1
|
Zhao W, Zhao YL, Liu M, Liu L, Wang Y. Possible repair mechanisms of renin-angiotensin system inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones on methamphetamine-induced neurotoxicity. Mol Biol Rep 2021; 48:7509-7516. [PMID: 34623593 DOI: 10.1007/s11033-021-06741-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022]
Abstract
Methamphetamine is a highly addictive central stimulant with extensive and strong neurotoxicity. The neurotoxicity of methamphetamine is closely related to the imbalance of dopamine levels and the destruction of the blood-brain barrier. An increase in dopamine may induce adverse effects such as behavioral sensitization and excessive locomotion. Damage to the blood-brain barrier can cause toxic or harmful substances to leak to the central nervous system, leading to neurotoxicity. The renin-angiotensin system is essential for the regulation of dopamine levels in the brain. Matrix metalloproteinase-9 causes reward effects and behavioral sensitization by inducing dopamine release. Prolactin has been shown to be involved in the regulation of tight junction proteins and the integrity of the blood-brain barrier. At present, the treatment of methamphetamine detoxification is still based on psychotherapy, and there is no specific medicine. With the rapid increase in global seizures of methamphetamine, the treatment of its toxicity has attracted more and more attention. This review intends to summarize the therapeutic mechanisms of renin-angiotensin inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones (prolactin) on methamphetamine neurotoxicity. The repair effects of these three on methamphetamine may be related to the maintenance of brain dopamine balance and the integrity of the blood-brain barrier. This review is expected to provide the new therapeutic strategy of methamphetamine toxicity.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China.,Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yuan-Ling Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Ming Liu
- Department of Drug Control, Criminal Investigation Police University of China, Shenyang, 110854, Liaoning, People's Republic of China
| | - Lian Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Buzhdygan TP, Rodrigues CR, McGary HM, Khan JA, Andrews AM, Rawls SM, Ramirez SH. The psychoactive drug of abuse mephedrone differentially disrupts blood-brain barrier properties. J Neuroinflammation 2021; 18:63. [PMID: 33648543 PMCID: PMC7923670 DOI: 10.1186/s12974-021-02116-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Synthetic cathinones are a category of psychostimulants belonging to the growing number of designer drugs also known as “Novel Psychoactive Substances” (NPS). In recent years, NPS have gained popularity in the recreational drug market due to their amphetamine-like stimulant effects, low cost, ease of availability, and lack of detection by conventional toxicology screening. All these factors have led to an increase in NPS substance abuse among the young adults, followed by spike of overdose-related fatalities and adverse effects, severe neurotoxicity, and cerebral vascular complications. Much remains unknown about how synthetic cathinones negatively affect the CNS and the status of the blood-brain barrier (BBB). Methods We used in vitro models of the BBB and primary human brain microvascular endothelial cells (hBMVEC) to investigate the effects of the synthetic cathinone, 4-methyl methcathinone (mephedrone), on BBB properties. Results We showed that mephedrone exposure resulted in the loss of barrier properties and endothelial dysfunction of primary hBMVEC. Increased permeability and decreased transendothelial electrical resistance of the endothelial barrier were attributed to changes in key proteins involved in the tight junction formation. Elevated expression of matrix metalloproteinases, angiogenic growth factors, and inflammatory cytokines can be explained by TLR-4-dependent activation of NF-κB signaling. Conclusions In this first characterization of the effects of a synthetic cathinone on human brain endothelial cells, it appears clear that mephedrone-induced damage of the BBB is not limited by the disruption of the barrier properties but also include endothelial activation and inflammation. This may especially be important in comorbid situations of mephedrone abuse and HIV-1 infections. In this context, mephedrone could negatively affect HIV-1 neuroinvasion and NeuroAIDS progression.
Collapse
Affiliation(s)
- Tetyana P Buzhdygan
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Cassidy R Rodrigues
- Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hannah M McGary
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA
| | - Jana A Khan
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Moreira-Soares M, Cunha SP, Bordin JR, Travasso RDM. Adhesion modulates cell morphology and migration within dense fibrous networks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:314001. [PMID: 32378515 DOI: 10.1088/1361-648x/ab7c17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
One of the most fundamental abilities required for the sustainability of complex life forms is active cell migration, since it is essential in diverse processes from morphogenesis to leukocyte chemotaxis in immune response. The movement of a cell is the result of intricate mechanisms, that involve the coordination between mechanical forces, biochemical regulatory pathways and environmental cues. In particular, epithelial cancer cells have to employ mechanical strategies in order to migrate through the tissue's basement membrane and infiltrate the bloodstream during the invasion stage of metastasis. In this work we explore how mechanical interactions such as spatial restriction and adhesion affect migration of a self-propelled droplet in dense fibrous media. We have performed a systematic analysis using a phase-field model and we propose a novel approach to simulate cell migration with dissipative particle dynamics modelling. With this purpose we have measured in our simulation the cell's velocity and quantified its morphology as a function of the fibre density and of its adhesiveness to the matrix fibres. Furthermore, we have compared our results to a previousin vitromigration assay of fibrosarcoma cells in fibrous matrices. The results show good agreement between the two methodologies and experiments in the literature, which indicates that these minimalist descriptions are able to capture the main features of the system. Our results indicate that adhesiveness is critical for cell migration, by modulating cell morphology in crowded environments and by enhancing cell velocity. In addition, our analysis suggests that matrix metalloproteinases (MMPs) play an important role as adhesiveness modulators. We propose that new assays should be carried out to address the role of adhesion and the effect of different MMPs in cell migration under confined conditions.
Collapse
Affiliation(s)
| | - Susana P Cunha
- CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - José Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, Federal University of Pelotas, Rua dos Ipês, Capão do Leão, RS, 96050-500, Brazil
| | - Rui D M Travasso
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
4
|
Regional Analysis of the Brain Transcriptome in Mice Bred for High and Low Methamphetamine Consumption. Brain Sci 2019; 9:brainsci9070155. [PMID: 31262025 PMCID: PMC6681006 DOI: 10.3390/brainsci9070155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Transcriptome profiling can broadly characterize drug effects and risk for addiction in the absence of drug exposure. Modern large-scale molecular methods, including RNA-sequencing (RNA-Seq), have been extensively applied to alcohol-related disease traits, but rarely to risk for methamphetamine (MA) addiction. We used RNA-Seq data from selectively bred mice with high or low risk for voluntary MA intake to construct coexpression and cosplicing networks for differential risk. Three brain reward circuitry regions were explored, the nucleus accumbens (NAc), prefrontal cortex (PFC), and ventral midbrain (VMB). With respect to differential gene expression and wiring, the VMB was more strongly affected than either the PFC or NAc. Coexpression network connectivity was higher in the low MA drinking line than in the high MA drinking line in the VMB, oppositely affected in the NAc, and little impacted in the PFC. Gene modules protected from the effects of selection may help to eliminate certain mechanisms from significant involvement in risk for MA intake. One such module was enriched in genes with dopamine-associated annotations. Overall, the data suggest that mitochondrial function and glutamate-mediated synaptic plasticity have key roles in the outcomes of selective breeding for high versus low levels of MA intake.
Collapse
|
5
|
Gene expression patterns associated with neurological disease in human HIV infection. PLoS One 2017; 12:e0175316. [PMID: 28445538 PMCID: PMC5405951 DOI: 10.1371/journal.pone.0175316] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/23/2017] [Indexed: 12/01/2022] Open
Abstract
The pathogenesis and nosology of HIV-associated neurological disease (HAND) remain incompletely understood. Here, to provide new insight into the molecular events leading to neurocognitive impairments (NCI) in HIV infection, we analyzed pathway dysregulations in gene expression profiles of HIV-infected patients with or without NCI and HIV encephalitis (HIVE) and control subjects. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analyses in conjunction with the Molecular Signatures Database collection of canonical pathways (MSigDb). We analyzed pathway dysregulations in gene expression profiles of patients from the National NeuroAIDS Tissue Consortium (NNTC), which consists of samples from 3 different brain regions, including white matter, basal ganglia and frontal cortex of HIV-infected and control patients. While HIVE is characterized by widespread, uncontrolled inflammation and tissue damage, substantial gene expression evidence of induction of interferon (IFN), cytokines and tissue injury is apparent in all brain regions studied, even in the absence of NCI. Various degrees of white matter changes were present in all HIV-infected subjects and were the primary manifestation in patients with NCI in the absence of HIVE. In particular, NCI in patients without HIVE in the NNTC sample is associated with white matter expression of chemokines, cytokines and β-defensins, without significant activation of IFN. Altogether, the results identified distinct pathways differentially regulated over the course of neurological disease in HIV infection and provide a new perspective on the dynamics of pathogenic processes in the course of HIV neurological disease in humans. These results also demonstrate the power of the systems biology analyses and indicate that the establishment of larger human gene expression profile datasets will have the potential to provide novel mechanistic insight into the pathogenesis of neurological disease in HIV infection and identify better therapeutic targets for NCI.
Collapse
|
6
|
Conant K, Daniele S, Bozzelli PL, Abdi T, Edwards A, Szklarczyk A, Olchefske I, Ottenheimer D, Maguire-Zeiss K. Matrix metalloproteinase activity stimulates N-cadherin shedding and the soluble N-cadherin ectodomain promotes classical microglial activation. J Neuroinflammation 2017; 14:56. [PMID: 28302163 PMCID: PMC5356362 DOI: 10.1186/s12974-017-0827-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of enzymes that are typically released from intracellular stores to act on specific extracellular substrates. MMP expression and activity can be increased in a neuronal activity-dependent manner, and further increased in response to tissue injury. MMP substrates include cell adhesion molecules (CAMs) that are abundantly expressed in the brain and well positioned for membrane proximal cleavage. Importantly, CAM integrity is important to synaptic structure and axon-myelin interactions, and shed ectodomains may themselves influence cellular function. METHODS In the present study, we have examined proteolysis of N-cadherin (N-cdh) by MMP-7, a family member that has been implicated in disorders including HIV dementia, multiple sclerosis, and major depression. With in vitro digest assays, we tested N-cdh cleavage by increasing concentrations of recombinant enzyme. We also tested MMP-7 for its potential to stimulate N-cdh shedding from cultured neural cells. Since select CAM ectodomains may interact with cell surface receptors that are expressed on microglial cells, we subsequently tested the N-cdh ectodomain for its ability to stimulate activation of this cell type as determined by nuclear translocation of NF-κB, Iba-1 expression, and TNF-α release. RESULTS We observed that soluble N-cdh increased Iba-1 levels in microglial lysates, and also increased microglial release of the cytokine TNF-α. Effects were associated with increased NF-κB immunoreactivity in microglial nuclei and diminished by an inhibitor of the toll-like receptor adaptor protein, MyD88. CONCLUSIONS Together, these in vitro results suggest that soluble N-cdh may represent a novel effector of microglial activation, and that disorders with increased MMP levels may stimulate a cycle in which the products of excess proteolysis further exacerbate microglial-mediated tissue injury. Additional in vivo studies are warranted to address this issue.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Stefano Daniele
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - P. Lorenzo Bozzelli
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Tsion Abdi
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Amanda Edwards
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | | | - India Olchefske
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - David Ottenheimer
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| |
Collapse
|
7
|
Reece AS, Norman A, Hulse GK. Acceleration of cardiovascular-biological age by amphetamine exposure is a power function of chronological age. HEART ASIA 2017; 9:30-38. [PMID: 28243315 DOI: 10.1136/heartasia-2016-010832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Amphetamine abuse is becoming more widespread internationally. The possibility that its many cardiovascular complications are associated with a prematurely aged cardiovascular system, and indeed biological organism systemically, has not been addressed. METHODS Radial arterial pulse tonometry was performed using the SphygmoCor system (Sydney). 55 amphetamine exposed patients were compared with 107 tobacco smokers, 483 non-smokers and 68 methadone patients (total=713 patients) from 2006 to 2011. A cardiovascular-biological age (VA) was determined. RESULTS The age of the patient groups was 30.03±0.51-40.45±1.15 years. This was controlled for with linear regression. The sex ratio was the same in all groups. 94% of amphetamine exposed patients had used amphetamine in the previous week. When the (log) VA was regressed against the chronological age (CA) and a substance-type group in both cross-sectional and longitudinal models, models quadratic in CA were superior to linear models (both p<0.02). When log VA/CA was regressed in a mixed effects model against time, body mass index, CA and drug type, the cubic model was superior to the linear model (p=0.001). Interactions between CA, (CA)2 and (CA)3 on the one hand and exposure type were significant from p=0.0120. The effects of amphetamine exposure persisted after adjustment for all known cardiovascular risk factors (p<0.0001). CONCLUSIONS These results show that subacute exposure to amphetamines is associated with an advancement of cardiovascular-organismal age both over age and over time, and is robust to adjustment. That this is associated with power functions of age implies a feed-forward positively reinforcing exacerbation of the underlying ageing process.
Collapse
Affiliation(s)
- Albert Stuart Reece
- School of Psychiatry and Clinical Neurosciences , University of Western Australia , Crawley, Western Australia , Australia
| | - Amanda Norman
- School of Psychiatry and Clinical Neurosciences , University of Western Australia , Crawley, Western Australia , Australia
| | - Gary Kenneth Hulse
- School of Psychiatry and Clinical Neurosciences , University of Western Australia , Crawley, Western Australia , Australia
| |
Collapse
|
8
|
Lee H, Lee EJ, Song YS, Kim E. Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/γ-secretase. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130158. [PMID: 24298159 PMCID: PMC3843889 DOI: 10.1098/rstb.2013.0158] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long-term depression (LTD) reduces the functional strength of excitatory synapses through mechanisms that include the removal of AMPA glutamate receptors from the postsynaptic membrane. LTD induction is also known to result in structural changes at excitatory synapses, including the shrinkage of dendritic spines. Synaptic adhesion molecules are thought to contribute to the development, function and plasticity of neuronal synapses largely through their trans-synaptic adhesions. However, little is known about how synaptic adhesion molecules are altered during LTD. We report here that NGL-3 (netrin-G ligand-3), a postsynaptic adhesion molecule that trans-synaptically interacts with the LAR family of receptor tyrosine phosphatases and intracellularly with the postsynaptic scaffolding protein PSD-95, undergoes a proteolytic cleavage process. NGL-3 cleavage is induced by NMDA treatment in cultured neurons and low-frequency stimulation in brain slices and requires the activities of NMDA glutamate receptors, matrix metalloproteinases (MMPs) and presenilin/γ-secretase. These results suggest that NGL-3 is a novel substrate of MMPs and γ-secretase and that NGL-3 cleavage may regulate synaptic adhesion during LTD.
Collapse
Affiliation(s)
- Hyejin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), , Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
9
|
Lonskaya I, Partridge J, Lalchandani RR, Chung A, Lee T, Vicini S, Hoe HS, Lim ST, Conant K. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1. PLoS One 2013; 8:e69136. [PMID: 23844251 PMCID: PMC3699500 DOI: 10.1371/journal.pone.0069136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/12/2013] [Indexed: 11/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory.
Collapse
Affiliation(s)
- Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - John Partridge
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rupa R. Lalchandani
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Andrew Chung
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Taehee Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Seung T. Lim
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|