1
|
Bhandari M, Tiwari RK, Chanda S, Bonde GV. Targeting angiogenesis, inflammation, and oxidative stress in Alzheimer's diseases. TARGETING ANGIOGENESIS, INFLAMMATION, AND OXIDATIVE STRESS IN CHRONIC DISEASES 2024:215-249. [DOI: 10.1016/b978-0-443-13587-3.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Bagheri S, Rashno M, Salehi I, Karimi SA, Raoufi S, Komaki A. Geraniol improves passive avoidance memory and hippocampal synaptic plasticity deficits in a rat model of Alzheimer's disease. Eur J Pharmacol 2023; 951:175714. [PMID: 37054939 DOI: 10.1016/j.ejphar.2023.175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the most progressive and irreversible neurodegenerative disease that leads to synaptic loss and cognitive decline. The present study was designed to evaluate the effects of geraniol (GR), a valuable acyclic monoterpene alcohol, with protective and therapeutic effects, on passive avoidance memory, hippocampal synaptic plasticity, and amyloid-beta (Aβ) plaques formation in an AD rat model induced by intracerebroventricular (ICV) microinjection of Aβ1-40. Seventy male Wistar rats were randomly into sham, control, control-GR (100 mg/kg; P.O. (orally), AD, GR-AD (100 mg/kg; P.O.; pretreatment), AD-GR (100 mg/kg; P.O.; treatment), and GR-AD-GR (100 mg/kg; P.O.; pretreatment & treatment). Administration of GR was continued for four consecutive weeks. Training for the passive avoidance test was carried out on the 36th day and a memory retention test was performed 24 h later. On day 38, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, Aβ plaques were identified in the hippocampus by Congo red staining. The results showed that Aβ microinjection increased passive avoidance memory impairment, suppressed of hippocampal LTP induction, and enhanced of Aβ plaque formation in the hippocampus. Interestingly, oral administration of GR improved passive avoidance memory deficit, ameliorated hippocampal LTP impairment, and reduced Aβ plaque accumulation in the Aβ-infused rats. The results suggest that GR mitigates Aβ-induced passive avoidance memory impairment, possibly through alleviation of hippocampal synaptic dysfunction and inhibition of Aβ plaque formation.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran; Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. http://umsha.ac.ir
| |
Collapse
|
3
|
Amyloid Beta Alters Prefrontal-dependent Functions Along with its Excitability and Synaptic Plasticity in Male Rats. Neuroscience 2022; 498:260-279. [PMID: 35839923 DOI: 10.1016/j.neuroscience.2022.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/20/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022]
Abstract
Prefrontal cortex (PFC)-related functions, such as working memory (WM) and cognitive flexibility (CF), are among the first to be altered at early stages of Alzheimer's disease (AD). Likewise, transgenic AD models carrying different AD-related mutations, mostly linked to the overproduction of amyloid beta (Aβ) and other peptides, show premature behavioral and functional symptoms associated with PFC alterations. However, little is known about the effects of intracerebral or intra-PFC Aβ infusion on WM and CF, as well as on pyramidal cell excitability and plasticity. Thus, here we evaluated the effects of a single Aβ injection, directly into the PFC, or its intracerebroventricular (icv) application, on PFC-dependent behaviors and on the intrinsic and synaptic properties of layer V pyramidal neurons in PFC slices. We found that a single icv Aβ infusion reduced learning and performance of a delayed non-matching-to-sample WM task and prevented reversal learning in a matching-to-sample version of the task, several weeks after its infusion. The inhibition of WM performance was reproduced more potently by a single PFC Aβ infusion and was associated with Aβ accumulation. This behavioral disruption was related to increased layer V pyramidal cell firing, larger sag membrane potential, increased fast after-hyperpolarization and a failure to sustain synaptic long-term potentiation, even leading to long-term depression, at both the hippocampal-PFC pathway and intracortical synapses. These findings show that Aβ can affect PFC excitability and synaptic plasticity balance, damaging PFC-dependent functions, which could constitute the foundations of the early alterations in executive functions in AD patients.
Collapse
|
4
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
5
|
Walker AS, Raliski BK, Karbasi K, Zhang P, Sanders K, Miller EW. Optical Spike Detection and Connectivity Analysis With a Far-Red Voltage-Sensitive Fluorophore Reveals Changes to Network Connectivity in Development and Disease. Front Neurosci 2021; 15:643859. [PMID: 34054405 PMCID: PMC8155641 DOI: 10.3389/fnins.2021.643859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
The ability to optically record dynamics of neuronal membrane potential promises to revolutionize our understanding of neurobiology. In this study, we show that the far-red voltage sensitive fluorophore, Berkeley Red Sensor of Transmembrane potential-1, or BeRST 1, can be used to monitor neuronal membrane potential changes across dozens of neurons at a sampling rate of 500 Hz. Notably, voltage imaging with BeRST 1 can be implemented with affordable, commercially available illumination sources, optics, and detectors. BeRST 1 is well-tolerated in cultures of rat hippocampal neurons and provides exceptional optical recording fidelity, as judged by dual fluorescence imaging and patch-clamp electrophysiology. We developed a semi-automated spike-picking program to reduce user bias when calling action potentials and used this in conjunction with BeRST 1 to develop an optical spike and connectivity analysis (OSCA) for high-throughput dissection of neuronal activity dynamics. The high temporal resolution of BeRST 1 enables dissection of firing rate changes in response to acute, pharmacological interventions with commonly used inhibitors like gabazine and picrotoxin. Over longer periods of time, BeRST 1 also tracks chronic perturbations to neurons exposed to amyloid beta 1-42 (Aβ 1-42), revealing modest changes to spiking frequency but profound changes to overall network connectivity. Finally, we use OSCA to track changes in neuronal connectivity during maturation in culture, providing a functional readout of network assembly. We envision that use of BeRST 1 and OSCA described here will be of use to the broad neuroscience community.
Collapse
Affiliation(s)
- Alison S. Walker
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Benjamin K. Raliski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kaveh Karbasi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Patrick Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Kate Sanders
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
6
|
Traini E, Carotenuto A, Fasanaro AM, Amenta F. Volume Analysis of Brain Cognitive Areas in Alzheimer's Disease: Interim 3-Year Results from the ASCOMALVA Trial. J Alzheimers Dis 2021; 76:317-329. [PMID: 32508323 PMCID: PMC7369051 DOI: 10.3233/jad-190623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Cerebral atrophy is a common feature of several neurodegenerative disorders, including Alzheimer’s disease (AD). In AD, brain atrophy is associated with loss of gyri and sulci in the temporal and parietal lobes, and in parts of the frontal cortex and cingulate gyrus. Objective: The ASCOMALVA trial has assessed, in addition to neuropsychological analysis, whether the addition of the cholinergic precursor choline alphoscerate to treatment with donepezil has an effect on brain volume loss in patients affected by AD associated with cerebrovascular injury. Methods: 56 participants to the randomized, placebo-controlled, double-blind ASCOMALVA trial were assigned to donepezil + placebo (D + P) or donepezil + choline alphoscerate (D + CA) treatments and underwent brain magnetic resonance imaging and neuropsychological tests every year for 4 years. An interim analysis of 3-year MRI data was performed by voxel morphometry techniques. Results: The D + P group (n = 27) developed atrophy of the gray and white matter with concomitant increase in ventricular space volume. In the D + CA group (n = 29) the gray matter atrophy was less pronounced compared to the D + P group in frontal and temporal lobes, hippocampus, and amygdala. These morphological data are consistent with the results of the neuropsychological tests. Conclusion: Our findings indicate that the addition of choline alphoscerate to standard treatment with the cholinesterase inhibitor donepezil counters to some extent the loss in volume occurring in some brain areas of AD patients. The observation of parallel less pronounced decrease in cognitive and functional tests in patients with the same treatment suggests that the morphological changes observed may have functional relevance.
Collapse
Affiliation(s)
- Enea Traini
- Clinical Research, Telemedicine and Telepharmacy Centre, University of Camerino, Camerino, Italy
| | - Anna Carotenuto
- Clinical Research, Telemedicine and Telepharmacy Centre, University of Camerino, Camerino, Italy.,Neurology Unit, National Hospital "A. Cardarelli", Naples, Italy
| | | | - Francesco Amenta
- Clinical Research, Telemedicine and Telepharmacy Centre, University of Camerino, Camerino, Italy
| |
Collapse
|
7
|
Clark C, Dayon L, Masoodi M, Bowman GL, Popp J. An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer's disease. Alzheimers Res Ther 2021; 13:71. [PMID: 33794997 PMCID: PMC8015070 DOI: 10.1186/s13195-021-00814-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple pathophysiological processes have been described in Alzheimer's disease (AD). Their inter-individual variations, complex interrelations, and relevance for clinical manifestation and disease progression remain poorly understood. We hypothesize that specific molecular patterns indicating both known and yet unidentified pathway alterations are associated with distinct aspects of AD pathology. METHODS We performed multi-level cerebrospinal fluid (CSF) omics in a well-characterized cohort of older adults with normal cognition, mild cognitive impairment, and mild dementia. Proteomics, metabolomics, lipidomics, one-carbon metabolism, and neuroinflammation related molecules were analyzed at single-omic level with correlation and regression approaches. Multi-omics factor analysis was used to integrate all biological levels. Identified analytes were used to construct best predictive models of the presence of AD pathology and of cognitive decline with multifactorial regression analysis. Pathway enrichment analysis identified pathway alterations in AD. RESULTS Multi-omics integration identified five major dimensions of heterogeneity explaining the variance within the cohort and differentially associated with AD. Further analysis exposed multiple interactions between single 'omics modalities and distinct multi-omics molecular signatures differentially related to amyloid pathology, neuronal injury, and tau hyperphosphorylation. Enrichment pathway analysis revealed overrepresentation of the hemostasis, immune response, and extracellular matrix signaling pathways in association with AD. Finally, combinations of four molecules improved prediction of both AD (protein 14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2) and cognitive decline (protein 14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and monocyte chemoattractant protein-1). CONCLUSIONS Applying an integrative multi-omics approach we report novel molecular and pathways alterations associated with AD pathology. These findings are relevant for the development of personalized diagnosis and treatment approaches in AD.
Collapse
Affiliation(s)
- Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mojgan Masoodi
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
| | - Gene L. Bowman
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Department of Neurology, NIA-Layton Aging and Alzheimer’s Disease Center, Oregon Health & Science University, Portland, USA
| | - Julius Popp
- Old Age Psychiatry, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Centre for Gerontopsychiatric Medicine, Minervastrasse 145, P.O. Box 341, 8032 Zürich, Switzerland
| |
Collapse
|
8
|
Liu X, Du L, Zhang B, Zhao Z, Gao W, Liu B, Liu J, Chen Y, Wang Y, Yu H, Ma G. Alterations and Associations Between Magnetic Susceptibility of the Basal Ganglia and Diffusion Properties in Alzheimer's Disease. Front Neurosci 2021; 15:616163. [PMID: 33664645 PMCID: PMC7921325 DOI: 10.3389/fnins.2021.616163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022] Open
Abstract
This study adopted diffusion tensor imaging to detect alterations in the diffusion parameters of the white matter fiber in Alzheimer’s disease (AD) and used quantitative susceptibility mapping to detect changes in magnetic susceptibility. However, whether the changes of susceptibility values due to excessive iron in the basal ganglia have correlations with the alterations of the diffusion properties of the white matter in patients with AD are still unknown. We aim to investigate the correlations among magnetic susceptibility values of the basal ganglia, diffusion indexes of the white matter, and cognitive function in patients with AD. Thirty patients with AD and nineteen healthy controls (HCs) were recruited. Diffusion indexes of the whole brain were detected using tract-based spatial statistics. The caudate nucleus, putamen, and globus pallidus were selected as regions of interest, and their magnetic susceptibility values were measured. Compared with HCs, patients with AD showed that there were significantly increased axial diffusivity (AxD) in the internal capsule, superior corona radiata (SCR), and right anterior corona radiata (ACR); increased radial diffusivity (RD) in the right anterior limb of the internal capsule, ACR, and genu of the corpus callosum (GCC); and decreased fractional anisotropy (FA) in the right ACR and GCC. The alterations of RD values, FA values, and susceptibility values of the right caudate nucleus in patients with AD were correlated with cognitive scores. Besides, AxD values in the right internal capsule, ACR, and SCR were positively correlated with the magnetic susceptibility values of the right caudate nucleus in patients with AD. Our findings revealed that the magnetic susceptibility of the caudate nucleus may be an MRI-based biomarker of the cognitive dysfunction of AD and abnormal excessive iron distribution in the basal ganglia had adverse effects on the diffusion properties of the white matter.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Lei Du
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Zifang Zhao
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Wenwen Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Jian Liu
- Department of Ultrasound Diagnosis, China-Japan Friendship Hospital, Beijing, China
| | - Yue Chen
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yige Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
9
|
Martínez-García I, Hernández-Soto R, Villasana-Salazar B, Ordaz B, Peña-Ortega F. Alterations in Piriform and Bulbar Activity/Excitability/Coupling Upon Amyloid-β Administration in vivo Related to Olfactory Dysfunction. J Alzheimers Dis 2021; 82:S19-S35. [PMID: 33459655 DOI: 10.3233/jad-201392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β peptide (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. METHODS Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.
Collapse
Affiliation(s)
- Ignacio Martínez-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
10
|
Effect of Amyloid-β Monomers on Lipid Membrane Mechanical Parameters-Potential Implications for Mechanically Driven Neurodegeneration in Alzheimer's Disease. Int J Mol Sci 2020; 22:ijms22010018. [PMID: 33375009 PMCID: PMC7792773 DOI: 10.3390/ijms22010018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that results in memory loss and the impairment of cognitive skills. Several mechanisms of AD’s pathogenesis were proposed, such as the progressive accumulation of amyloid-β (Aβ) and τ pathology. Nevertheless, the exact neurodegenerative mechanism of the Aβ remains complex and not fully understood. This paper proposes an alternative hypothesis of the mechanism based on maintaining the neuron membrane’s mechanical balance. The incorporation of Aβ decreases the lipid membrane’s elastic properties, which eventually leads to the impairment of membrane clustering, disruption of mechanical wave propagation, and change in gamma oscillations. The first two disrupt the neuron’s ability to function correctly while the last one decreases sensory encoding and perception enabling. To begin discussing this mechanical-balance hypothesis, we measured the effect of two selected peptides, Aβ-40 and Aβ-42, as well as their fluorescently labeled modification, on membrane mechanical properties. The decrease of bending rigidity, consistent for all investigated peptides, was observed using molecular dynamic studies and experimental flicker-noise techniques. Additionally, wave propagation was investigated with molecular dynamic studies in membranes with and without incorporated neurodegenerative peptides. A change in membrane behavior was observed in the membrane system with incorporated Aβ.
Collapse
|
11
|
Peña-Ortega F. Brain Arrhythmias Induced by Amyloid Beta and Inflammation: Involvement in Alzheimer’s Disease and Other Inflammation-related Pathologies. Curr Alzheimer Res 2020; 16:1108-1131. [DOI: 10.2174/1567205017666191213162233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
A variety of neurological diseases, including Alzheimer’s disease (AD), involve amyloid beta (Aβ) accumulation and/or neuroinflammation, which can alter synaptic and neural circuit functions. Consequently, these pathological conditions induce changes in neural network rhythmic activity (brain arrhythmias), which affects many brain functions. Neural network rhythms are involved in information processing, storage and retrieval, which are essential for memory consolidation, executive functioning and sensory processing. Therefore, brain arrhythmias could have catastrophic effects on circuit function, underlying the symptoms of various neurological diseases. Moreover, brain arrhythmias can serve as biomarkers for a variety of brain diseases. The aim of this review is to provide evidence linking Aβ and inflammation to neural network dysfunction, focusing on alterations in brain rhythms and their impact on cognition and sensory processing. I reviewed the most common brain arrhythmias characterized in AD, in AD transgenic models and those induced by Aβ. In addition, I reviewed the modulations of brain rhythms in neuroinflammatory diseases and those induced by immunogens, interleukins and microglia. This review reveals that Aβ and inflammation produce a complex set of effects on neural network function, which are related to the induction of brain arrhythmias and hyperexcitability, both closely related to behavioral alterations. Understanding these brain arrhythmias can help to develop therapeutic strategies to halt or prevent these neural network alterations and treat not only the arrhythmias but also the symptoms of AD and other inflammation-related pathologies.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiologia del Desarrollo y Neurofisiologia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Queretaro, Qro., 76230, Mexico
| |
Collapse
|
12
|
Alcantara-Gonzalez D, Villasana-Salazar B, Peña-Ortega F. Single amyloid-beta injection exacerbates 4-aminopyridine-induced seizures and changes synaptic coupling in the hippocampus. Hippocampus 2019; 29:1150-1164. [PMID: 31381216 DOI: 10.1002/hipo.23129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/12/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022]
Abstract
Accumulation of amyloid-beta (Aβ) in temporal lobe structures, including the hippocampus, is related to a variety of Alzheimer's disease symptoms and seems to be involved in the induction of neural network hyperexcitability and even seizures. Still, a direct evaluation of the pro-epileptogenic effects of Aβ in vivo, and of the underlying mechanisms, is missing. Thus, we tested whether the intracisternal injection of Aβ modulates 4-aminopyridine (4AP)-induced epileptiform activity, hippocampal network function, and its synaptic coupling. When tested 3 weeks after its administration, Aβ (but not its vehicle) reduces the latency for 4AP-induced seizures, increases the number of generalized seizures, exacerbates the time to fully recover from seizures, and favors seizure-induced death. These pro-epileptogenic effects of Aβ correlate with a reduction in the power of the spontaneous hippocampal network activity, involving all frequency bands in vivo and only the theta band (4-10 Hz) in vitro. The pro-epileptogenic effects of Aβ also correlate with a reduction of the Schaffer-collateral CA1 synaptic coupling in vitro, which is exacerbated by the sequential bath application of 4-AP and Aβ. In summary, Aβ produces long-lasting pro-epileptic effects that can be due to alterations in the hippocampal circuit, impacting its coordinated network activity and its synaptic efficiency. It is likely that normalizing synaptic coupling and/or coordinated neural network activity (i.e., theta activity) may contribute not only to improve cognitive function in Alzheimer's disease but also to avoid hyperexcitation in conditions of amyloidosis.
Collapse
Affiliation(s)
- David Alcantara-Gonzalez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro, Mexico
| |
Collapse
|
13
|
Morsy A, Trippier PC. Current and Emerging Pharmacological Targets for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2019; 72:S145-S176. [PMID: 31594236 DOI: 10.3233/jad-190744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
No cure or disease-modifying therapy for Alzheimer's disease (AD) has yet been realized. However, a multitude of pharmacological targets have been identified for possible engagement to enable drug discovery efforts for AD. Herein, we review these targets comprised around three main therapeutic strategies. First is an approach that targets the main pathological hallmarks of AD: amyloid-β (Aβ) oligomers and hyperphosphorylated tau tangles which primarily focuses on reducing formation and aggregation, and/or inducing their clearance. Second is a strategy that modulates neurotransmitter signaling. Comprising this strategy are the cholinesterase inhibitors and N-methyl-D-aspartate receptor blockade treatments that are clinically approved for the symptomatic treatment of AD. Additional targets that aim to stabilize neuron signaling through modulation of neurotransmitters and their receptors are also discussed. Finally, the third approach comprises a collection of 'sensitive targets' that indirectly influence Aβ or tau accumulation. These targets are proteins that upon Aβ accumulation in the brain or direct Aβ-target interaction, a modification in the target's function is induced. The process occurs early in disease progression, ultimately causing neuronal dysfunction. This strategy aims to restore normal target function to alleviate Aβ-induced toxicity in neurons. Overall, we generally limit our analysis to targets that have emerged in the last decade and targets that have been validated using small molecules in in vitro and/or in vivo models. This review is not an exhaustive list of all possible targets for AD but serves to highlight the most promising and critical targets suitable for small molecule drug intervention.
Collapse
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Controlled network structures of chitosan-poly(ethylene glycol) hydrogel microspheres and their impact on protein conjugation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Mondragón-Rodríguez S, Gu N, Manseau F, Williams S. Alzheimer's Transgenic Model Is Characterized by Very Early Brain Network Alterations and β-CTF Fragment Accumulation: Reversal by β-Secretase Inhibition. Front Cell Neurosci 2018; 12:121. [PMID: 29867356 PMCID: PMC5952042 DOI: 10.3389/fncel.2018.00121] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is defined by the presence of amyloid-β (Aβ) and tau protein aggregates. However, increasing data is suggesting that brain network alterations rather than protein deposition could account for the early pathogenesis of the disease. In the present study, we performed in vitro extracellular field recordings in the CA1/subiculum area of the hippocampus from 30 days old J20-TG-AD mice. Here, we found that theta oscillations were significantly less rhythmic than those recorded from control group. In addition, J20 mice displayed significantly less theta-gamma cross-frequency coupling (CFC) as peak modulation indexes for slow (25-45 Hz) and fast (150-250 Hz) gamma frequency oscillations were reduced. Because inhibitory parvalbumin (PV) cells play a vital role in coordinating hippocampal theta and gamma oscillations, whole-cell patch-clamp recordings and extracellular stimulation were performed to access their intrinsic and synaptic properties. Whereas neither the inhibitory output of local interneurons to pyramidal cells (PCs) (inhibitory→PC) nor the excitatory output of PCs to PV cells (PC→PV) differed between control and J20 animals, the intrinsic excitability of PV cells was reduced in J20 mice compared to controls. Interestingly, optogenetic activation of PV interneurons which can directly drive theta oscillations in the hippocampus, did not rescue CFC impairments, suggesting the latter did not simply result from alteration of the underlying theta rhythm. Altered young J20 mice was characterized by the presence of β-CTF, but not with Aβ accumulation, in the hippocampus. Importantly, the β secretase inhibitor AZD3839-AstraZeneca significantly rescued the abnormal early electrophysiological phenotype of J20 mice. In conclusion, our data show that brain network alterations precede the canonical Aβ protein deposition and that, such alterations can be related to β-CTF fragment.
Collapse
Affiliation(s)
- Siddhartha Mondragón-Rodríguez
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- CONACYT National Council for Science and Technology, Mexico City, Mexico
- UNAM Developmental Neurobiology and Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico
| | - Ning Gu
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Translational Neuroscience, The Royal Mental Health Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Frederic Manseau
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β. J Alzheimers Dis 2018; 57:205-226. [PMID: 28222502 DOI: 10.3233/jad-160543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.
Collapse
Affiliation(s)
- Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Javier Rodríguez-Colorado
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO, México
| |
Collapse
|
17
|
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular Pathogenesis of Alzheimer's Disease: An Update. Ann Neurosci 2017; 24:46-54. [PMID: 28588356 DOI: 10.1159/000464422] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023] Open
Abstract
Dementia is a chronic or progressive syndrome, characterized by impaired cognitive capacity beyond what could be considered a consequence of normal aging. It affects the memory, thinking process, orientation, comprehension, calculation, learning ability, language, and judgment; although awareness is usually unaffected. Alzheimer's disease (AD) is the most common form of dementia; symptoms include memory loss, difficulty solving problems, disorientation in time and space, among others. The disease was first described in 1906 at a conference in Tubingen, Germany by Alois Alzheimer. One hundred and ten years since its first documentation, many aspects of the pathophysiology of AD have been discovered and understood, however gaps of knowledge continue to exist. This literature review summarizes the main underlying neurobiological mechanisms in AD, including the theory with emphasis on amyloid peptide, cholinergic hypothesis, glutamatergic neurotransmission, the role of tau protein, and the involvement of oxidative stress and calcium.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| | | | - Cecilia Monge-Bonilla
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| |
Collapse
|
18
|
Isla AG, Vázquez-Cuevas FG, Peña-Ortega F. Exercise Prevents Amyloid-β-Induced Hippocampal Network Disruption by Inhibiting GSK3β Activation. J Alzheimers Dis 2016; 52:333-43. [DOI: 10.3233/jad-150352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Arturo G. Isla
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | | | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| |
Collapse
|
19
|
Tiwari MK, Kepp KP. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants. J Alzheimers Dis 2015; 47:215-29. [DOI: 10.3233/jad-150046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
21
|
Amyloid Beta peptides differentially affect hippocampal theta rhythms in vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2013; 2013:328140. [PMID: 23878547 PMCID: PMC3708430 DOI: 10.1155/2013/328140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 12/27/2022]
Abstract
Soluble amyloid beta peptide (A β ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble A β alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different A β peptides, we also compared Aβ 25-35 and Aβ 1-42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μ M). We found that Aβ 25-35 reduces, with less potency than Aβ 1-42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ 25-35 but was reduced by Aβ 1-42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function.
Collapse
|
22
|
Amyloid Beta-Protein and Neural Network Dysfunction. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:657470. [PMID: 26316994 PMCID: PMC4437331 DOI: 10.1155/2013/657470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/06/2012] [Indexed: 01/15/2023]
Abstract
Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ) represents one of the major challenges for Alzheimer's disease (AD) research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG) activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.
Collapse
|
23
|
Alarcón-Aguilar A, González-Puertos VY, Luna-López A, López-Macay A, Morán J, Santamaría A, Königsberg M. Comparing the effects of two neurotoxins in cortical astrocytes obtained from rats of different ages: involvement of oxidative damage. J Appl Toxicol 2012; 34:127-38. [DOI: 10.1002/jat.2841] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, DCBS; Universidad Autónoma Metropolitana Iztapalapa; México D.F. 09340 Mexico
| | | | | | - Ambar López-Macay
- Departamento de Ciencias de la Salud, DCBS; Universidad Autónoma Metropolitana Iztapalapa; México D.F. 09340 Mexico
| | - Julio Morán
- División de Neurociencias, Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; México D.F. 04510 Mexico
| | | | - Mina Königsberg
- Departamento de Ciencias de la Salud, DCBS; Universidad Autónoma Metropolitana Iztapalapa; México D.F. 09340 Mexico
| |
Collapse
|
24
|
¿Existe la enfermedad de Alzheimer en todos los primates? Afección de Alzheimer en primates no humanos y sus implicaciones fisiopatológicas (I). Neurologia 2012; 27:354-69. [DOI: 10.1016/j.nrl.2011.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022] Open
|
25
|
Toledano A, Álvarez M, López-Rodríguez A, Toledano-Díaz A, Fernández-Verdecia C. Does Alzheimer's disease exist in all primates? Alzheimer pathology in non-human primates and its pathophysiological implications (I). NEUROLOGÍA (ENGLISH EDITION) 2012. [DOI: 10.1016/j.nrleng.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Peña-Ortega F, Bernal-Pedraza R. Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. INTERNATIONAL JOURNAL OF PEPTIDES 2012; 2012:236289. [PMID: 22611415 PMCID: PMC3350957 DOI: 10.1155/2012/236289] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/02/2012] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ) oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25-35) reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1-42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch) with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
| | - Ramón Bernal-Pedraza
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM-Campus Juriquilla, 76230 Juriquilla, QRO, Mexico
- Departamento de Farmacobiología, Cinvestav-IPN, Mexico City, DF, Mexico
| |
Collapse
|
27
|
Kang DE, Roh SE, Woo JA, Liu T, Bu JH, Jung AR, Lim Y. The Interface between Cytoskeletal Aberrations and Mitochondrial Dysfunction in Alzheimer's Disease and Related Disorders. Exp Neurobiol 2011; 20:67-80. [PMID: 22110363 PMCID: PMC3213703 DOI: 10.5607/en.2011.20.2.67] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/17/2011] [Indexed: 01/19/2023] Open
Abstract
The major defining pathological hallmarks of Alzheimer's disease (AD) are the accumulations of Aβ in senile plaques and hyperphosphorylated tau in neurofibrillary tangles and neuropil threads. Recent studies indicate that rather than these insoluble lesions, the soluble Aβ oligomers and hyperphosphorylated tau are the toxic agents of AD pathology. Such pathological protein species are accompanied by cytoskeletal changes, mitochondrial dysfunction, Ca2+ dysregulation, and oxidative stress. In this review, we discuss how the binding of Aβ to various integrins, defects in downstream focal adhesion signaling, and activation of cofilin can impact mitochondrial dysfunction, cytoskeletal changes, and tau pathology induced by Aβ oligomers. Such pathological consequences can also feedback to further activate cofilin to promote cofilin pathology. We also suggest that the mechanism of Aβ generation by the endocytosis of APP is mechanistically linked with perturbations in integrin-based focal adhesion signaling, as APP, LRP, and β-integrins are physically associated with each other.
Collapse
Affiliation(s)
- David E Kang
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Mukhamedyarov MA, Teplov AY, Grishin SN, Leushina AV, Zefirov AL, Palotás A. Extraneuronal toxicity of Alzheimer's β-amyloid peptide: Comparative study on vertebrate skeletal muscles. Muscle Nerve 2011; 43:872-7. [DOI: 10.1002/mus.22000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 11/10/2022]
|
29
|
Das N, Dhanawat M, Dash B, Nagarwal R, Shrivastava S. Codrug: An efficient approach for drug optimization. Eur J Pharm Sci 2010; 41:571-88. [DOI: 10.1016/j.ejps.2010.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 09/20/2010] [Accepted: 09/23/2010] [Indexed: 02/06/2023]
|
30
|
Adaya-Villanueva A, Ordaz B, Balleza-Tapia H, Márquez-Ramos A, Peña-Ortega F. Beta-like hippocampal network activity is differentially affected by amyloid beta peptides. Peptides 2010; 31:1761-6. [PMID: 20558221 DOI: 10.1016/j.peptides.2010.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 06/05/2010] [Accepted: 06/06/2010] [Indexed: 01/29/2023]
Abstract
Alzheimer disease (AD) patients show alterations in both neuronal network oscillations and the cognitive processes associated to them. Related to this clinical observation, it has been found that amyloid beta protein (Abeta) differentially affects some hippocampal network activities, reducing theta and gamma oscillations, without affecting sharp waves and ripples. Beta-like oscillations is another cognitive-related network activity that can be evoked in hippocampal slices by several experimental manipulations, including bath application of kainate and increasing extracellular potassium. Here, we tested whether or not different Abeta peptides differentially affect beta-like oscillatory patterns. We specifically tested the effects of fresh dissolved Abeta(25-35) and oligomerized Abeta(1-42) and found that kainate-induced oscillatory network activity was affected, in a slightly concentration dependent-manner, by both fresh dissolved (mostly monomeric) Abeta(25-35) and oligomeric Abeta(1-42). In contrast, potassium-induced oscillatory activity, which is reduced by oligomeric Abeta(1-42), is not affected by monomeric Abeta(25-35) at any of the concentrations tested. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of a generalized inhibitory effect of Abeta peptides on neuronal network function.
Collapse
|
31
|
Peña F, Ordaz B, Balleza-Tapia H, Bernal-Pedraza R, Márquez-Ramos A, Carmona-Aparicio L, Giordano M. Beta-amyloid protein (25-35) disrupts hippocampal network activity: role of Fyn-kinase. Hippocampus 2010; 20:78-96. [PMID: 19294646 DOI: 10.1002/hipo.20592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Early cognitive deficit characteristic of early Alzheimer's disease seems to be produced by the soluble forms of beta-amyloid protein. Such cognitive deficit correlates with neuronal network dysfunction that is reflected as alterations in the electroencephalogram of both Alzheimer patients and transgenic murine models of such disease. Correspondingly, recent studies have demonstrated that chronic exposure to betaAP affects hippocampal oscillatory properties. However, it is still unclear if such neuronal network dysfunction results from a direct action of betaAP on the hippocampal circuit or it is secondary to the chronic presence of the protein in the brain. Therefore, we aimed to explore the effect of acute exposure to betaAP(25-35) on hippocampal network activity both in vitro and in vivo, as well as on intrinsic and synaptic properties of hippocampal neurons. We found that betaAP(25-35), reversibly, affects spontaneous hippocampal population activity in vitro. Such effect is not produced by the inverse sequence betaAP(35-25) and is reproduced by the full-length peptide betaAP(1-42). Correspondingly betaAP(25-35), but not the inverse sequence betaAP(35-25), reduces theta-like activity recorded from the hippocampus in vivo. The betaAP(25-35)-induced disruption in hippocampal network activity correlates with a reduction in spontaneous neuronal activity and synaptic transmission, as well as with an inhibition in the subthreshold oscillations produced by pyramidal neurons in vitro. Finally, we studied the involvement of Fyn-kinase on the betaAP(25-35)-induced disruption in hippocampal network activity in vitro. Interestingly, we found that such phenomenon is not observed in slices obtained from Fyn-knockout mice. In conclusion, our data suggest that betaAP acutely affects proper hippocampal function through a Fyn-dependent mechanism. We propose that such alteration might be related to the cognitive impairment observed, at least, during the early phases of Alzheimer's disease.
Collapse
Affiliation(s)
- Fernando Peña
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados Sede Sur, México, D.F., México.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Med 2009; 12:13-26. [PMID: 19757208 DOI: 10.1007/s12017-009-8091-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/25/2009] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid beta-protein (A beta) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble A beta disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synaptic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble A beta that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of A beta have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble A beta, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of A beta and that targeting muscarinic receptors can indirectly modulate A beta's actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Biotechnology Building and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|