1
|
Zhu J, Li X, Meng H, Jia L, Xu L, Cai Y, Chen Y, Jin J, Yu L, Gao M. Molecular modeling strategy for detailing the primary mechanism of action of copanlisib to PI3K: combined ligand-based and target-based approach. J Biomol Struct Dyn 2024; 42:8172-8183. [PMID: 37572326 DOI: 10.1080/07391102.2023.2246569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Since dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3K has emerged as an attractive target for drug development. Although copanlisib is the first pan-PI3K inhibitor to be approved for clinical use, the precise mechanism by which it acts on PI3K has not been fully elucidated. To reveal the binding mechanisms and structure-activity relationship between PI3K and copanlisib, a comprehensive modeling approach that combines 3D-quantitative structure-activity relationship (3D-QSAR), pharmacophore model, and molecular dynamics (MD) simulation was utilized. Initially, the structure-activity relationship of copanlisib and its derivatives were explored by constructing a 3D-QSAR. Then, the key chemical characteristics were identified by building common feature pharmacophore models. Finally, MD simulations were performed to elucidate the important interactions between copanlisib and different PI3K subtypes, and highlight the key residues for tight-binding inhibitors. The present study uncovered the principal mechanism of copanlisib's action on PI3K at the theoretical level, and these findings might provide guidance for the rational design of pan-PI3K inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xintong Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Huiqin Meng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, China
| | - Mingzhu Gao
- Department of Clinical Research Center for Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi, China
| |
Collapse
|
2
|
Strachowska M, Robaszkiewicz A. Characteristics of anticancer activity of CBP/p300 inhibitors - Features of their classes, intracellular targets and future perspectives of their application in cancer treatment. Pharmacol Ther 2024; 257:108636. [PMID: 38521246 DOI: 10.1016/j.pharmthera.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.
Collapse
Affiliation(s)
- Magdalena Strachowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; University of Lodz, Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute of Fundamental and Basic Research, 600 5(th) Street South, Saint Petersburg FL33701, United States of America.
| |
Collapse
|
3
|
Tang Y, Zheng Y, Hu X, Zhao H, Cui S. Discovery of Potent and Selective PI3Kδ Inhibitors for the Treatment of Acute Myeloid Leukemia. J Med Chem 2024; 67:6638-6657. [PMID: 38577724 DOI: 10.1021/acs.jmedchem.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy.
Collapse
Affiliation(s)
- Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang Province 321299, China
| |
Collapse
|
4
|
Dubey R, Sharma A, Gupta S, Gupta GD, Asati V. A comprehensive review of small molecules targeting PI3K pathway: Exploring the structural development for the treatment of breast cancer. Bioorg Chem 2024; 143:107077. [PMID: 38176377 DOI: 10.1016/j.bioorg.2023.107077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Cancer stands as one of the deadliest diseases, ranking second in terms of its global impact. Despite the presence of numerous compelling theories concerning its origins, none have succeeded in fully elucidating the intricate nature of this ailment. Among the prevailing concerns in today's world, breast cancer proliferation remains a significant issue, particularly affecting females. The abnormal proliferation of the PI3K pathway emerges as a prominent driver of breast cancer, underscoring its role in cellular survival and proliferation. Consequently, targeting this pathway has emerged as a leading strategy in breast cancer therapeutics. Within this context, the present article explores the current landscape of anti-tumour drug development, focusing on structural activity relationships (SAR) in PI3K targeting breast cancer treatment. Notably, certain moieties like triazines, pyrimidine, quinazoline, quinoline, and pyridoxine have been explored as potential PI3K inhibitors for combating breast cancer. Various heterocyclic small molecules are undergoing clinical trials, such as Alpelisib, the first orally available FDA-approved drug targeting PI3K; others include buparlisib, pictilisib, and taselisib, which inhibit class I PI3K. These drugs are used for the treatment of breast cancer but still have various side effects with their high cost. Therefore, the primary goal of this review is to include all current advances in the development of anticancer medicines that target PI3K over-activation in the treatment of breast cancer.
Collapse
Affiliation(s)
- Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
5
|
Tang Y, Zheng F, Bao X, Zheng Y, Hu X, Lou S, Zhao H, Cui S. Discovery of Highly Selective and Orally Bioavailable PI3Kδ Inhibitors with Anti-Inflammatory Activity for Treatment of Acute Lung Injury. J Med Chem 2023; 66:11905-11926. [PMID: 37606563 DOI: 10.1021/acs.jmedchem.3c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
PI3Kδ is a promising target for the treatment of inflammatory disease; however, the application of PI3Kδ inhibitors in acute respiratory inflammatory diseases is rarely investigated. In this study, through scaffold hopping design, we report a new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amine-tethered 3-methyl-1-aryl-1H-indazoles as highly selective and potent PI3Kδ inhibitors with significant anti-inflammatory activities for treatment of acute lung injury (ALI). There were 29 compounds designed, prepared, and subjected to PI3Kδ inhibitory activity evaluation and anti-inflammatory activity evaluation in macrophages. (S)-29 was identified as a candidate with high PI3Kδ inhibitory activity, isoform selectivity, and high oral bioavailability. The in vivo administration of (S)-29 at 10 mg/kg dosage could significantly ameliorate histopathological changes and attenuate lung inflammation in lung tissues of LPS-challenged mice. Molecular docking demonstrated the success of scaffold hopping design. Overall, (S)-29 is a potent PI3Kδ inhibitor which might be a promising candidate for the treatment of ALI.
Collapse
Affiliation(s)
- Yongmei Tang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fanli Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xiaodong Bao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xueping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Siyue Lou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhu J, Sun D, Li X, Jia L, Cai Y, Chen Y, Jin J, Yu L. Developing new PI3Kγ inhibitors by combining pharmacophore modeling, molecular dynamic simulation, molecular docking, fragment-based drug design, and virtual screening. Comput Biol Chem 2023; 104:107879. [PMID: 37182359 DOI: 10.1016/j.compbiolchem.2023.107879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Since dysregulation of the phosphatidylinositol 3-kinase gamma (PI3Kγ) signaling pathway is associated with the pathogenesis of cancer, inflammation, and autoimmunity, PI3Kγ has emerged as an attractive target for drug development. IPI-549 is the only selective PI3Kγ inhibitor that has advanced to clinical trials, thus, IPI-549 could serve as a promising template for designing novel PI3Kγ inhibitors. In this present study, a modeling strategy consisting of common feature pharmacophore modeling, receptor-ligand pharmacophore modeling, and molecular dynamics simulation was utilized to identify the key pharmacodynamic characteristic elements of the target compound and the key residue information of the PI3Kγ interaction with the inhibitors. Then, 10 molecules were designed based on the structure-activity relationships, and some of them exhibited satisfactory predicted binding affinities to PI3Kγ. Finally, a hierarchical multistage virtual screening method, involving the developed common feature and receptor-ligand pharmacophore model and molecular docking, was constructed for screening the potential PI3Kγ inhibitors. Overall, we hope these findings would provide some guidance for the development of novel PI3Kγ inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dan Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xintong Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou 213164, Jiangsu, China.
| |
Collapse
|
7
|
Wei P, Tang M, Ma Z, Zhao J, Wu R, Wan L. In vitro and in vivo metabolic profiling of PD105, a PI3Kδ inhibitor, using UHPLC-Q-Exactive plus-MS. Xenobiotica 2023; 53:106-113. [PMID: 36877930 DOI: 10.1080/00498254.2023.2188070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
PD105, a PI3Kδ inhibitor, is a candidate for the treatment of rheumatoid arthritis. This study aims to identify the metabolic profiling in vitro and in vivo by UHPLC-Q-Exactive Plus-MS.The in vitro metabolism of PD105 was studied by mouse liver microsomes and hepatocytes, while the in vivo metabolic profiling was obtained from mouse plasma, urine, and faeces. A total of 20 metabolites were tentatively identified based on accurate mass, fragment pathways, and characteristic fragment ions, including 4 in vitro and 20 in vivo.The proposed metabolic pathways of PD105 showed that there were 18 phase I metabolites and 2 phase II metabolites. The phase I metabolic pathways included oxidation, hydration, desaturation and oxidative dechlorination, while the phase II metabolic reactions were mainly methylation and arginine conjugation. Among them, oxidation was the main metabolic pathway of PD105.The comprehensive metabolic profiling contributed to further elucidation of pharmacological action and mechanism of PD105.
Collapse
Affiliation(s)
- Panhong Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyan Ma
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiajia Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Li Q, Li Z, Luo T, Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. MOLECULAR BIOMEDICINE 2022; 3:47. [PMID: 36539659 PMCID: PMC9768098 DOI: 10.1186/s43556-022-00110-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
The PI3K/AKT/mTOR and RAF/MEK/ERK pathways are commonly activated by mutations and chromosomal translocation in vital targets. The PI3K/AKT/mTOR signaling pathway is dysregulated in nearly all kinds of neoplasms, with the component in this pathway alternations. RAF/MEK/ERK signaling cascades are used to conduct signaling from the cell surface to the nucleus to mediate gene expression, cell cycle processes and apoptosis. RAS, B-Raf, PI3K, and PTEN are frequent upstream alternative sites. These mutations resulted in activated cell growth and downregulated cell apoptosis. The two pathways interact with each other to participate in tumorigenesis. PTEN alterations suppress RAF/MEK/ERK pathway activity via AKT phosphorylation and RAS inhibition. Several inhibitors targeting major components of these two pathways have been supported by the FDA. Dozens of agents in these two pathways have attracted great attention and have been assessed in clinical trials. The combination of small molecular inhibitors with traditional regimens has also been explored. Furthermore, dual inhibitors provide new insight into antitumor activity. This review will further comprehensively describe the genetic alterations in normal patients and tumor patients and discuss the role of targeted inhibitors in malignant neoplasm therapy. We hope this review will promote a comprehensive understanding of the role of the PI3K/AKT/mTOR and RAF/MEK/ERK signaling pathways in facilitating tumors and will help direct drug selection for tumor therapy.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Oncology, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Ting Luo
- Department of Breast, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Huashan Shi
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| |
Collapse
|
9
|
Developing a Naïve Bayesian Classification Model with PI3Kγ structural features for virtual screening against PI3Kγ: Combining molecular docking and pharmacophore based on multiple PI3Kγ conformations. Eur J Med Chem 2022; 244:114824. [DOI: 10.1016/j.ejmech.2022.114824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
|
10
|
Silva R, Ferreira D, Rodrigues LR. Exosome-based delivery of RNAi leads to breast cancer inhibition. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Xiong W, Jia L, Liang J, Cai Y, Chen Y, Nie Y, Jin J, Zhu J. Investigation into the anti-airway inflammatory role of the PI3Kγ inhibitor JN-PK1: An in vitro and in vivo study. Int Immunopharmacol 2022; 111:109102. [PMID: 35964410 DOI: 10.1016/j.intimp.2022.109102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase gamma (PI3Kγ) has been proven to be a potential target for the treatment of inflammatory diseases of the airway; however, there are few reports of selective PI3Kγ inhibitors being used in the field of airway inflammation thus far. Herein, a study employing in vitro and in vivo methodologies was carried out to assess the anti-airway inflammatory effects of JN-PK1, a selective PI3Kγ inhibitor. In RAW264.7 macrophages, JN-PK1 inhibited PI3Kγ-dependent, cellular C5a-induced AKT Ser473 phosphorylation in a concentration- and time-dependent manner and had no significant effect on cell viability.Furthermore, JN-PK1 significantly suppressed LPS-induced, proinflammatory cytokine expression and nitric oxide production through inhibition of the PI3K signaling pathway in RAW264.7 cells. Then, a murine asthma model was established to evaluate the anti-airway inflammation effect of JN-PK1. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to develop an inflammatory response, fibrosis formation, and other airway changes similar to the symptomatology of asthma in humans. Oral administration of JN-PK1 remarkably attenuated OVA-induced asthma in association with the inhibition of the PI3K signaling pathway. That is to say, the oral administration significantly inhibited increases in inflammatory cell counts and reduced T-helper type 2 cytokine production in bronchoalveolar lavage fluid. Pulmonary histological studies showed that oral administration of JN-PK1 not only reduced the infiltration of inflammatory cells but also retarded airway inflammation and fibration. Taken together, JN-PK1 could be developed as a promising candidate for inflammation therapy, and our findings support some potential for therapeutic inhibition of PI3Kγ to treat inflammatory airway diseases.
Collapse
Affiliation(s)
- Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junjie Liang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Exploring PI3Kγ binding preference with Eganelisib, Duvelisib, and Idelalisib via energetic, pharmacophore and dissociation pathway analyses. Comput Biol Med 2022; 147:105642. [DOI: 10.1016/j.compbiomed.2022.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
|
13
|
Discovery and pre-clinical characterization of a selective PI3Kδ inhibitor, LL-00071210 in rheumatoid arthritis. Eur J Pharmacol 2022; 927:175054. [PMID: 35636524 DOI: 10.1016/j.ejphar.2022.175054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
PI3Kδ plays a critical role in adaptive immune cell activation and function. Suppression of PI3Kδ has been shown to counter excessive triggering of immune responses which has led to delineating the role of this isoform in the pathophysiology of autoimmune disorders. In the current study, we have described preclinical characterization of PI3Kδ specific inhibitor LL-00071210 in various rheumatoid arthritis models. LL-00071210 displayed excellent in vitro potency in biochemical and cellular assay against PI3Kδ with IC50 values of 24.6 nM and 9.4 nM, respectively. LL-00071210 showed higher selectivity over PI3Kγ and PI3Kβ as compared to available PI3K inhibitors. LL-00071210 had good stability in liver microsomes and plasma across species and showed low clearance, low-to-moderate Vss, with bioavailability of >50% in preclinical species. LL-00071210 demonstrated excellent in vivo efficacy in adjuvant-induced and collagen-induced arthritis models. Co-administration of LL-00071210 and methotrexate at subtherapeutic dose regimen in collagen induced arthritis model led to additive effects, indicating the combination potential of LL-00071210 along with available disease modifying anti-rheumatic drugs (DMARD). In conclusion, we have described a specific PI3Kδ inhibitor with ∼100-fold selectivity over other PI3K isoforms. LL-00071210 has good drug-like properties and thus warrants testing in the clinic for the treatment of autoimmune diseases.
Collapse
|
14
|
Zhou R, Zeng X, Zhao H, Chen Q, Wu P. Combating the hypoxia limit of photodynamic therapy through reversing the survival-related pathways of cancer cells. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Zhang M, Jang H, Nussinov R. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Res 2021; 81:237-247. [PMID: 33046444 PMCID: PMC7855922 DOI: 10.1158/0008-5472.can-20-0911] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site (km) and the other, for example, E542K and E545K, reduces the transition state barrier (ka), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Zhu J, Li K, Yu L, Chen Y, Cai Y, Jin J, Hou T. Targeting phosphatidylinositol 3-kinase gamma (PI3Kγ): Discovery and development of its selective inhibitors. Med Res Rev 2020; 41:1599-1621. [PMID: 33300614 DOI: 10.1002/med.21770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
Phosphatidylinositol 3-kinase gamma (PI3Kγ) has been regarded as a promising drug target for the treatment of advanced solid tumors, leukemia, lymphoma, and inflammatory and autoimmune diseases. However, the high level of structural conservation among the members of the PI3K family and the diverse physiological roles of Class I PI3K isoforms (α, β, δ, and γ) highlight the importance of isoform selectivity in the development of PI3Kγ inhibitors. In this review, we provide an overview of the structural features of PI3Kγ that influence γ-isoform selectivity and discuss the structure-selectivity-activity relationship of existing clinical PI3Kγ inhibitors. Additionally, we summarize the experimental and computational techniques utilized to identify PI3Kγ inhibitors. The insights gained so far could be used to overcome the main challenges in development and accelerate the discovery of PI3Kγ-selective inhibitors.
Collapse
Affiliation(s)
- Jingyu Zhu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Kan Li
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Yu
- School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou, Jiangsu, China
| | - Yun Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanfei Cai
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Li F, Liang X, Jiang Z, Wang A, Wang J, Chen C, Wang W, Zou F, Qi Z, Liu Q, Hu Z, Cao J, Wu H, Wang B, Wang L, Liu J, Liu Q. Discovery of (S)-2-(1-(4-Amino-3-(3-fluoro-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)propyl)-3-cyclopropyl-5-fluoroquinazolin-4(3H)-one (IHMT-PI3Kδ-372) as a Potent and Selective PI3Kδ Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease. J Med Chem 2020; 63:13973-13993. [DOI: 10.1021/acs.jmedchem.0c01544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Li
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaofei Liang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zongru Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Junjie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenliang Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Qingwang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenquan Hu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jiangyan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Precision Medicine Research Laboratory of Anhui Province, Hefei, Anhui 230088, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
19
|
Wang NY, Zuo WQ, Hu R, Wang WL, Zhu YX, Xu Y, Yu LT, Liu ZH. Design, synthesis and structure-activity relationship study of piperazinone-containing thieno[3,2-d]pyrimidine derivatives as new PI3Kδ inhibitors. Bioorg Med Chem Lett 2020; 30:127479. [DOI: 10.1016/j.bmcl.2020.127479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/25/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022]
|
20
|
Bharate SB. Modulation of Kinases by Small Molecules for Therapeutic Management of Various Diseases - Part I. Curr Top Med Chem 2020; 20:1057-1058. [DOI: 10.2174/156802662012200504090532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sandip B. Bharate
- Principal Scientist, Medicinal Chemistry Division CSIR - Indian Institute of Integrative Medicine Canal Road, Jammu - 180001, India
| |
Collapse
|