cerebral capillaries, making it even more difficult to perform effective neuroprotective therapy in the infarcted brain area. This mini-review article focuses on the efflux functions of the transporters and receptors of the BBB in age-related brain pathologies and also in healthy aging.
Collapse
Affiliation(s)
- Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Péter Krajcsi
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Solvo Biotechnology, A Charles River Company, Budapest, Hungary.,Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|