1
|
Baek SH, Hong S, Kim E, Park S, Lee M, Park J, Cho Y, Yoon H, Kim D, Yun Y, Kim Y, Choi Y, Kang K, Jung S, Kim JP, Kim E, Seo SW, Jung YK, Jo DG. A Novel RAGE Modulator Induces Soluble RAGE to Reduce BACE1 Expression in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407812. [PMID: 39755927 DOI: 10.1002/advs.202407812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/12/2024] [Indexed: 01/06/2025]
Abstract
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology. The research reveals that the anticancer agent 6-thioguanosine (6-TG) markedly diminishes BACE1 expression without eliciting cytotoxicity while enhancing microglial phagocytic activity, and ameliorate cognitive impairments with reducing Aβ accumulation in AD mice. Leveraging advanced deep learning-based tool for target identification, and corroborating with surface plasmon resonance assays, it is elucidated that 6-TG directly interacts with RAGE, modulating BACE1 expression through the JAK2-STAT1 pathway and elevating soluble RAGE (sRAGE) levels in the brain. The findings illuminate the therapeutic potential of 6-TG in ameliorating AD manifestations and advocate for small molecule strategies to increase brain sRAGE levels, offering a strategic alternative to the challenges posed by the complexity of AD.
Collapse
Affiliation(s)
- Seung-Hyun Baek
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suji Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunae Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunyoung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minyoung Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jinsu Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | | | - Youngkwang Yun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youbin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Keunsoo Kang
- Deargen Inc., Daejeon, 34051, Republic of Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, 13496, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06355, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Cai W, Li L, Sang S, Pan X, Zhong C. Physiological Roles of β-amyloid in Regulating Synaptic Function: Implications for AD Pathophysiology. Neurosci Bull 2023; 39:1289-1308. [PMID: 36443453 PMCID: PMC10387033 DOI: 10.1007/s12264-022-00985-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The physiological functions of endogenous amyloid-β (Aβ), which plays important role in the pathology of Alzheimer's disease (AD), have not been paid enough attention. Here, we review the multiple physiological effects of Aβ, particularly in regulating synaptic transmission, and the possible mechanisms, in order to decipher the real characters of Aβ under both physiological and pathological conditions. Some worthy studies have shown that the deprivation of endogenous Aβ gives rise to synaptic dysfunction and cognitive deficiency, while the moderate elevation of this peptide enhances long term potentiation and leads to neuronal hyperexcitability. In this review, we provide a new view for understanding the role of Aβ in AD pathophysiology from the perspective of physiological meaning.
Collapse
Affiliation(s)
- Wenwen Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Linxi Li
- Basic Medical College, Nanchang University, Nanchang, 330031, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Park JS, Rehman IU, Choe K, Ahmad R, Lee HJ, Kim MO. A Triterpenoid Lupeol as an Antioxidant and Anti-Neuroinflammatory Agent: Impacts on Oxidative Stress in Alzheimer's Disease. Nutrients 2023; 15:3059. [PMID: 37447385 DOI: 10.3390/nu15133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Liu Y, Zhou G, Song L, Wen Q, Xie S, Chen L, Wang L, Xie X, Chen X, Pu Y, Chen G. DEAD-Box Helicase 17 Promotes Amyloidogenesis by Regulating BACE1 Translation. Brain Sci 2023; 13:brainsci13050745. [PMID: 37239217 DOI: 10.3390/brainsci13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Amyloidogenesis is one of the key pathophysiological changes in Alzheimer's disease (AD). Accumulation of the toxic Aβ results from the catalytic processing of β-amyloid precursor protein (APP) associated β-amyloid converting enzyme 1 (BACE1) activity. It is reported that dead-box helicase 17 (DDX17) controls RNA metabolism and is involved in the development of multiple diseases. However, whether DDX17 might play a role in amyloidogenesis has not been documented. In the present study, we found that DDX17 protein level was significantly increased in HEK and SH-SY5Y cells that stably express full-length APP (HEK-APP and Y5Y-APP) and in the brain of APP/PS1 mice, an animal model of AD. DDX17 knockdown, as opposed to DDX17 overexpression, markedly reduced the protein levels of BACE1 and the β-amyloid peptide (Aβ) in Y5Y-APP cells. We further found that DDX17-mediated enhancement of BACE1 was selectively attenuated by translation inhibitors. Specifically, DDX17 selectively interacted with the 5' untranslated region (5'UTR) of BACE1 mRNA, and deletion of the 5'UTR abolished the effect of DDX17 on luciferase activity or protein level of BACE1. Here, we show that the enhanced expression of DDX17 in AD was associated with amyloidogenesis; through the 5'UTR-dependent BACE1 translation, DDX17 might serve as an important mediator contributing to the progression of AD.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guifeng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Qixin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Shiqi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Long Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiaoyong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Yalan Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
6
|
Martins MM, Branco PS, Ferreira LM. Enhancing the Therapeutic Effect in Alzheimer's Disease Drugs: The role of Polypharmacology and Cholinesterase inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202300461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- M. Margarida Martins
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| | - Paula S. Branco
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| | - Luísa M. Ferreira
- Department of Chemistry NOVA School of Science and Technology Campus da Caparica 2825-149 Caparica Portugal
| |
Collapse
|
7
|
Tautou M, Descamps F, Larchanché PE, Buée L, El Bakali J, Melnyk P, Sergeant N. A Polyaminobiaryl-Based β-secretase Modulator Alleviates Cognitive Impairments, Amyloid Load, Astrogliosis, and Neuroinflammation in APPSwe/PSEN1ΔE9 Mice Model of Amyloid Pathology. Int J Mol Sci 2023; 24:ijms24065285. [PMID: 36982363 PMCID: PMC10048993 DOI: 10.3390/ijms24065285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The progress in Alzheimer’s disease (AD) treatment suggests a combined therapeutic approach targeting the two lesional processes of AD, which include amyloid plaques made of toxic Aβ species and neurofibrillary tangles formed of aggregates of abnormally modified Tau proteins. A pharmacophoric design, novel drug synthesis, and structure-activity relationship enabled the selection of a polyamino biaryl PEL24-199 compound. The pharmacologic activity consists of a non-competitive β-secretase (BACE1) modulatory activity in cells. Curative treatment of the Thy-Tau22 model of Tau pathology restores short-term spatial memory, decreases neurofibrillary degeneration, and alleviates astrogliosis and neuroinflammatory reactions. Modulatory effects of PEL24-199 towards APP catalytic byproducts are described in vitro, but whether PEL24-199 can alleviate the Aβ plaque load and associated inflammatory counterparts in vivo remains to be elucidated. We investigated short- and long-term spatial memory, Aβ plaque load, and inflammatory processes in APPSwe/PSEN1ΔE9 PEL24-199 treated transgenic model of amyloid pathology to achieve this objective. PEL24-199 curative treatment induced the recovery of spatial memory and decreased the amyloid plaque load in association with decreased astrogliosis and neuroinflammation. The present results underline the synthesis and selection of a promising polyaminobiaryl-based drug that modulates both Tau and, in this case, APP pathology in vivo via a neuroinflammatory-dependent process.
Collapse
Affiliation(s)
- Marie Tautou
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Florian Descamps
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, 59045 Lille, France
| | - Jamal El Bakali
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Correspondence: (P.M.); (N.S.); Tel.: +33-663101728 (N.S.)
| | - Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, 59045 Lille, France
- Correspondence: (P.M.); (N.S.); Tel.: +33-663101728 (N.S.)
| |
Collapse
|
8
|
Zhai Z, Xie D, Qin T, Zhong Y, Xu Y, Sun T. Effect and Mechanism of Exogenous Melatonin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic review and Meta-analysis. Neuroscience 2022; 505:91-110. [PMID: 36116555 DOI: 10.1016/j.neuroscience.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Melatonin (MT) has been reported to control and prevent Alzheimer's disease (AD) in the clinic; however, the effect and mechanism of MT on AD have not been specifically described. Therefore, the main purpose of this meta-analysis was to explore the effect and mechanism of MT on AD models by studying behavioural indicators and pathological features. Seven databases were searched and 583 articles were retrieved. Finally, nine studies (13 analyses, 294 animals) were included according to pre-set criteria. Three authors independently judged the selected literature and the methodological quality. Meta-analysis showed that MT markedly ameliorated the learning ability by reducing the escape latency (EL), and the memory deficit was significantly corrected by increasing the dwell time in the target quadrant and crossings over the platform location in the Morris Water Maze (MWM). Among the pathological features, subgroup analysis found that MT may ease the symptoms of AD mainly by reducing the deposition of Aβ40 and Aβ42 in the cortex. In addition, MT exerted a superior effect on ameliorating the learning ability of senescence-related and metabolic AD models, and corrected the memory deficit of the toxin-induced AD model. The study was registered at PROSPERO (CRD42021226594).
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Ugbaja SC, Lawal IA, Abubakar BH, Mushebenge AG, Lawal MM, Kumalo HM. Allostery Inhibition of BACE1 by Psychotic and Meroterpenoid Drugs in Alzheimer's Disease Therapy. Molecules 2022; 27:4372. [PMID: 35889246 PMCID: PMC9320338 DOI: 10.3390/molecules27144372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
In over a century since its discovery, Alzheimer's disease (AD) has continued to be a global health concern due to its incurable nature and overwhelming increase among older people. In this paper, we give an overview of the efforts of researchers towards identifying potent BACE1 exosite-binding antibodies and allosteric inhibitors. Herein, we apply computer-aided drug design (CADD) methods to unravel the interactions of some proposed psychotic and meroterpenoid BACE1 allosteric site inhibitors. This study is aimed at validating the allosteric potentials of these selected compounds targeted at BACE1 inhibition. Molecular docking, molecular dynamic (MD) simulations, and post-MD analyses are carried out on these selected compounds, which have been experimentally proven to exhibit allosteric inhibition on BACE1. The SwissDock software enabled us to identify more than five druggable pockets on the BACE1 structural surface using docking. Besides the active site region, a melatonin derivative (compound 1) previously proposed as a BACE1 allostery inhibitor showed appreciable stability at eight different subsites on BACE1. Refinement with molecular dynamic (MD) simulations shows that the identified non-catalytic sites are potential allostery sites for compound 1. The allostery and binding mechanism of the selected potent inhibitors show that the smaller the molecule, the easier the attachment to several enzyme regions. This finding hereby establishes that most of these selected compounds failed to exhibit strong allosteric binding with BACE1 except for compound 1. We hereby suggest that further studies and additional identification/validation of other BACE1 allosteric compounds be done. Furthermore, this additional allosteric site investigation will help in reducing the associated challenges with designing BACE1 inhibitors while exploring the opportunities in the design of allosteric BACE1 inhibitors.
Collapse
Affiliation(s)
- Samuel C. Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Isiaka A. Lawal
- Chemistry Department, Faculty of Applied and Computer Science, Vanderbijlpark Campus, Vaal University of Technology, Vanderbijlpark 1900, South Africa;
| | - Bahijjahtu H. Abubakar
- The Renewable Energy Programme, Federal Ministry of Environment, Aguiyi Ironsi St, Maitama, Abuja 904101, Nigeria;
| | - Aganze G. Mushebenge
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Monsurat M. Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| | - Hezekiel M. Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa; (A.G.M.); (M.M.L.)
| |
Collapse
|
10
|
Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022; 27:molecules27134175. [PMID: 35807418 PMCID: PMC9268689 DOI: 10.3390/molecules27134175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD.
Collapse
|
11
|
The "Cerebrospinal Fluid Sink Therapeutic Strategy" in Alzheimer's Disease-From Theory to Design of Applied Systems. Biomedicines 2022; 10:biomedicines10071509. [PMID: 35884814 PMCID: PMC9313192 DOI: 10.3390/biomedicines10071509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a global health problem, with incidence and prevalence considered to increase during the next decades. However, no currently available effective treatment exists despite numerous clinical trials in progress. Moreover, although many hypotheses are accepted regarding the pathophysiological mechanisms of AD onset and evolution, there are still many unknowns about the disorder. A relatively new approach, based on the amyloid-beta dynamics among different biological compartments, is currently intensely discussed, as it seems to offer a promising solution with significant therapeutic impact. Known as the “cerebrospinal-fluid-sink therapeutic strategy”, part of the “three-sink therapeutic strategy”, this theoretical model focuses on the dynamics of amyloid-beta among the three main liquid compartments of the human body, namely blood, cerebrospinal fluid, and the (brain) interstitial fluid. In this context, this article aims to describe in detail the abovementioned hypothesis, by reviewing in the first part the most relevant anatomical and physiological aspects of amyloid-beta dynamics. Subsequently, explored therapeutic strategies based on the clearance of amyloid-beta from the cerebrospinal fluid level are presented, additionally highlighting their limitations. Finally, the originality and novelty of this work rely on the research experience of the authors, who focus on implantable devices and their utility in AD treatment.
Collapse
|
12
|
Marko DM, MacPherson REK. APP Processing: A Biochemical Competition Influenced by Exercise-Induced Signaling Mediators? Am J Physiol Regul Integr Comp Physiol 2022; 323:R169-R180. [PMID: 35608263 DOI: 10.1152/ajpregu.00297.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are becoming more common in aging our society. One specific neuropathological hallmark of this disease is excessive accumulation of amyloid-β (Aβ) peptides, which can aggregate to form the plaques commonly associated with this disease. These plaques are often observed well before clinical diagnosis of AD. At the cellular level, both production and aggregation of Aβ peptides in the brain is detrimental to neuronal cell production, survival, and function, as well as often resulting in neuronal dysfunction and death. Exercise and physical activity have been shown to improve overall health, including brain health, and in the last several years there has been evidence to support that exercise may be able to regulate Aβ peptide production in the brain. Exercise promotes the release of a wide array of signaling mediators from various metabolically active tissues and organs in the body. These exercise-induced signaling mediators could be the driving force behind some of the beneficial effects observed in brain with exercise. This review will aim to discuss potential exercise-induced signaling mediators with the capacity to influence various proteins involved in the formation of Aβ peptide production in the brain.
Collapse
Affiliation(s)
- Daniel M Marko
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
13
|
Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A Key Regulator in Alzheimer's Disease Progression and Current Development of its Inhibitors. Curr Neuropharmacol 2022; 20:1174-1193. [PMID: 34852746 PMCID: PMC9886827 DOI: 10.2174/1570159x19666211201094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD. OBJECTIVE This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD. METHODS We have searched and collected the relevant quality work from PubMed using the following keywords "BACE1", BACE2", "inhibitors", and "Alzheimer's disease". In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors. RESULTS In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression. CONCLUSION BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.
Collapse
Affiliation(s)
| | - Ankush Vardhaman Bansoad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Rakesh Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, ,Address correspondence to this author at the Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, India, 226002; E-mail: ,
| |
Collapse
|
14
|
Cervellati C, Valacchi G, Zuliani G. BACE1: from biomarker to Alzheimer's disease therapeutical target. Aging (Albany NY) 2021; 13:12299-12300. [PMID: 33982671 PMCID: PMC8148506 DOI: 10.18632/aging.203064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, 44121, Italy
| | - Giuseppe Valacchi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy.,Plants for Human Health Institute, Animal Science Department, NC State University, Kannapolis, NC, 28081, USA.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|