1
|
Chakraborty A, Mukherjee S, Santra I, Dey D, Mukherjee S, Ghosh B. Secondary metabolite fingerprinting, anti-pathogenic activity, elite chemotype selection and conservation of Curcuma caesia- an ethnomedicinally underutilized species. 3 Biotech 2024; 14:155. [PMID: 38766325 PMCID: PMC11096293 DOI: 10.1007/s13205-024-04004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Curcuma caesia Roxb. is an ethnomedicinally important, essential oil (EO) yielding aromatic plant. A total of twelve accessions of this plant rhizome were collected from six different agro-climatic zones of West Bengal, India and evaluated for their antimicrobial activities against eight disease-causing, multi-drug-resistant pathogenic strains of urinary-tract infection and respiratory-tract infection. The EO and extracts demonstrated antibacterial activity, with the highest inhibition zone of 18.00 ± 0.08 and 17.50 ± 0.14 mm against Klebsiella pneumoniae by accession 06, even where all the broad-spectrum antibiotics failed to respond. In this study, we employed high-performance thin-layer chromatography (HPTLC) to quantify curcumin, the primary secondary metabolite of C. caesia, and the highest 0.228 mg/gm of curcumin resulted from accession 06. Hence, on the basis of all aspects, accession 06 was identified as the elite chemotype among all twelve accessions. The chemical profiling of EO from accession 06 was done using gas chromatography-mass spectroscopy (GC-MS). Conceivably, about 13 medicinally significant compounds were detected. As this plant species is seasonal and has difficulties in conventional breeding due to dormancy, it must be conserved through in vitro tissue culture for a steady supply throughout the year in massive amounts for agricultural demand. A maximum number of 19.28 ± 0.37 shoots has been obtained in MS medium fortified with 6-Benzylaminopurine, Kinetin, and Naphthalene acetic acid. The genetic uniformity of the plants has been studied through Start Codon Targeted Polymorphism. Therefore, this study must help meet the need for essential phytoactive compounds through a simple, validated, and reproducible plant tissue culture protocol throughout the year.
Collapse
Affiliation(s)
- Avijit Chakraborty
- Plant Biotechnology Laboratory, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
| | - Suproteem Mukherjee
- Plant Biotechnology Laboratory, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
| | - Indranil Santra
- Plant Biotechnology Laboratory, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
| | - Diganta Dey
- Department of Microbiology, Ashok Laboratory Clinical Testing Centre Private Limited, Kolkata, 700068 India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Garia, Kolkata, 700084 India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118 India
| |
Collapse
|
2
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
3
|
Girme A, Saste G, Singh R, Mirgal A, Ingavale R, Balasubramaniam AK, Ghoshal S, Ghule C, Patel S, Verma MK, Maurya R, Hingorani L. Quantitative and rapid quality assessment methods for the multi‐class bioactive constituents of
Tinospora cordifolia
using high‐performance liquid and thin layer chromatography analysis with tandem mass spectrometry characterization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mahendra Kumar Verma
- Natural Products and Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu India
| | | | | |
Collapse
|
4
|
Kumar A, Rajpal VR, Devarumath RM, Kumari A, Thakur R, Chaudhary M, Singh PP, Chauhan SMS, Raina SN. Isolation and HPLC assisted quantification of two iridoid glycoside compounds and molecular DNA fingerprinting in critically endangered medicinal Picrorhiza kurroa Royle ex Benth: implications for conservation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:727-746. [PMID: 33967459 PMCID: PMC8055752 DOI: 10.1007/s12298-021-00972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Picrorhiza kurroa is a medicinally important, high altitude perennial herb, endemic to the Himalayas. It possesses strong hepato-protective bioactivity that is contributed by two iridoid picroside compounds viz Picroside-I (P-I) and Picroside-II (P-II). Commercially, many P. kurroa based hepato-stimulatory Ayurvedic drug brands that use different proportions of P-I and P-II are available in the market. To identify genetically heterozygous and high yielding genotypes for multiplication, sustained use and conservation, it is essential to assess genetic and phytochemical diversity and understand the population structure of P. kurroa. In the present study, isolation and HPLC based quantification of picrosides P-I and P-II and molecular DNA fingerprinting using RAPD, AFLP and ISSR markers have been undertaken in 124 and 91 genotypes, respectively. The analyzed samples were collected from 10 natural P. kurroa Himalayan populations spread across four states (Jammu & Kashmir, Sikkim, Uttarakhand and Himachal Pradesh) of India. Genotypes used in this study covered around 1000 km geographical area of the total Indian Himalayan habitat range of P. kurroa. Significant quantitative variation ranging from 0.01 per cent to 4.15% for P-I, and from 0.01% to 3.18% in P-II picroside was observed in the analyzed samples. Three molecular DNA markers, RAPD (22 primers), ISSR (15 primers) and AFLP (07 primer combinations) also revealed a high level of genetic variation. The percentage polymorphism and effective number of alleles for RAPD, ISSR and AFLP analysis varied from 83.5%, 80.6% and 72.1%; 1.5722, 1.5787 and 1.5665, respectively. Further, the rate of gene flow (Nm) between populations was moderate for RAPD (0.8434), and AFLP (0.9882) and comparatively higher for ISSR (1.6093). Fst values were observed to be 0.56, 0.33, and 0.51 for RAPD, ISSR and AFLP markers, respectively. These values suggest that most of the observed genetic variation resided within populations. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian based STRUCTURE grouped all the analyzed accessions into largely region-wise clusters and showed some inter-mixing between the populations, indicating the existence of distinct gene pools with limited gene flow/exchange. The present study has revealed a high level of genetic diversity in the analyzed populations. The analysis has resulted in identification of genetically diverse and high picrosides containing P. kurroa genotypes from Sainj, Dayara, Tungnath, Furkia, Parsuthach, Arampatri, Manvarsar, Kedarnath, Thangu and Temza in the Indian Himalayan region. The inferences generated in this study can be used to devise future resource management and conservation strategies in P. kurroa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00972-w.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Botany, University of Delhi, 110007 New Delhi, Delhi India
- Department of Botany, Vinoba Bhave University, Hazaribag, Jharkhand 825319 India
| | - Vijay Rani Rajpal
- Department of Botany, University of Delhi, 110007 New Delhi, Delhi India
- Department of Botany, Hansraj College, Delhi University, New Delhi, Delhi 110007 India
| | - Rachayya Mallikarjun Devarumath
- Department of Botany, University of Delhi, 110007 New Delhi, Delhi India
- Molecular Biology and Genetic Engineering Lab., Vasantdada Sugar Institute, Pune, Maharashtra India
| | - Amita Kumari
- Department of Botany, Vinoba Bhave University, Hazaribag, Jharkhand 825319 India
| | - Rakesh Thakur
- Amity Institute of Biotechnology, Amity University, Sector 125, 201303 Noida, Uttar Pradesh India
| | - Manju Chaudhary
- Amity Institute of Biotechnology, Amity University, Sector 125, 201303 Noida, Uttar Pradesh India
| | - Pradeep Pratap Singh
- Department of Chemistry, University of Delhi, 110007 New Delhi, Delhi India
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, New Delhi, Delhi 110036 India
| | | | - Soom Nath Raina
- Department of Botany, University of Delhi, 110007 New Delhi, Delhi India
- Amity Institute of Biotechnology, Amity University, Sector 125, 201303 Noida, Uttar Pradesh India
| |
Collapse
|
5
|
Rathi B, Kempaiah P. Bioactive Chemical Entities: Pre-clinical and Clinical Aspects - Part-II. Curr Top Med Chem 2020; 20:606. [DOI: 10.2174/156802662008200331074457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Brijesh Rathi
- Section Editor for Current Topics in Medicinal Chemistry Laboratory for Translational Chemistry and Drug Discovery Hansraj College, University of Delhi Delhi-110007, India
| | - Prakasha Kempaiah
- Department of Medicine Loyola University Health Sciences Division 2160 South 1st Avenue Chicago, IL 60153, United States
| |
Collapse
|