1
|
Li R, Wan C, Li Y, Jiao X, Liu T, Gu Y, Gao R, Liu J, Li B. Nanocarrier-based drug delivery system with dual targeting and NIR/pH response for synergistic treatment of oral squamous cell carcinoma. Colloids Surf B Biointerfaces 2024; 244:114179. [PMID: 39217727 DOI: 10.1016/j.colsurfb.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is highly heterogeneous and aggressive, but therapies based on single-targeted nanoparticles frequently address these tumors as a single illness. To achieve more efficient drug transport, it is crucial to develop nanodrug-carrying systems that simultaneously target two or more cancer biomarkers. In addition, combining chemotherapy with near-infrared (NIR) light-mediated thermotherapy allows the thermal ablation of local malignancies via photothermal therapy (PTT), and triggers drug release to improve chemosensitivity. Thus, a novel dual-targeted nano-loading system, DOX@GO-HA-HN-1 (GHHD), was created for synergistic chemotherapy and PTT by the co-modification of carboxylated graphene oxide (GO) with hyaluronic acid (HA) and HN-1 peptide and loading with the anticancer drug doxorubicin (DOX). Targeted delivery using GHHD was shown to be superior to single-targeted nanoparticle delivery. NIR radiation will encourage the absorption of GHHD by tumor cells and cause the site-specific release of DOX in conjunction with the acidic microenvironment of the tumor. In addition, chemo-photothermal combination therapy for cancer treatment was realized by causing cell apoptosis under the irradiation of 808-nm laser. In summary, the application of GHHD to chemotherapy combined with photothermal therapy for OSCC is shown to have important potential as a means of combatting the low accumulation of single chemotherapeutic agents in tumors and drug resistance generated by single therapeutic means, enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yanwei Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yixuan Gu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Jun Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China.
| |
Collapse
|
2
|
Li QY, Zhu RR, Yu HY, Liu CL, Diao FY, Jiang YQ, Lin YQ, Li XT, Wang WJ. Multifunctional targeting of docetaxel plus bakuchiol micelles in the treatment of invasion and metastasis of ovarian cancer. Biomed Mater 2024; 19:065002. [PMID: 39208838 DOI: 10.1088/1748-605x/ad7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The invasion and metastasis of tumors pose significant challenges in the treatment of ovarian cancer (OC), making it difficult to cure. One potential treatment approach that has gained attention is the use of matrix metalloproteinase reactive controlled release micelle preparations. In this study, we developed a novel PEG5000-PVGLIG-hyaluronic acid docetaxel/bakuchiol (PP-HA-DTX/BAK) micelles formulation with desirable characteristics such as particle size, narrow polydispersity index, and a ZETA potential of approximately -5 mV. The surface modification with HA facilitates tumor penetration into the tumor interior, while the incorporation of DSPE-PEG2000-PVGLIG-PEG5000helps conceal DSPE-PEG2000-HA, reducing off-target effects and prolonging drug circulation timein vivo. Bothin vitroandin vivoexperiments demonstrated that these micelles effectively inhibit proliferation, invasion, and metastasis of OC cells while promoting apoptosis. Therefore, our findings suggest that PP-HA-DTX/BAK micelles represent a safe and effective therapeutic strategy for treating OC.
Collapse
Affiliation(s)
- Qi-Yan Li
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ri-Ran Zhu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong 250011, People's Republic of China
| | - Hai-Ying Yu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Chun-Lin Liu
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Fei-Yan Diao
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Ya-Qi Jiang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Yong-Qiang Lin
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| | - Xue-Tao Li
- Liaoning University of Traditional Chinese Medicine, School of Pharmacy, Dalian 116600, People's Republic of China
| | - Wei-Jian Wang
- Shandong Institute for Food and Drug Control, Shandong 250101, People's Republic of China
| |
Collapse
|
3
|
Sun C, Zhou Z, Liu F, Li H, Liu Z. Combretastatin A4 phosphate encapsulated in hyaluronic acid nanoparticles is highly cytotoxic to oral squamous cell carcinoma. Arch Med Sci 2024; 20:1022-1028. [PMID: 39050147 PMCID: PMC11264095 DOI: 10.5114/aoms/189535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction To investigate the toxicity of combretastatin A4 phosphate (CA4P) hyaluronic acid (HA) gel nanoparticles (HA-CA4P-NPs) in OSCC (oral squamous cell carcinoma). Methods Toxicity was investigated using fluorescence microscopy, MTT assay, flow cytometry, and OSCC xenograft mouse models. Results Compared with CA4P, HA-CA4P-NPs generated nearly 10 times more fluorescence in OSCC cells. Cytotoxicity assays showed that HACA4P-NPs were more toxic to SCC-4 cells but not to HNECs. Remarkable necrosis was induced in SCC-4 cells after exposure to HA-CA4P-NPs, and related proteins were upregulated. Furthermore, HA-CA4P-NPs significantly reduced the tumour size. Conclusions HA-CA4P-NPs improved drug release and delivery, and increased cytotoxicity to cancer cells.
Collapse
Affiliation(s)
- Chuanxi Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, China
| | - Ziqi Zhou
- Department of Orthodontics, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, China
| | - Fangqiang Liu
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Hong Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhe Liu
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, China
- Department of General Dentistry, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
4
|
Liu R, Hou W, Li J, Gou X, Gao M, Wang H, Zhang Y, Deng H, Yang X, Zhang W. Co-assembly of cisplatin and dasatinib in hyaluronan nanogel to combat triple negative breast cancer with reduced side effects. Int J Biol Macromol 2024; 269:132074. [PMID: 38705320 DOI: 10.1016/j.ijbiomac.2024.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Treatment for triple negative breast cancer (TNBC) remains a huge challenge due to the lack of targeted therapeutics and tumor heterogenicity. Cisplatin (Cis) have demonstrated favorable therapeutic response in TNBC and thus is used together with various kinase inhibitors to fight the heterogenicity of TNBC. The combination of Cis with SRC inhibitor dasatinib (DAS) has shown encouraging anti-TNBC efficacy although the additive toxicity was commonly observed. To overcome the severe side effects of this Cis involved therapy, here we co-encapsulated Cis and DAS into a self-assembled hyaluronan (HA) nanogel (designated as HA/Cis/DAS (HCD) nanogel) to afford the TNBC targeted delivery by using the 4T1 mouse model. The acquired HCD nanogel was around 181 nm in aqueous solution, demonstrating the pharmacological activities of both Cis and DAS. Taking advantages of HA's targeting capability towards CD44 that is overexpressed on many TNBC cells, the HCD could well maintain the anticancer efficacy of the Cis and DAS combination, significantly increase the maximum tolerated dose and relieve the renal toxicity in vivo. The current HCD nanogel provides a potent strategy to improve the therapeutic outcome of Cis and DAS combination and thus representing a new targeted treatment option for TNBC.
Collapse
Affiliation(s)
- Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayi Li
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xiaorong Gou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Menghan Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xue Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
5
|
Gao M, Deng H, Zhang Y, Wang H, Liu R, Hou W, Zhang W. Hyaluronan nanogel co-loaded with chloroquine to enhance intracellular cisplatin delivery through lysosomal permeabilization and lysophagy inhibition. Carbohydr Polym 2024; 323:121415. [PMID: 37940248 DOI: 10.1016/j.carbpol.2023.121415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
Hyaluronan (HA) has been widely used to construct nanocarriers for cancer-targeted drug delivery, due to its excellent biocompatibility and intrinsic affinity towards CD44 that is overexpressed in most cancer types. However, the HA-based nanocarriers are prone to trapping in lysosomes following the HA-mediated endocytosis, which limited the delivered drug to access its pharmacological action sites and subsequently compromised the therapeutic efficacy. To overcome this intracellular obstacle, here we demonstrated the co-loading of chloroquine (CQ) in HA nanogel could efficiently promote the intracellular delivery of cisplatin. The cisplatin coordination with HA generated the nanogel that could also co-encapsulate CQ (HA/Cis/CQ nanogel). Compared with cisplatin-loaded HA nanogel (HA/Cis), HA/Cis/CQ significantly promoted the lysosomal escape of cisplatin as well as enhanced tumor inhibition in the triple-negative breast cancer model. Mechanism studies suggested that co-delivery of CQ not only induced the lysosomal membrane permeabilization but also inhibited the lysophagy, which collectively contributed to the lysosomal instability and cisplatin escape. This HA/Cis/CQ nanogel elicited less toxicity compared with the combination of free Cis and CQ, thus suggesting a promising HA nanocarrier to boost the cisplatin delivery towards cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghan Gao
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Weiqi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
6
|
Cirillo N. The Hyaluronan/CD44 Axis: A Double-Edged Sword in Cancer. Int J Mol Sci 2023; 24:15812. [PMID: 37958796 PMCID: PMC10649834 DOI: 10.3390/ijms242115812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hyaluronic acid (HA) receptor CD44 is widely used for identifying cancer stem cells and its activation promotes stemness. Recent evidence shows that overexpression of CD44 is associated with poor prognosis in most human cancers and mediates therapy resistance. For these reasons, in recent years, CD44 has become a treatment target in precision oncology, often via HA-conjugated antineoplastic drugs. Importantly, HA molecules of different sizes have a dual effect and, therefore, may enhance or attenuate the CD44-mediated signaling pathways, as they compete with endogenous HA for binding to the receptors. The magnitude of these effects could be crucial for cancer progression, as well as for driving the inflammatory response in the tumor microenvironment. The increasingly common use of HA-conjugated drugs in oncology, as well as HA-based compounds as adjuvants in cancer treatment, adds further complexity to the understanding of the net effect of hyaluronan-CD44 activation in cancers. In this review, I focus on the significance of CD44 in malignancy and discuss the dichotomous function of the hyaluronan/CD44 axis in cancer progression.
Collapse
Affiliation(s)
- Nicola Cirillo
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
7
|
Kong J, Xu S, Dai Y, Wang Y, Zhao Y, Zhang P. Study of the Fe 3O 4@ZIF-8@Sor Composite Modified by Tannic Acid for the Treatment of Sorafenib-Resistant Hepatocellular Carcinoma. ACS OMEGA 2023; 8:39174-39185. [PMID: 37901534 PMCID: PMC10601084 DOI: 10.1021/acsomega.3c04215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/30/2023] [Indexed: 10/31/2023]
Abstract
Chemotherapeutic agents fail in clinical chemotherapy in the absence of targeting and acquired resistance. We, therefore, synthesized Fe3O4@ZIF-8@Sor@TA nanocomposite drugs based on the drug delivery properties of nanomaterials. ZIF-8 is a nanomaterial with a porous structure that can load anticancer drugs. The nanodrug used the paramagnetic property of Fe3O4 to deliver sorafenib (Sor) precisely to the tumor site, then used the pH responsiveness of ZIF-8 to slowly release Sor in the tumor microenvironment, and finally used tannic acid (TA) to inhibit P-glycoprotein to suppress the Sor resistance. The results of material characterization presented that the prepared material was structurally stable and was able to achieve a cumulative drug release of 38.2% at pH 5.0 for 72 h. The good biocompatibility of the composite was demonstrated by in vitro and in vivo experiments, which could improve antitumor activity and reduce Sor resistance through magnetic targeting TA. In conclusion, the Fe3O4@ZIF-8@Sor@TA material prepared in this study demonstrated high antitumor activity in hepatocellular carcinoma treatment, promising to reduce drug resistance and providing a novel research approach for cancer treatment.
Collapse
Affiliation(s)
- Jianqiao Kong
- Department of General Surgery, Xiangyang No. 1 People’s Hospital, Hubei University
of Medicine, Xiangyang City 441000, China
| | - Song Xu
- Department of General Surgery, Xiangyang No. 1 People’s Hospital, Hubei University
of Medicine, Xiangyang City 441000, China
| | - Yang Dai
- Department of General Surgery, Xiangyang No. 1 People’s Hospital, Hubei University
of Medicine, Xiangyang City 441000, China
| | - Yi Wang
- Department of General Surgery, Xiangyang No. 1 People’s Hospital, Hubei University
of Medicine, Xiangyang City 441000, China
| | - Yun Zhao
- Department of General Surgery, Xiangyang No. 1 People’s Hospital, Hubei University
of Medicine, Xiangyang City 441000, China
| | - Peng Zhang
- Department of General Surgery, Xiangyang No. 1 People’s Hospital, Hubei University
of Medicine, Xiangyang City 441000, China
| |
Collapse
|
8
|
Yuan C, Liu L, Tayier B, Ma T, Guan L, Mu Y, Li Y. Experimental study on the optimization of ANM33 release in foam cells. Open Life Sci 2023; 18:20220564. [PMID: 36852402 PMCID: PMC9961968 DOI: 10.1515/biol-2022-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 02/25/2023] Open
Abstract
Given the miR-33's mechanistic relationships with multiple etiological factors in the pathogenesis of atherosclerosis (AS), we investigated the therapeutic potentials of dual-targeted microbubbles (HA-PANBs) in foam cell-specific release of anti-miR-33 (ANM33) oligonucleotides, resulting in the early prevention of AS progression and severity. The intracellular localization, loading optimization, and therapeutic effects of HA-PANBs were examined in detail in a co-cultured cell model of phagocytosis. Compared with non-targeting nanobubbles (NBs) and single-targeted microbubbles as controls, HA-PANBs efficiently delivered the ANM33 specifically to foam cells via sustained release, exhibiting its clinical value in mediating RNA silencing. Moreover, when used at a dose of 12 µg/mL HA-PANBs per 107 cells for 48 h, a higher release rate and drug efficacy were observed. Therefore, HA-PANBs, effectively targeting early AS foam cells, may represent a novel and optimal gene therapy approach for AS management.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang 830011, China
| | - Liyun Liu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang 830011, China
| | - Baihetiya Tayier
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang 830011, China
| | - Ting Ma
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang 830011, China
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang 830011, China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang 830011, China
| | - Yanhong Li
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China,Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang 830011, China
| |
Collapse
|
9
|
Xu H, Ling J, Zhao H, Xu X, Ouyang XK, Song X. In vitro Antitumor Properties of Fucoidan-Coated, Doxorubicin-Loaded, Mesoporous Polydopamine Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238455. [PMID: 36500550 PMCID: PMC9736244 DOI: 10.3390/molecules27238455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy is a common method for tumor treatment. However, the non-specific distribution of chemotherapeutic drugs causes the death of normal cells. Nanocarriers, particularly mesoporous carriers, can be modified to achieve targeted and controlled drug release. In this study, mesoporous polydopamine (MPDA) was used as a carrier for the antitumor drug doxorubicin (DOX). To enhance the release efficiency of DOX in the tumor microenvironment, which contains high concentrations of glutathione (GSH), we used N,N-bis(acryloyl)cysteamine as a cross-linking agent to encapsulate the surface of MPDA with fucoidan (FU), producing MPDA-DOX@FU-SS. MPDA-DOX@FU-SS was characterized via transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS), and its antitumor efficacy in vitro was investigated. The optimal conditions for the preparation of MPDA were identified as pH 12 and 20 °C, and the optimal MPDA-to-FU ratio was 2:1. The DOX release rate reached 47.77% in an in vitro solution containing 10 mM GSH at pH 5.2. When combined with photothermal therapy, MPDA-DOX@FU-SS significantly inhibited the growth of HCT-116 cells. In conclusion, MPDA-DOX@FU-SS may serve as a novel, highly effective tumor suppressor that can achieve targeted drug release in the tumor microenvironment.
Collapse
Affiliation(s)
- Hongping Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Han Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xinyi Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiao-kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Correspondence: (X.O.); (X.S.)
| | - Xiaoyong Song
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine, 355 Xinqiao Road, Zhoushan 316000, China
- Correspondence: (X.O.); (X.S.)
| |
Collapse
|
10
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
11
|
Wang H, Deng H, Gao M, Zhang W. Self-Assembled Nanogels Based on Ionic Gelation of Natural Polysaccharides for Drug Delivery. Front Bioeng Biotechnol 2021; 9:703559. [PMID: 34336811 PMCID: PMC8322728 DOI: 10.3389/fbioe.2021.703559] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022] Open
Abstract
The polysaccharides (PS) have been widely used as biomaterials in drug delivery, due to their excellent biocompatibility, ease of functionalization, and intrinsic biological activities. Among the various PS-based biomaterials, the self-assembled PS nanogels (NG) featuring facile preparation are attracting evergrowing interests in various biomedical applications. Specifically, NG derived from the self-assembly of natural PS well maintain both the physicochemical and biological properties of PS while avoiding the chemical modification or alteration of PS structure, representing a potent drug delivery system for various therapeutic agents. In this review, the natural PS, such as chitosan, alginate, and hyaluronan, for self-assembled NG construction and their advantages in the applications of drug delivery have been summarized. The residues, such as amine, carboxyl, and hydroxyl groups, on these PS provide multiple sites for both ionic cross-linking and metal coordination, which greatly contribute to the formation of self-assembled NG as well as the drug loading, thus enabling a wide biomedical application of PS NG, especially for drug delivery. Future developments and considerations in the clinical translation of these self-assembled PS NG have also been discussed.
Collapse
Affiliation(s)
- Huimin Wang
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Hong Deng
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weiqi Zhang
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Lin X. Current Advances in Computational and Experimental Approaches for Nanoparticle-Drug Conjugates. Curr Top Med Chem 2021; 21:90-91. [PMID: 33443002 DOI: 10.2174/156802662102201211114037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xubo Lin
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191, China
| |
Collapse
|