1
|
Sriretnakumar V, Harripaul R, Kennedy JL, So J. When rare meets common: Treatable genetic diseases are enriched in the general psychiatric population. Am J Med Genet A 2024; 194:e63609. [PMID: 38532509 DOI: 10.1002/ajmg.a.63609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Mental illnesses are one of the biggest contributors to the global disease burden. Despite the increased recognition, diagnosis and ongoing research of mental health disorders, the etiology and underlying molecular mechanisms of these disorders are yet to be fully elucidated. Moreover, despite many treatment options available, a large subset of the psychiatric patient population is nonresponsive to standard medications and therapies. There has not been a comprehensive study to date examining the burden and impact of treatable genetic disorders (TGDs) that can present with neuropsychiatric features in psychiatric patient populations. In this study, we test the hypothesis that TGDs that present with psychiatric symptoms are more prevalent within psychiatric patient populations compared to the general population by performing targeted next-generation sequencing of 129 genes associated with 108 TGDs in a cohort of 2301 psychiatric patients. In total, 48 putative affected and 180 putative carriers for TGDs were identified, with known or likely pathogenic variants in 79 genes. Despite screening for only 108 genetic disorders, this study showed a two-fold (2.09%) enrichment for genetic disorders within the psychiatric population relative to the estimated 1% cumulative prevalence of all single gene disorders globally. This strongly suggests that the prevalence of these, and most likely all, genetic diseases is greatly underestimated in psychiatric populations. Increasing awareness and ensuring accurate diagnosis of TGDs will open new avenues to targeted treatment for a subset of psychiatric patients.
Collapse
Affiliation(s)
- Venuja Sriretnakumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ricardo Harripaul
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Joyce So
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, Canada
- Division of Medical Genetics, Departments of Medicine and Pediatrics, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Mastrianni JA, Seibert K. Challenging Cases of Neurocognitive Disorders. Semin Neurol 2022; 42:742-751. [PMID: 36623535 DOI: 10.1055/s-0042-1760378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dementia is broadly defined by DSM-V as cognitive decline from a previous level that impacts the patient's functioning at work or play. This broad definition does not provide information about the underlying disease process, an aspect of clinical care that is of increasing importance, as therapeutic development inches closer to effective disease-modifying treatments. The most common neurodegenerative dementias include Alzheimer's disease, dementia with Lewy bodies, frontotemporal dementia, and Parkinson's disease dementia. Although rare, the prion diseases constitute an important group of dementias that should be routinely considered in the evaluation. Over the last two decades, advances in neuroimaging, biomarker development, and neurogenetics have not only led to a better understanding of the biology of these diseases, but they have improved our awareness of less common clinical subtypes of dementia. As such, to best define the disease process, the evaluation of a patient with cognitive decline requires attention to a myriad of disease aspects, such as the primary symptom at onset (memory, language, visual perception, praxis, etc.), the age at onset (younger or older than 65 years), the rate of disease progression (weeks to months or years), the cognitive and behavioral profile (neuropsychological assessment), and involvement of physical findings. We present here three cases that highlight the decision-making process in the evaluation of patients with atypical presentations of dementia.
Collapse
Affiliation(s)
- James A Mastrianni
- Department of Neurology, Center for Comprehensive Care and Research on Memory Disorders, University of Chicago, Chicago, Illinois
| | - Kaitlin Seibert
- Department of Neurology, Center for Comprehensive Care and Research on Memory Disorders, University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Li ZQ, Li TX, Tian M, Ren ZS, Yuan CY, Yang RK, Shi SJ, Li H, Kou ZZ. Glial cells and neurologic autoimmune disorders. Front Cell Neurosci 2022; 16:1028653. [PMID: 36385950 PMCID: PMC9644207 DOI: 10.3389/fncel.2022.1028653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 12/01/2023] Open
Abstract
Neurologic autoimmune disorders affect people's physical and mental health seriously. Glial cells, as an important part of the nervous system, play a vital role in the occurrence of neurologic autoimmune disorders. Glial cells can be hyperactivated in the presence of autoantibodies or pathological changes, to influence neurologic autoimmune disorders. This review is mainly focused on the roles of glial cells in neurologic autoimmune disorders and the influence of autoantibodies produced by autoimmune disorders on glial cells. We speculate that the possibility of glial cells might be a novel way for the investigation and therapy of neurologic autoimmune disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Li
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Colecraft HM, Trimmer JS. Controlling ion channel function with renewable recombinant antibodies. J Physiol 2022; 600:2023-2036. [PMID: 35238051 PMCID: PMC9058206 DOI: 10.1113/jp282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Selective ion channel modulators play a critical role in physiology in defining the contribution of specific ion channels to physiological function and as proof of concept for novel therapeutic strategies. Antibodies are valuable research tools that have broad uses including defining the expression and localization of ion channels in native tissue, and capturing ion channel proteins for subsequent analyses. In this review, we detail how renewable and recombinant antibodies can be used to control ion channel function. We describe the different forms of renewable and recombinant antibodies that have been used and the mechanisms by which they modulate ion channel function. We highlight the use of recombinant antibodies that are expressed intracellularly (intrabodies) as genetically-encoded tools to control ion channel function. We also offer perspectives of avenues of future research that may be opened by the application of emerging technologies for engineering recombinant antibodies for enhanced utility in ion channel research. Overall, this review provides insights that may help stimulate and guide interested researchers to develop and incorporate renewable and recombinant antibodies as valuable tools to control ion channel function. Abstract figure legend Two different approaches for controlling ion channel function using renewable recombinant antibodies. On the left, an externally applied intact IgG antibody (purple) binds to an extracellular domain of an ion channel (light blue) to control ion channel function. On the right, a genetically-encoded intrabody, in this example a camelid nanobody (green) fused to an effector molecule (red) binds to an intracellular auxiliary subunit of an ion channel (dark blue) to control ion channel function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Henry M Colecraft
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - James S Trimmer
- Department of Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Burbelo PD, Iadarola MJ, Keller JM, Warner BM. Autoantibodies Targeting Intracellular and Extracellular Proteins in Autoimmunity. Front Immunol 2021; 12:548469. [PMID: 33763057 PMCID: PMC7982651 DOI: 10.3389/fimmu.2021.548469] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Detecting autoantibodies provides foundational information for the diagnosis of most autoimmune diseases. An important pathophysiological distinction is whether autoantibodies are directed against extracellular or intracellular proteins. Autoantibodies targeting extracellular domains of proteins, such as membrane receptors, channels or secreted molecules are often directly pathogenic, whereby autoantibody binding to the autoantigen disrupts the normal function of a critical protein or pathway, and/or triggers antibody-dependent cell surface complement killing. By comparison, autoantibodies directed against intracellular proteins are recognized as useful diagnostic biomarkers of abnormal autoimmune activity, but the link between antigenicity and pathogenicity is less straightforward. Because intracellular autoantigens are generally inaccessible to autoantibody binding, for the most part, they do not directly contribute to pathogenesis. In a few diseases, autoantibodies to intracellular targets cause damage indirectly by immune complex formation, immune activation, and other processes. In this review, the general features of and differences between autoimmune diseases segregated on the basis of intracellular or extracellular autoantigens are explored using over twenty examples. Expression profiles of autoantigens in relation to the tissues targeted by autoimmune disease and the temporal appearance of autoantibodies before clinical diagnosis often correlate with whether the respective autoantibodies mostly recognize either intracellular or extracellular autoantigens. In addition, current therapeutic strategies are discussed from this vantage point. One drug, rituximab, depletes CD20+ B-cells and is highly effective for autoimmune disorders associated with autoantibodies against extracellular autoantigens. In contrast, diseases associated with autoantibodies directed predominately against intracellular autoantigens show much more complex immune cell involvement, such as T-cell mediated tissue damage, and require different strategies for optimal therapeutic benefit. Understanding the clinical ramifications of autoimmunity derived by autoantibodies against either intracellular or extracellular autoantigens, or a spectrum of both, has practical implications for guiding drug development, generating monitoring tools, stratification of patient interventions, and designing trials based on predictive autoantibody profiles for autoimmune diseases.
Collapse
Affiliation(s)
- Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jason M Keller
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Portaro S, Biasini F, Bramanti P, Naro A, Calabrò RS. Chronic inflammatory demyelinating polyradiculoneuropathy relapse after mexiletine withdrawal in a patient with concomitant myotonia congenita: A case report on a potential treatment option. Medicine (Baltimore) 2020; 99:e21117. [PMID: 32664137 PMCID: PMC7360317 DOI: 10.1097/md.0000000000021117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION we report on the first case of a woman affected by chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) and recessive myotonia congenita (MC), treated with mexiletine. We aimed at describing the possible role of mexiletine in CIDP management. PATIENT CONCERNS A 44-year-old female affected by CIDP and MC, gained beneficial effects for CIDP symptoms (muscle weakness, cramps, and fatigue) and relapses, after mexiletine intake (200 mg twice a day). The patient presented with detrimental effects after mexiletine drop out, with a worsening of CIDP symptoms. INTERVENTIONS The patient reported a nearly complete remission of muscle stiffness and weakness up to 3 years since mexiletine intake. Then, she developed an allergic reaction with glottis edema, maybe related to mexiletine intake, as per emergency room doctors' evaluation, who suggested withdrawing the drug. OUTCOMES The patient significantly worsened after the medication drop out concerning both CIDP and MC symptoms. CONCLUSION This is the first report on the association of CIDP and MC in the same patient. Such diseases may share some clinical symptoms related to a persistent sodium currents increase, which maybe due either to the over-expression of sodium channels following axonal damage due to demyelination or to the chloride channel genes mutations. This is the possible reason why mexiletine maybe promising to treat CIDP symptoms.
Collapse
|
7
|
Pérez CA, Shah EG, Butler IJ. Mercury-induced autoimmunity: Report of two adolescent siblings with Morvan syndrome "plus" and review of the literature. J Neuroimmunol 2020; 342:577197. [PMID: 32126315 DOI: 10.1016/j.jneuroim.2020.577197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Heavy metal toxicity is a global health concern. Mercury intoxication has been implicated in the etiology and pathogenesis of autoimmune disease, including Morvan syndrome. We describe two siblings with overlapping features of distinct autoimmune syndromes following accidental exposure to elemental mercury. Morvan syndrome was the predominant clinical phenotype. In addition to the characteristic anti-leucine-rich glioma-inactivated protein 1 (LGI1) and anti-contactin-associated protein-like 2 (Caspr2) autoantibodies, glutamic acid decarboxylase 65-kilodalton isoform (GAD65), and N-type and P/Q-type voltage-gated calcium channel (VGCC) antibodies were detected. Treatment with chelation therapy, glucocorticoids, and intravenous immunoglobulin was unsuccessful, but complete resolution of symptoms was achieved following treatment with rituximab. Herein, we perform an extensive review of the literature with a focus on the emerging concepts of mercury-induced autoimmunity and the role of mercury in the etiopathogenesis of autoimmune diseases of the nervous system.
Collapse
Affiliation(s)
- Carlos A Pérez
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Ekta G Shah
- Division of Child and Adolescent Neurology, Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ian J Butler
- Division of Child and Adolescent Neurology, Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
8
|
Schlansky K, Facer B, Tanguturi YC, Cundiff AW, Fuchs DC. Pediatric Acute-Onset Neuropsychiatric Syndrome and Catatonia: A Case Report. PSYCHOSOMATICS 2020; 61:86-91. [PMID: 31079934 DOI: 10.1016/j.psym.2019.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
|
9
|
Stepp KA, Folker C, Tanzer M, Hayman J, Reynolds T, Mallory L. Autoimmune Voltage-Gated Potassium Channelopathy Presenting With Catecholamine Excess. Pediatr Neurol 2017; 72:86-89. [PMID: 28511811 DOI: 10.1016/j.pediatrneurol.2017.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Autoimmune voltage-gated potassium channelopathies have been associated with a range of neurological presenting symptoms, including central, peripheral, and autonomic dysfunction. PATIENT DESCRIPTION We describe a 12-year-old boy who presented with nine months of pain, anxiety, and 30-pound weight loss. He was admitted for failure to thrive, then noted to be persistently hypertensive and tachycardic. Plasma metanephrines and urine metanephrines and catecholamines were elevated. Extensive investigation for causes of elevated catecholamines, such as hyperthyroidism or catecholamine-secreting tumor, was negative. A paraneoplastic panel was positive for voltage-gated potassium channel antibodies. Treatment with intravenous immunoglobulin and pulse methylprednisolone led to complete resolution of symptoms, weight gain, and normalization of vital signs and plasma metanephrines. CONCLUSION Voltage-gated potassium channel antibodies should be considered as part of the differential in patients presenting with elevated metanephrine and catecholamine secretion.
Collapse
Affiliation(s)
- K Amy Stepp
- Department of Pediatrics, Maine Medical Center's Barbara Bush Children's Hospital, Portland, Maine.
| | - Christin Folker
- Department of Pediatrics, Maine Medical Center's Barbara Bush Children's Hospital, Portland, Maine
| | - Marie Tanzer
- Department of Pediatric Nephrology, Maine Medical Center's Barbara Bush Children's Hospital, Portland, Maine
| | - Jennifer Hayman
- Department of Pediatrics, Maine Medical Center's Barbara Bush Children's Hospital, Portland, Maine
| | - Thomas Reynolds
- Department of Pediatric Neurology, Maine Medical Center's Barbara Bush Children's Hospital, Portland, Maine
| | - Leah Mallory
- Department of Pediatrics, Maine Medical Center's Barbara Bush Children's Hospital, Portland, Maine
| |
Collapse
|
10
|
O’Sullivan B, Steele T, Ellul M, Kirby E, Duale A, Kier G, Crooks D, Jacob A, Solomon T, Michael B. When should we test for voltage-gated potassium channel complex antibodies? A retrospective case control study. J Clin Neurosci 2016; 33:198-204. [DOI: 10.1016/j.jocn.2016.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 12/22/2022]
|
11
|
A case of encephalomyeloradiculopathy in a non-carcinomatous patient associated with P/Q type voltage gated calcium channel antibodies. J Clin Neurosci 2016; 33:232-233. [DOI: 10.1016/j.jocn.2016.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/20/2022]
|
12
|
Pancreatic Neuroendocrine Tumor Associated With Antibodies to Voltage-Gated Potassium Channels: A Case Report and Review of the Literature. Pancreas 2016; 45:e42-3. [PMID: 27518365 DOI: 10.1097/mpa.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
13
|
Touzet C. Morvan's syndrome and the sustained absence of all sleep rhythms for months or years: An hypothesis. Med Hypotheses 2016; 94:51-4. [PMID: 27515199 DOI: 10.1016/j.mehy.2016.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 01/03/2023]
Abstract
Despite the predation costs, sleep is ubiquitous in the animal realm. Humans spend a third of their life sleeping, and the quality of sleep has been related to co-morbidity, Alzheimer disease, etc. Excessive wakefulness induces rapid changes in cognitive performances, and it is claimed that one could die of sleep deprivation as quickly as by absence of water. In this context, the fact that a few people are able to go without sleep for months, even years, without displaying any cognitive troubles requires explanations. Theories ascribing sleep to memory consolidation are unable to explain such observations. It is not the case of the theory of sleep as the hebbian reinforcement of the inhibitory synapses (ToS-HRIS). Hebbian learning (Long Term Depression - LTD) guarantees that an efficient inhibitory synapse will lose its efficiency just because it is efficient at avoiding the activation of the post-synaptic neuron. This erosion of the inhibition is replenished by hebbian learning (Long Term Potentiation - LTP) when pre and post-synaptic neurons are active together - which is exactly what happens with the travelling depolarization waves of the slow-wave sleep (SWS). The best documented cases of months-long insomnia are reports of patients with Morvan's syndrome. This syndrome has an autoimmune cause that impedes - among many things - the potassium channels of the post-synaptic neurons, increasing LTP and decreasing LTD. We hypothesize that the absence of inhibitory efficiency erosion during wakefulness (thanks to a decrease of inhibitory LTD) is the cause for an absence of slow-wave sleep (SWS), which results also in the absence of REM sleep.
Collapse
Affiliation(s)
- Claude Touzet
- Aix Marseille Univ, CNRS, Neurosciences Intégratives et Adaptatives UMR 7260, 13331 Marseille, France.
| |
Collapse
|
14
|
Frolov RV, Weckström M. Harnessing the Flow of Excitation: TRP, Voltage-Gated Na(+), and Voltage-Gated Ca(2+) Channels in Contemporary Medicine. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:25-95. [PMID: 26920687 DOI: 10.1016/bs.apcsb.2015.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted.
Collapse
Affiliation(s)
- Roman V Frolov
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland.
| | - Matti Weckström
- Division of Biophysics, Department of Physics, University of Oulu, Oulun Yliopisto, Finland
| |
Collapse
|
15
|
Simma N, Bose T, Kahlfuss S, Mankiewicz J, Lowinus T, Lühder F, Schüler T, Schraven B, Heine M, Bommhardt U. NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells. Cell Commun Signal 2014; 12:75. [PMID: 25477292 PMCID: PMC4269920 DOI: 10.1186/s12964-014-0075-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Since the non-competitive NMDAR antagonist memantine is clinically applied to treat advanced Alzheimer`s disease and ketamine is supposed to improve the course of resistant depression, it is important to know how these drugs affect B-cell function. RESULTS Non-competitive NMDAR antagonists impaired B-cell receptor (BCR)- and lipopolysaccharide (LPS)-induced B-cell proliferation, reduced B-cell migration towards the chemokines SDF-1α and CCL21 and downregulated IgM and IgG secretion. Mechanistically, these effects were mediated through a blockade of Kv1.3 and KCa3.1 potassium channels and resulted in an attenuated Ca(2+)-flux and activation of Erk1/2, Akt and NFATc1. Interestingly, NMDAR antagonist treatment increased the frequency of IL-10 producing B cells after BCR/CD40 stimulation. CONCLUSIONS Non-competitive NMDAR antagonists attenuate BCR and Toll-like receptor 4 (TLR4) B-cell signaling and effector function and can foster IL-10 production. Consequently, NMDAR antagonists may be useful to target B cells in autoimmune diseases or pathological systemic inflammation. The drugs' additional side effects on B cells should be considered in treatments of neuronal disorders with NMDAR antagonists.
Collapse
Affiliation(s)
- Narasimhulu Simma
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Tanima Bose
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Judith Mankiewicz
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and The Hertie Foundation, Waldweg 33, 37073, Göttingen, Germany.
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| | - Martin Heine
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
16
|
Abstract
Channelopathies are a heterogeneous group of disorders resulting from the dysfunction of ion channels located in the membranes of all cells and many cellular organelles. These include diseases of the nervous system (e.g., generalized epilepsy with febrile seizures plus, familial hemiplegic migraine, episodic ataxia, and hyperkalemic and hypokalemic periodic paralysis), the cardiovascular system (e.g., long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia), the respiratory system (e.g., cystic fibrosis), the endocrine system (e.g., neonatal diabetes mellitus, familial hyperinsulinemic hypoglycemia, thyrotoxic hypokalemic periodic paralysis, and familial hyperaldosteronism), the urinary system (e.g., Bartter syndrome, nephrogenic diabetes insipidus, autosomal-dominant polycystic kidney disease, and hypomagnesemia with secondary hypocalcemia), and the immune system (e.g., myasthenia gravis, neuromyelitis optica, Isaac syndrome, and anti-NMDA [N-methyl-D-aspartate] receptor encephalitis). The field of channelopathies is expanding rapidly, as is the utility of molecular-genetic and electrophysiological studies. This review provides a brief overview and update of channelopathies, with a focus on recent advances in the pathophysiological mechanisms that may help clinicians better understand, diagnose, and develop treatments for these diseases.
Collapse
Affiliation(s)
- June-Bum Kim
- Department of Pediatrics, Seoul Children's Hospital, Seoul, Korea
| |
Collapse
|
17
|
Abstract
Many neurologic diseases cause discrete episodic impairment in contrast with progressive deterioration. The symptoms of these episodic disorders exhibit striking variety. Herein we review what is known of the phenotypes, genetics, and pathophysiology of episodic neurologic disorders. Of these, most are genetically complex, with unknown or polygenic inheritance. In contrast, a fascinating panoply of episodic disorders exhibit Mendelian inheritance. We classify episodic Mendelian disorders according to the primary neuroanatomical location affected: skeletal muscle, cardiac muscle, neuromuscular junction, peripheral nerve, or central nervous system (CNS). Most known Mendelian mutations alter genes that encode membrane-bound ion channels. These mutations cause ion channel dysfunction, which ultimately leads to altered membrane excitability as manifested by episodic disease. Other Mendelian disease genes encode proteins essential for ion channel trafficking or stability. These observations have cemented the channelopathy paradigm, in which episodic disorders are conceptualized as disorders of ion channels. However, we expand on this paradigm to propose that dysfunction at the synaptic and neuronal circuit levels may underlie some episodic neurologic entities.
Collapse
Affiliation(s)
- Jonathan F Russell
- Department of Neurology, Howard Hughes Medical Institute, School of Medicine, University of California-San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
18
|
|