1
|
Liang X, Li Y, Wang P, Liu H. Key regulators of vascular calcification in chronic kidney disease: Hyperphosphatemia, BMP2, and RUNX2. PeerJ 2024; 12:e18063. [PMID: 39308809 PMCID: PMC11416758 DOI: 10.7717/peerj.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Collapse
Affiliation(s)
- Xinhua Liang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Yankun Li
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Peng Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
3
|
Ji N, Yu Z. IL-6/Stat3 suppresses osteogenic differentiation in ossification of the posterior longitudinal ligament via miR-135b-mediated BMPER reduction. Cell Tissue Res 2023; 391:145-157. [PMID: 36305971 DOI: 10.1007/s00441-022-03694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
Interleukin-6 (IL-6) has been reported to induce osteogenic differentiation of mesenchymal stem cells for increasing bone regeneration, while the role of IL-6 in osteogenic differentiation during ossification of the posterior longitudinal ligament (OPLL) remains to be determined. The current study aims to explore the downstream mechanism of IL-6 in cyclic tensile strain (CTS)-stimulated OPLL, which involves bioinformatically identified microRNA-135b (miR-135b). Initially, we clinically collected posterior longitudinal ligament (PLL) and ossified PLL tissues, from which ossified PLL cells were isolated, respectively. The obtained data revealed a greater osteogenic property of ossified PLL than non-ossified PLL cells. The effect of regulatory axis comprising IL-6, Stat3, miR-135b, and BMPER on osteogenic differentiation of CTS-stimulated ossified PLL cells was examined with gain- and loss-of-function experiments. BMPER was confirmed as a target gene to miR-135b. Knockdown of BMPER or overexpression of miR-135b inhibited the osteogenic differentiation of CTS-induced ossification in PLL cells. Besides, IL-6 promoted the post-transcriptional process to mature miR-135b via Stat3 phosphorylation. In conclusion, IL-6 inhibited CTS-induced osteogenic differentiation by inducing miR-135b-mediated inhibition of BMPER through Stat3 activation.
Collapse
Affiliation(s)
- Nan Ji
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China
| | - Zhuoli Yu
- Department of Orthopedics, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
4
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
5
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
6
|
Chen C, Li Y, Lu H, Liu K, Jiang W, Zhang Z, Qin X. Curcumin attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis. Exp Biol Med (Maywood) 2022; 247:1420-1432. [PMID: 35666058 PMCID: PMC9493763 DOI: 10.1177/15353702221095456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vascular calcification (VC) is the most widespread pathological change in diseases of the vascular system. However, we do not have a good understanding of the molecular mechanisms and effective therapeutic approaches for VC. Curcumin (CUR) is a natural polyphenolic compound that has hypolipidemic, anti-inflammatory, and antioxidant effects on the cardiovascular system. Exosomes are known to have extensive miRNAs for intercellular regulation. This study investigated whether CUR attenuates VC by affecting the secretion of exosomal miRNAs. Calcification models were established in vivo and in vitro using vitamin D3 and β-glycerophosphate, respectively. Appropriate therapeutic concentrations of CUR were detected on vascular smooth muscle cells (VSMCs) using a cell counting kit 8. Exosomes were extracted by super speed centrifugation from the supernatant of cultured VSMCs and identified by transmission electron microscopy and particle size analysis. Functional and phenotypic experiments were performed in vitro to verify the effects of CUR and exosomes secreted by VSMCs treated with CUR on calcified VSMCs. Compared with the calcified control group, both CUR and exosomes secreted by VSMCs after CUR intervention attenuated calcification in VSMCs. Real-Time quantitative PCR (RT-qPCR) experiments showed that miR-92b-3p, which is important for alleviating VC, was expressed highly in both VSMCs and exosomes after CUR intervention. The mimic miR-92b-3p significantly decreased the expression of transcription factor KLF4 and osteogenic factor RUNX2 in VSMCs, while the inhibitor miR-92b-3p had the opposite effect. Based on bioinformatics databases and dual luciferase experiments, the prospective target of miR-92b-3p was determined to be KLF4. Both mRNA and protein of RUNX2 were decreased and increased in VSMCs by inhibiting and overexpressing of KLF4, respectively. In addition, in the rat calcification models, CUR attenuated vitamin D3-induced VC by increasing miR-92b-3p expression and decreasing KLF4 expression in the aorta. In conclusion, our study suggests that CUR attenuates vascular calcification via the exosomal miR-92b-3p/KLF4 axis.
Collapse
Affiliation(s)
- Chuanzhen Chen
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yaodong Li
- Department of Vascular Surgery, Tianjin
Hospital, Tianjin 300211, P.R. China
| | - Hailin Lu
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Kai Liu
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenhong Jiang
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhanman Zhang
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao Qin
- Department of Vascular Surgery, The
First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China,Xiao Qin.
| |
Collapse
|
7
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X, Fan JM. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis 2022; 13:673-697. [PMID: 35656113 PMCID: PMC9116919 DOI: 10.14336/ad.2021.1024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a devastating condition resulting from irreversible loss of nephron numbers and function and leading to end-stage renal disease and mineral disorders. Vascular calcification, an ectopic deposition of calcium-phosphate salts in blood vessel walls and heart valves, is an independent risk factor of cardiovascular morbidity and mortality in chronic kidney disease. Moreover, aging and related metabolic disorders are essential risk factors for chronic kidney disease and vascular calcification. Marked progress has been recently made in understanding and treating vascular calcification in chronic kidney disease. However, there is a paucity of systematic reviews summarizing this progress, and investigating unresolved issues is warranted. In this systematic review, we aimed to overview the underlying mechanisms of vascular calcification in chronic kidney diseases and discuss the impact of chronic kidney disease on the pathophysiology of vascular calcification. Additionally, we summarized potential clinical diagnostic biomarkers and therapeutic applications for vascular calcification with chronic kidney disease. This review may offer new insights into the pathogenesis, diagnosis, and therapeutic intervention of vascular calcification.
Collapse
Affiliation(s)
- Si-Chong Ren
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Mao
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Si Yi
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| | - Xin Ma
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Jia-Qiong Zou
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| |
Collapse
|
8
|
Qin Z, Chang K, Liao R, Jiang L, Yang Q, Su B. Greater Dietary Inflammatory Potential Is Associated With Higher Likelihood of Abdominal Aortic Calcification. Front Cardiovasc Med 2021; 8:720834. [PMID: 34485417 PMCID: PMC8414543 DOI: 10.3389/fcvm.2021.720834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
Aims: We aimed to assess the association between dietary inflammation index (DII) and abdominal aortic calcification (AAC) in US adults aged ≥40 years. Methods: Data were obtained from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Participants who were <40 years old and missing the data of DII and AAC were excluded. DII was calculated based on a 24-h dietary recall interview for each participant. AAC score was quantified by assessing lateral spine images and severe AAC was defined as AAC score >6. Weighted multivariable regression analysis and subgroup analysis were preformed to estimate the independent relationship between DII with AAC score and severe AAC. Results: A total of 2,897 participants were included with the mean DII of -0.17 ± 2.80 and the mean AAC score of 1.462 ± 3.290. The prevalence of severe AAC was 7.68% overall, and participants in higher DII quartile tended to have higher rates of severe AAC (Quartile 1: 5.03%, Quartile 2: 7.44%, Quartile 3: 8.38%, Quartile 4: 10.46%, p = 0.0016). A positive association between DII and AAC score was observed (β = 0.055, 95% CI: 0.010, 0.101, p = 0.01649), and higher DII was associated with an increased risk of severe AAC (OR = 1.067, 95% CI: 1.004, 1.134, p = 0.03746). Subgroup analysis indicated that this positive association between DII and AAC was similar in population with differences in gender, age, BMI, hypertension status, and diabetes status and could be appropriate for different population settings. Conclusion: Higher pro-inflammatory diet was associated with higher AAC score and increased risk of severe AAC. Anti-inflammatory dietary management maybe beneficial to reduce the risk of AAC.
Collapse
Affiliation(s)
- Zheng Qin
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Kaixi Chang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Qinbo Yang
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Abstract
Atherosclerosis is the leading cause of acute cardiovascular events, and vascular calcification is an important pathological phenomenon in atherosclerosis. Recently, many studies have shown that immune cells are closely associated with the development of atherosclerosis and calcification, but there are many conflicting viewpoints because of immune system complications, such as the pro-atherosclerotic and atheroprotective effects of regulatory B cells (Bregs), T helper type 2 (Th2) cells and T helper type 17 (Th17) cells. In this review, we summarize the studies on the roles of immune cells, especially lymphocytes and macrophages, in atherosclerotic calcification. Furthermore, we prepared graphs showing the relationship between T cells, B cells and macrophages and atherosclerotic calcification. Finally, we highlight some potential issues that are closely associated with the function of immune cells in atherosclerotic calcification. Based on current research results, this review summarizes the relationship between immune cells and atherosclerotic calcification, and it will be beneficial to understand the relationship of immune cells and atherosclerotic calcification.
Collapse
Affiliation(s)
- Jingsong Cao
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Metabolism and Endocrinology, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
10
|
Zhou X, Yang D, Ding X, Xu P. Clinical value of microRNA-135a and MMP-13 in colon cancer. Oncol Lett 2021; 22:583. [PMID: 34122634 PMCID: PMC8190779 DOI: 10.3892/ol.2021.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the expression and prognostic value of microRNA-135a (miR-135a) and matrix metalloproteinase-13 (MMP-13) in serum of colon cancer (CC). A total of 117 cases of patients admitted to Sheng Li Oil Field Central Hospital from May 2015 to May 2017 were enrolled in the research group (RG), and 120 cases of subjects undergoing normal health examination were included in the control group (CG). The expression of miR-135 and MMP-13 in peripheral blood of the two groups were compared, and their values were analyzed. It was found that miR-135a was decreased and MMP-13 was increased in the RG (P<0.050), both of which were closely related to the pathological features and prognosis of CC (P<0.050), and was also significantly correlated with CEA (P<0.001). ROC curve analysis showed that both of them had great predictive value for the occurrence, prognosis and death of CC. In conclusion, miR-135a was low expressed in CC, while MMP-13 was increased in CC, suggesting that the combined detection of the two had a good diagnostic effect on the occurrence of CC, and was closely related to the prognosis of CCC patients, which might be an excellent potential indicator for the diagnosis and treatment of CC in the future.
Collapse
Affiliation(s)
- Xinjun Zhou
- Department of General Surgery, Sheng Li Oil Field Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Dong Yang
- Department of General Surgery, Sheng Li Oil Field Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Xiping Ding
- Department of General Surgery, Sheng Li Oil Field Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Peisheng Xu
- Department of General Surgery, Sheng Li Oil Field Central Hospital, Dongying, Shandong 257000, P.R. China
| |
Collapse
|
11
|
Ryu J, Ahn Y, Kook H, Kim YK. The roles of non-coding RNAs in vascular calcification and opportunities as therapeutic targets. Pharmacol Ther 2020; 218:107675. [PMID: 32910935 DOI: 10.1016/j.pharmthera.2020.107675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Vascular calcification (VC) is characterized by an accumulation of calcium phosphate crystals inside the vessel wall. VC is often associated with diabetes, chronic kidney disease (CKD), atherosclerosis, and cardiovascular disease (CVD). Even though the number of patients with VC remains prevalent, there are still no approved therapies for the treatment of VC. Since the pathogenesis of VC is diverse and involves multiple factors and mechanisms, it is critical to reveal the novel mechanisms involved in VC. Although protein-coding RNAs involved in VC have been extensively studied, the roles of non-coding RNAs (ncRNAs) are not yet fully understood. The field of ncRNAs has recently received attention, and accumulating evidence from studies in VC suggests that ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play an important role in the regulation of VC. NcRNAs can modulate VC by acting as promoters or inhibitors and may be useful in the clinical diagnosis and treatment of VC. In this article, we review and discuss ncRNAs that regulate VC and present the therapeutic implications of these ncRNAs.
Collapse
Affiliation(s)
- Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Youngkeun Ahn
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Jeollanam-do, Republic of Korea; Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea; Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.
| |
Collapse
|
12
|
Chen Y, Guo H, Li L, Bao D, Gao F, Li Q, Huang Q, Duan X, Xiang Z. Long Non-Coding RNA (lncRNA) Small Nucleolar RNA Host Gene 15 (SNHG15) Alleviates Osteoarthritis Progression by Regulation of Extracellular Matrix Homeostasis. Med Sci Monit 2020; 26:e923868. [PMID: 32643707 PMCID: PMC7370589 DOI: 10.12659/msm.923868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growing evidence suggests that long non-coding RNAs (lncRNAs), as decoys of microRNAs (miRNAs), are involved in osteoarthritis (OA) progression, but the potential mechanism of lncRNA SNHG15 in OA remains unknown. Thus, the present study explored the molecular mechanism of SNHG15 in OA progression. MATERIAL AND METHODS OA chondrocytes were created by 20 ng/ml IL-1ß stimulation, and the experimental OA model was created by destabilization of the medial meniscus (DMM) surgery. Cartilage histomorphology was observed by safranin and fast green double dyeing. The relationships between SNHG15 and miR-7, KLF4, and miR-7 were determined by dual-luciferase assay or RNA immunoprecipitation (RIP). Immunofluorescence was used to detect the expressions of Ki67, collagen II, and Aggrecan. Moreover, SNHG15, miR-7, KLF4, MMP3, ADAMTS5, COL2A1, Aggrecan, and ß-catenin expressions were assessed by qRT-PCR or Western blot. The methylation status of SNHG15 promoter was evaluated by MS-PCR. RESULTS Underexpression of KLF4 and SHNG15 and overexpression of miR-7 were found in human OA knee cartilage tissues and IL-1ß-stimulated OA chondrocytes. SHNG15 overexpression significantly inhibited ECM degradation and promoted chondrocyte formation of OA chondrocytes. Furthermore, SNHG15 regulated KLF4 expression by sponging miR-7. Further analysis found that SNHG15 significantly inhibited b-catenin in OA chondrocytes. SNHG15 had a higher level of methylation in human OA tissues than in normal cartilage tissues. CONCLUSIONS Our results revealed that SNHG15 alleviated OA progression by regulating ECM homeostasis, which provides a promising target for OA therapy.
Collapse
Affiliation(s)
- Yunping Chen
- Department of Clinical Laboratory Medicine, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Hongna Guo
- Department of Clinical Laboratory Medicine, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Lang Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China (mainland)
| | - Dingsu Bao
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland).,Department of Orthopedics, Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Feng Gao
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China (mainland)
| | - Qiang Li
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China (mainland)
| | - Qi Huang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan, China (mainland)
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
13
|
The Epigenetic Landscape of Vascular Calcification: An Integrative Perspective. Int J Mol Sci 2020; 21:ijms21030980. [PMID: 32024140 PMCID: PMC7037112 DOI: 10.3390/ijms21030980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Vascular calcification (VC) is an important complication among patients of advanced age, those with chronic kidney disease, and those with diabetes mellitus. The pathophysiology of VC encompasses passive occurrence of physico-chemical calcium deposition, active cellular secretion of osteoid matrix upon exposure to metabolically noxious stimuli, or a variable combination of both processes. Epigenetic alterations have been shown to participate in this complex environment, through mechanisms including DNA methylation, non-coding RNAs, histone modifications, and chromatin changes. Despite such importance, existing reviews fail to provide a comprehensive view of all relevant reports addressing epigenetic processes in VC, and cross-talk between different epigenetic machineries is rarely examined. We conducted a systematic review based on PUBMED and MEDLINE databases up to 30 September 2019, to identify clinical, translational, and experimental reports addressing epigenetic processes in VC; we retrieved 66 original studies, among which 60.6% looked into the pathogenic role of non-coding RNA, followed by DNA methylation (12.1%), histone modification (9.1%), and chromatin changes (4.5%). Nine (13.6%) reports examined the discrepancy of epigenetic signatures between subjects or tissues with and without VC, supporting their applicability as biomarkers. Assisted by bioinformatic analyses blending in each epigenetic component, we discovered prominent interactions between microRNAs, DNA methylation, and histone modification regarding potential influences on VC risk.
Collapse
|
14
|
Noncoding RNAs in Vascular Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7914957. [PMID: 31998442 PMCID: PMC6969641 DOI: 10.1155/2020/7914957] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Increases in age are accompanied by vascular aging, which can lead to a variety of chronic diseases, including atherosclerosis and hypertension. Noncoding RNAs (ncRNAs) have become a research hotspot in different fields of life sciences in recent years. For example, these molecules have been found to have regulatory roles in many physiological and pathological processes. Many studies have shown that microRNAs (miRNAs) and long ncRNAs (lncRNAs) also play a regulatory role in vascular aging. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are important components of blood vessels, and the senescence of both cell types promotes the occurrence of vascular aging. This review provides a contemporary update on the molecular mechanisms underlying the senescence of ECs and VSMCs and the regulatory role of miRNAs and lncRNAs in this process.
Collapse
|
15
|
Shoeibi S. Diagnostic and theranostic microRNAs in the pathogenesis of atherosclerosis. Acta Physiol (Oxf) 2020; 228:e13353. [PMID: 31344321 DOI: 10.1111/apha.13353] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a group of small single strand and noncoding RNAs that regulate several physiological and molecular signalling pathways. Alterations of miRNA expression profiles may be involved with pathophysiological processes underlying the development of atherosclerosis and cardiovascular diseases, including changes in the functions of the endothelial cells and vascular smooth muscle cells, such as cell proliferation, migration and inflammation, which are involved in angiogenesis, macrophage function and foam cell formation. Thus, miRNAs can be considered to have a crucial role in the progression, modulation and regulation of every stage of atherosclerosis. Such potential biomarkers will enable us to predict therapeutic response and prognosis of cardiovascular diseases and adopt effective preclinical and clinical treatment strategies. In the present review article, the current data regarding the role of miRNAs in atherosclerosis were summarized and the potential miRNAs as prognostic, diagnostic and theranostic biomarkers in preclinical and clinical studies were further discussed. The highlights of this review are expected to present opportunities for future research of clinical therapeutic approaches in vascular diseases resulting from atherosclerosis with an emphasis on miRNAs.
Collapse
Affiliation(s)
- Sara Shoeibi
- Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
16
|
Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1810-1821. [DOI: 10.1016/j.bbadis.2018.08.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
17
|
Voelkl J, Lang F, Eckardt KU, Amann K, Kuro-O M, Pasch A, Pieske B, Alesutan I. Signaling pathways involved in vascular smooth muscle cell calcification during hyperphosphatemia. Cell Mol Life Sci 2019; 76:2077-2091. [PMID: 30887097 PMCID: PMC6502780 DOI: 10.1007/s00018-019-03054-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.
Collapse
MESH Headings
- Animals
- Calcium Phosphates/chemistry
- Calcium Phosphates/metabolism
- Cell Transdifferentiation
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Gene Expression Regulation
- Humans
- Hyperphosphatemia/complications
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Hyperphosphatemia/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Osteoblasts/metabolism
- Osteoblasts/pathology
- RANK Ligand/genetics
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/complications
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
Collapse
Affiliation(s)
- Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany.
| | - Florian Lang
- Department of Physiology I, Eberhard-Karls University, Wilhelmstr. 56, 72076, Tübingen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353, Berlin, Germany
| | - Kerstin Amann
- Department of Nephropathology, Universität Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Makoto Kuro-O
- Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Andreas Pasch
- Calciscon AG, Aarbergstrasse 5, 2560, Nidau-Biel, Switzerland
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Str. 2, 10178, Berlin, Germany
| |
Collapse
|
18
|
Wei H, Liu R, Guo X, Zhou Y, Sun B, Wang J. miRNA‑135a regulates Hut78 cell proliferation via the GATA‑3/TOX signaling pathway. Mol Med Rep 2019; 19:2361-2367. [PMID: 30747224 DOI: 10.3892/mmr.2019.9885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/22/2018] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the role of microRNA‑135a (miR‑135a) in cutaneous T‑cell lymphoma (CTCL) proliferation. Compared with the normal T lymphocyte control cell line, the mRNA and protein levels of GATA binding protein 3 (GATA‑3) were markedly increased in the Hut78 cell line and miR‑135a was markedly decreased (P<0.05). Based on bioinformatics, the target gene of miR‑135a was identified as GATA‑3. Dual luciferase and pre‑miR‑135a assays showed that miR‑135a regulated the translation of GATA‑3. In addition, the overexpression of miR‑135a mimics decreased the protein levels of GATA‑3 and thymocyte selection‑associated high mobility group box (TOX). The substantially increased mRNA and protein levels of GATA‑3 may be associated with the downregulation of miR‑135a, leading to T‑cell deregulation and proliferation through GATA‑3/TOX regulation and subsequently causing CTCL.
Collapse
Affiliation(s)
- Hong Wei
- Department of Dermatology, The First Hospital of Zibo City, Zibo, Shandong 255200, P.R. China
| | - Ruifeng Liu
- Department of Dermatology, Taiyuan Center Hospital, Taiyuan, Shanxi 030009, P.R. China
| | - Xvli Guo
- Department of Respiratory Medicine, Jinzhong Hospital of Traditional Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Yin Zhou
- Department of Medical Cosmetology, Peace Hospital, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Bo Sun
- Department of Dermatology, The First Affiliated Hospital of Henan University, Zhengzhou, Henan 450052, P.R. China
| | - Jialin Wang
- Department of Dermatology, The First Hospital of Zibo City, Zibo, Shandong 255200, P.R. China
| |
Collapse
|
19
|
Li J, Li P, Zhao Y, Ma X, He R, Liang K, Zhang E. Retracted Article: MicroRNA-135a alleviates lipid accumulation and inflammation of atherosclerosis through targeting lipoprotein lipase. RSC Adv 2019; 9:28213-28221. [PMID: 35530477 PMCID: PMC9071038 DOI: 10.1039/c9ra05176g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) have recently attracted increasing attention for their involvement in atherosclerosis (AS). The purpose of this study was to further explore the function and underlying mechanism of miR-135a in AS progression. The expression levels of miR-135a and lipoprotein lipase (LPL) mRNA were detected by qRT-PCR, and LPL protein expression was measured by western blotting. The levels of blood lipids and inflammatory cytokines, and LPL activity were assessed using corresponding Assay Kits, and an HPLC assay was used to determine the levels of free cholesterol (FC), total cholesterol (TC) and cholesterol ester (CE). A Dil-oxLDL binding assay was performed to evaluate the ability of cholesterol uptake. The direct interaction between miR-135a and LPL was confirmed by a dual-luciferase reporter assay and RNA immunoprecipitation assay. Our data indicated that miR-135a was downregulated in serum samples of AS patients and mice. Upregulation of miR-135a alleviated lipid metabolic disorders and inflammation in AS mice. Moreover, miR-135a negatively regulated lipid accumulation and inflammation in ox-LDL-treated THP-1 macrophages. Mechanistically, miR-135a directly targeted LPL and repressed LPL expression. LPL mediated the regulatory effect of miR-135a on lipid accumulation and inflammation in ox-LDL-treated THP-1 macrophages. In conclusion, our study indicated that miR-135a upregulation ameliorated lipid accumulation and inflammation at least partly by targeting LPL in THP-1 macrophages, highlighting miR-135a as a potential antiatherogenic agent. MicroRNAs (miRNAs) have recently attracted increasing attention for their involvement in atherosclerosis (AS).![]()
Collapse
Affiliation(s)
- Juan Li
- Department of Cardiology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Peng Li
- Department of Cardiology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Yanzhuo Zhao
- Department of Cardiology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Xiang Ma
- Department of Cardiology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Ruili He
- Department of Cardiology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Ketai Liang
- Department of Cardiology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| | - Erwei Zhang
- Department of Cardiology
- Huaihe Hospital of Henan University
- Kaifeng
- China
| |
Collapse
|
20
|
Schurgers LJ, Akbulut AC, Kaczor DM, Halder M, Koenen RR, Kramann R. Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Front Cardiovasc Med 2018; 5:36. [PMID: 29682509 PMCID: PMC5897433 DOI: 10.3389/fcvm.2018.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The ageing population continues to suffer from its primary killer, cardiovascular disease (CVD). Despite recent advances in interventional medicinal and surgical therapies towards the end of the 20th century, the epidemic of cardiovascular disease has not been halted. Yet, rather than receding globally, the burden of CVD has risen to become a top cause of morbidity and mortality worldwide. Most CVD arises from thrombotic rupture of an atherosclerotic plaque, the pathologic thickening of coronary and carotid artery segments and subsequent distal ischemia in heart or brain. In fact, one-fifth of deaths are directly attributable to thrombotic rupture of a vulnerable plaque. Atherosclerotic lesion formation is caused by a concert of interactions between circulating leukocytes and platelets, interacting with the endothelial barrier, signalling into the arterial wall by the release of cytokines and extracellular vesicles (EVs). Both platelet- and cell-derived EVs represent a novel mechanism of cellular communication, particularly by the transport and transfer of cargo and by reprogramming of the recipient cell. These interactions result in phenotypic switching of vascular smooth muscle cells (VSMCs) causing migration and proliferation, and subsequent secretion of EVs. Loss of VSMCs attracts perivascular Mesenchymal Stem Cells (MSCs) from the adventitia, which are a source of VSMCs and contribute to repair after vascular injury. However, continuous stress stimuli eventually switch phenotype of cells into osteochondrogenic VSMCs facilitating vascular calcification. Although Virchow’s triad is over 100 years old, it is a reality that is accurate today. It can be briefly summarised as changes in the composition of blood (platelet EVs), alterations in the vessel wall (VSMC phenotypic switching, MSC infiltration and EV release) and disruption of blood flow (atherothrombosis). In this paper, we review the latest relevant advances in the identification of extracellular vesicle pathways as well as VSMCs and pericyte/MSC phenotypic switching, underlying vascular calcification.
Collapse
Affiliation(s)
- Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Dawid M Kaczor
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Maurice Halder
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Imamura K, Tachi K, Takayama T, Shohara R, Kasai H, Dai J, Yamano S. Released fibroblast growth factor18 from a collagen membrane induces osteoblastic activity involved with downregulation of miR-133a and miR-135a. J Biomater Appl 2018; 32:1382-1391. [PMID: 29544382 DOI: 10.1177/0885328218763318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a unique delivery system of growth factors using collagen membranes (CMs) to induce bone regeneration. We hypothesized that fibroblast growth factor18 (FGF-18), a pleiotropic protein that stimulates proliferation in several tissues, can be a good candidate to use our delivery system for bone regeneration. Cell viability, cell proliferation, alkaline phosphatase activity, mineralization, and marker gene expression of osteoblastic differentiation were evaluated after mouse preosteoblasts were cultured with a CM containing FGF-18, a CM containing platelet-derived growth factor, or a CM alone. Furthermore, expression of microRNA, especially miR-133a and miR-135a involving inhibition of osteogenic factors, was measured in preosteoblasts with CM/FGF-18 or CM alone. A sustained release of FGF-18 from the CM was observed over 21 days. CM/FGF-18 significantly promoted cell proliferation, alkaline phosphatase activity, and mineralization compared to CM alone. Gene expression of type I collagen, runt-related transcription factor 2, osteocalcin, Smad5, and osteopontin was significantly upregulated in CM/FGF-18 compared to CM alone, and similar to CM/platelet-derived growth factor. Additionally, CM/FGF-18 downregulated expression of miR-133a and miR-135a. These results suggested that released FGF-18 from a CM promotes osteoblastic activity involved with downregulation of miR-133a and miR-135a.
Collapse
Affiliation(s)
- Kentaro Imamura
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA.,2 Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Keita Tachi
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Tadahiro Takayama
- 3 Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Ryutaro Shohara
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Hironori Kasai
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| | - Jisen Dai
- 4 Mouse Genotyping Core, New York University Langone Medical Center, NY, USA
| | - Seiichi Yamano
- 1 Department of Prosthodontics, 70241 New York University College of Dentistry , NY, USA
| |
Collapse
|
22
|
Alkagiet S, Tziomalos K. Vascular calcification: the role of microRNAs. Biomol Concepts 2018; 8:119-123. [PMID: 28426428 DOI: 10.1515/bmc-2017-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/21/2017] [Indexed: 01/22/2023] Open
Abstract
Vascular calcification represents the deposition of calcium phosphate salts in the tunica media of the vascular wall. It occurs during aging but is accelerated and pronounced in patients with diabetes mellitus, chronic kidney disease (CKD) and established cardiovascular disease. Due to the loss of elasticity of the vessel wall, vascular calcification might result in left ventricular hypertrophy and compromise coronary perfusion. Accordingly, several studies showed that vascular calcification is associated with increased risk for cardiovascular morbidity and mortality. Accumulating data suggest that microRNAs (miRs) play an important role in vascular calcification. A variety of miRs have been implicated in the development of vascular calcification, whereas others appear to play a protective role. Accordingly, miRs might represent promising targets for the prevention of vascular calcification and its adverse cardiovascular sequelae. However, given the complexity of regulation of this process and the multitude of miRs involved, more research is needed to identify the optimal candidate miRs for targeting.
Collapse
|
23
|
Li Y, Zhu Y, Li G, Xiao J. Noncoding RNAs in Cardiovascular Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:37-53. [PMID: 30232751 DOI: 10.1007/978-981-13-1117-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With a progressively growing elderly population, aging-associated cardiovascular diseases and other pathologies have brought great burden to the economy, society, and individuals. Therefore, identifying therapeutic targets and developing effective strategies to prevent from cardiovascular aging are highly needed. Accumulating evidences suggest that noncoding RNAs (ncRNAs) such as microRNAs and long noncoding RNAs (lncRNAs) play important roles in regulating gene expression, which contributes to many pathophysiological processes of cellular senescence, aging, and aging-related diseases in cardiovascular systems. Here we provided a general overview of ncRNAs as well as the underlying mechanisms involved in cardiovascular aging. Although the importance of ncRNAs in cardiovascular aging has been reported and commonly acknowledged, further studies are still necessary to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yongqin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
24
|
Epigenetic Regulation of Vascular Aging and Age-Related Vascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:55-75. [PMID: 30232752 DOI: 10.1007/978-981-13-1117-8_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vascular aging refers to the structural and functional defects that occur in the aorta during the aging process and is characterized by increased vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Vascular aging is a major risk factor for vascular diseases. However, the current understanding of the biological process of vascular aging and age-related diseases is insufficient. Epigenetic regulation can influence gene expression independently of the gene sequence and mainly includes DNA methylation, histone modifications, and RNA-based gene regulation. Epigenetic regulation plays important roles in many physiological and pathophysiological processes and may explain some gaps in our knowledge regarding the interaction between genes and diseases. In this review, we summarize recent advances in the understanding of the epigenetic regulation of vascular aging and age-related diseases in terms of vascular cell senescence, vascular dyshomeostasis, and vascular remodeling. Moreover, the possibility of targeting epigenetic regulation to delay vascular aging and treat age-related vascular diseases is also discussed.
Collapse
|
25
|
Nanoudis S, Pikilidou M, Yavropoulou M, Zebekakis P. The Role of MicroRNAs in Arterial Stiffness and Arterial Calcification. An Update and Review of the Literature. Front Genet 2017; 8:209. [PMID: 29312437 PMCID: PMC5733083 DOI: 10.3389/fgene.2017.00209] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Arterial stiffness is an independent risk factor for fatal and non-fatal cardiovascular events, such as systolic hypertension, coronary artery disease, stroke, and heart failure. Moreover it reflects arterial aging which in many cases does not coincide with chronological aging, a fact that is in large attributed to genetic factors. In addition to genetic factors, microRNAs (miRNAs) seem to largely affect arterial aging either by advancing or by regressing arterial stiffness. MiRNAs are small RNA molecules, ~22 nucleotides long that can negatively control their target gene expression posttranscriptionally. Pathways that affect main components of stiffness such as fibrosis and calcification seem to be influenced by up or downregulation of specific miRNAs. Identification of this aberrant production of miRNAs can help identify epigenetic changes that can be therapeutic targets for prevention and treatment of vascular diseases. The present review summarizes the specific role of the so far discovered miRNAs that are involved in pathways of arterial stiffness.
Collapse
Affiliation(s)
- Sideris Nanoudis
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Maria Pikilidou
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Maria Yavropoulou
- Division of Endocrinology and Metabolism, AHEPA University Hospital, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Hypertension Excellence Center, 1st Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
26
|
An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. J Neurosci 2017; 38:613-630. [PMID: 29196317 DOI: 10.1523/jneurosci.0662-17.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 01/08/2023] Open
Abstract
During embryonic development, axons extend over long distances to establish functional connections. In contrast, axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing CNS regeneration. Here, we performed one of the first miRNome-wide functional miRNA screens to identify miRNAs with robust effects on axon growth. High-content screening identified miR-135a and miR-135b as potent stimulators of axon growth and cortical neuron migration in vitro and in vivo in male and female mice. Intriguingly, both of these developmental effects of miR-135s relied in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon growth and regeneration. These results prompted us to test the effect of miR-135s on axon regeneration after injury. Our results show that intravitreal application of miR-135s facilitates retinal ganglion cell (RGC) axon regeneration after optic nerve injury in adult mice in part by repressing KLF4. In contrast, depletion of miR-135s further reduced RGC axon regeneration. Together, these data identify a novel neuronal role for miR-135s and the miR-135-KLF4 pathway and highlight the potential of miRNAs as tools for enhancing CNS axon regeneration.SIGNIFICANCE STATEMENT Axon regeneration in the adult mammalian CNS is limited in part by a reduced intrinsic capacity for axon growth. Therefore, insight into the intrinsic control of axon growth may provide new avenues for enhancing regeneration. By performing an miRNome-wide functional screen, our studies identify miR-135s as stimulators of axon growth and neuron migration and show that intravitreal application of these miRNAs facilitates CNS axon regeneration after nerve injury in adult mice. Intriguingly, these developmental and regeneration-promoting effects rely in part on silencing of Krüppel-like factor 4 (KLF4), a well known intrinsic inhibitor of axon regeneration. Our data identify a novel neuronal role for the miR-135-KLF4 pathway and support the idea that miRNAs can be used for enhancing CNS axon regeneration.
Collapse
|
27
|
Yao F, Zhang L, Yin Z, Fu B, Feng Z, He Z, Li Q, Li J, Chen X. Adenovirus-expressing miR-153-3p alleviates aortic calcification in a rat model with chronic kidney disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11536-11544. [PMID: 31966509 PMCID: PMC6966037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/09/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) have abnormal calcification in vascular tissue that is a risk factor for cardiovascular disease. However, the specific molecular mechanisms for vascular calcification remain largely unknown. The present study aimed to determine the differentially expressed miRs and the underlying molecular mechanisms of miR-153-3p in vascular calcification induced by adenine. METHODS Differentially expressed miRs were screened using a microarray chip in the thoracic aorta. miRs and mRNA expression were measured by RT-qPCR. Protein expression was performed by western blotting analysis. Aortic calcification was confirmed by Von Kossa staining. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. RESULTS Our results revealed that the expression of miR-153-3p was significantly down-regulated in the thoracic aorta from adenine-fed rats compared with that of the control group. Transfection of miR-153-3p into the thoracic aorta markedly suppressed adenine-induced aortic calcification and significantly decreased the mRNA expression of ALP, OC, OSX, SOST and Runx2. Further studies indicated that Runx2 was a direct target gene of miR-153-3p, which was verified by dual luciferase reporter assay. CONCLUSION These results suggest that increased vascular miR-153-3p expression attenuates adenine-induced aortic calcification via inhibiting osteogenic trans-differentiation in the thoracic aorta.
Collapse
Affiliation(s)
- Fenghua Yao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
- Department of Nephrology, First Hospital Affiliated to The Chinese PLA General HospitalBeijing, China
| | - Li Zhang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
| | - Zhong Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
| | - Bo Fu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
| | - Zhe Feng
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
| | - Zongze He
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
| | - Qinggang Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
| | - Jijun Li
- Department of Nephrology, First Hospital Affiliated to The Chinese PLA General HospitalBeijing, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing, China
| |
Collapse
|
28
|
Hao MX, Wang X, Jiao KL. MicroRNA-17-5p mediates hypoxia-induced autophagy and inhibits apoptosis by targeting signal transducer and activator of transcription 3 in vascular smooth muscle cells. Exp Ther Med 2017; 13:935-941. [PMID: 28450922 PMCID: PMC5403340 DOI: 10.3892/etm.2017.4048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/18/2016] [Indexed: 12/03/2022] Open
Abstract
The aim of the present study was to investigate hypoxia-induced apoptosis and autophagy in vascular smooth muscle cells (VSMCs) and the underlying molecular mechanisms of microRNA (miR)-17-5p responses in an anaerobic environment. The results revealed that miR-17-5p expression was significantly upregulated in VSMCs subjected to hypoxic conditions (P<0.05) and lower miR-17-5p levels were observed in ethyl 3,4-dihydroxybenzoate-treated and hypoxia inducible factor-1 loss-of-function cells. Additionally, it was demonstrated that miR-17-5p is associated with hypoxia-induced autophagy, which was confirmed by upregulating the light chain 3-II/LC3-I ratio and downregulating nucleoporin p62. Cell apoptosis was inhibited in response to hypoxia, and levels of pro-apoptotic proteins B-cell lymphoma 2-associated X protein and p-caspase were markedly decreased when VSMCs were subjected to hypoxic conditions. Furthermore, expression of signal transducer and activator of transcription 3 (STAT3) decreased when cells were transfected with overexpressing miR-17-5p and subjected to hypoxic conditions, and the combination of miR-17-5p loss-of-function and hypoxia induced greater upregulation in the protein expression of STAT3 compared with a single treatment for hypoxia in VSMCs. In conclusion, miR-17-5p may be a novel hypoxia-responsive miR and hypoxia may induce protective autophagy and anti-apoptosis in VSMCs by targeting STAT3.
Collapse
Affiliation(s)
- Ming-Xiu Hao
- Department of Geriatrics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing Wang
- Department of Endocrinology, Shanghai Pudong New Area Gongli Hospital, Second Military Medical University, Shanghai 200135, P.R. China
| | - Kun-Li Jiao
- Department of Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| |
Collapse
|
29
|
Function, Role, and Clinical Application of MicroRNAs in Vascular Aging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6021394. [PMID: 28097140 PMCID: PMC5209603 DOI: 10.1155/2016/6021394] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/07/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Vascular aging, a specific type of organic aging, is related to age-dependent changes in the vasculature, including atherosclerotic plaques, arterial stiffness, fibrosis, and increased intimal thickening. Vascular aging could influence the threshold, process, and severity of various cardiovascular diseases, thus making it one of the most important risk factors in the high mortality of cardiovascular diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cell biological basis of these pathology changes of the vasculature, the structure and function of ECs and VSMCs play a key role in vascular aging. MicroRNAs (miRNAs), small noncoding RNAs, have been shown to regulate the expression of multiple messenger RNAs (mRNAs) posttranscriptionally, contributing to many crucial aspects of cell biology. Recently, miRNAs with functions associated with aging or aging-related diseases have been studied. In this review, we will summarize the reported role of miRNAs in the process of vascular aging with special emphasis on EC and VSMC functions. In addition, the potential application of miRNAs to clinical practice for the diagnosis and treatment of cardiovascular diseases will also be discussed.
Collapse
|
30
|
Tomé-Carneiro J, Crespo MC, Iglesias-Gutierrez E, Martín R, Gil-Zamorano J, Tomas-Zapico C, Burgos-Ramos E, Correa C, Gómez-Coronado D, Lasunción MA, Herrera E, Visioli F, Dávalos A. Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans. J Nutr Biochem 2016; 34:146-55. [PMID: 27322812 DOI: 10.1016/j.jnutbio.2016.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
Abstract
Dietary microRNAs (miRNAs) modulation could be important for health and wellbeing. Part of the healthful activities of polyphenols might be due to a modulation of miRNAs' expression. Among the most biologically active polyphenols, hydroxytyrosol (HT) has never been studied for its actions on miRNAs. We investigated whether HT could modulate the expression of miRNAs in vivo. We performed an unbiased intestinal miRNA screening in mice supplemented (for 8 weeks) with nutritionally relevant amounts of HT. HT modulated the expression of several miRNAs. Analysis of other tissues revealed consistent HT-induced modulation of only few miRNAs. Also, HT administration increased triglycerides levels. Acute treatment with HT and in vitro experiments provided mechanistic insights. The HT-induced expression of one miRNA was confirmed in healthy volunteers supplemented with HT in a randomized, double-blind and placebo-controlled trial. HT consumption affects specific miRNAs' expression in rodents and humans. Our findings suggest that the modulation of miRNAs' action through HT consumption might partially explain its healthful activities and might be pharmanutritionally exploited in current therapies targeting endogenous miRNAs. However, the effects of HT on triglycerides warrant further investigations.
Collapse
Affiliation(s)
- Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Eduardo Iglesias-Gutierrez
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33003, Spain; Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Roberto Martín
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Judit Gil-Zamorano
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Cristina Tomas-Zapico
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33003, Spain
| | - Emma Burgos-Ramos
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain; Área de Bioquímica, Universidad de Castilla-La-Mancha, Toledo 45071, Spain
| | - Carlos Correa
- Unidad de Cirugía Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Miguel A Lasunción
- Servicio de Bioquímica Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Emilio Herrera
- Department of Biochemistry and Chemistry, Faculties of Pharmacy and Medicine, Universidad San Pablo CEU, Madrid 28668, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain; Department of Molecular Medicine, University of Padova, Padova 35121, Italy.
| | - Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain.
| |
Collapse
|