1
|
De Barros Oliveira R, Anselmi M, Marchette RCN, Roversi K, Fadanni GP, De Carvalho LM, Damasceno S, Heinrich IA, Leal RB, Cavalli J, Moreira-Júnior RE, Godard ALB, Izídio GS. Differential expression of alpha-synuclein in the hippocampus of SHR and SLA16 isogenic rat strains. Behav Brain Res 2024; 461:114835. [PMID: 38151185 DOI: 10.1016/j.bbr.2023.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Two inbred strains, Lewis (LEW) and Spontaneously Hypertensive Rats (SHR), are well-known for their contrasting behavior related to anxiety/emotionality. Studies with these two strains led to the discovery of the Quantitative Trait Loci (QTL) on chromosome 4 (Anxrr16). To better understand the influences of this genomic region, the congenic rat strain SLA16 (SHR.LEW-Anxrr16) was developed. SLA16 rats present higher hyperactivity/impulsivity, deficits in learning and memory, and lower basal blood pressure than the SHR strain, even though genetic differences between them are only in chromosome 4. Thus, the present study proposed the alpha-synuclein and the dopaminergic system as candidates to explain the differential behavior of SHR and SLA16 strains. To accomplish this, beyond the behavioral analysis, we performed (I) the Snca gene expression and (II) quantification of the alpha-synuclein protein in the hippocampus (HPC), prefrontal cortex (PFC), and striatum (STR) of SHR and SLA16 strains; (III) sequencing of the 3'UTR of the Snca gene; and (IV) evaluation of miRNA binding in the 3'UTR site. A Single Nucleotide Polymorphism (SNP) was identified in the 3'UTR of the Snca gene, which exhibited upregulation in the HPC of SHR compared to SLA16 females. Alpha-synuclein protein was higher in the HPC of SHR males compared to SLA16 males. The results of this work suggested that differences in alpha-synuclein HPC content could be influenced by miRNA regulation and associated with behavioral differences between SHR and SLA16 animals.
Collapse
Affiliation(s)
- Rachel De Barros Oliveira
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Mayara Anselmi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Katiane Roversi
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Guilherme Pasetto Fadanni
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luana Martins De Carvalho
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samara Damasceno
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rodrigo Bainy Leal
- Programa de Pós-Graduação em Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Juliana Cavalli
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Curitibanos, Brazil
| | | | - Ana Lúcia Brunialti Godard
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geison Souza Izídio
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
Fadanni GP, Leão AHFF, Granzotto N, Pereira AG, de Gois AM, Anjos PAR, Linder ÁE, Santos JR, Silva RH, Izídio GS. Genetic effects in a progressive model of parkinsonism induced by reserpine. Psychopharmacology (Berl) 2023; 240:1131-1142. [PMID: 36964320 DOI: 10.1007/s00213-023-06350-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE AND METHODS We investigated the locomotor, emotional, physiological, and neurobiological effects induced by low-dose reserpine repeated treatment (0.1 mg/kg; 14 injections) in males from the Lewis (LEW), Spontaneously Hypertensive Rats (SHR), and SHR.LEW-(D4Rat76-D4Mgh11) (SLA16) isogenic rat strains, which have different genetic backgrounds on chromosome 4. Behavioral responses in the catalepsy, open-field, and oral movements' tests were coupled with blood pressure, body weight, and striatal tyrosine hydroxylase (TH) level assessments to establish neurobiological comparisons between reserpine-induced impairments and genetic backgrounds RESULTS: Results revealed the SHR strain was more sensitive in the catalepsy test and exhibited higher TH immunoreactivity in the dorsal striatum. The SLA16 strain presented more oral movements, suggesting increased susceptibility to develop oral dyskinesia. CONCLUSIONS Our results showed the efficacy of repeated treatment with a low dose of reserpine and demonstrated, for the first time, the genetic influence of a specific region of chromosome 4 on the expression of these effects.
Collapse
Affiliation(s)
- Guilherme Pasetto Fadanni
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Natalli Granzotto
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Guimarães Pereira
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Auderlan Mendonça de Gois
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Pâmela Andressa Ramborger Anjos
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Áurea Elizabeth Linder
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - José Ronaldo Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Brazil
| | - Regina Helena Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Geison Souza Izídio
- Graduate Program of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
- Biological Sciences Center, Cellular Biology, Embryology and Genetics Department, Behavioral Genetics Laboratory, Federal University of Santa Catarina, 88.040-900, Florianópolis, SC, Brazil.
| |
Collapse
|