1
|
Gray CN, Ashokkumar M, Janssens DH, Kirchherr J, Allard B, Hsieh E, Hafer TL, Archin NM, Browne EP, Emerman M. Integrator complex subunit 12 knockout overcomes a transcriptional block to HIV latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610517. [PMID: 39257755 PMCID: PMC11383676 DOI: 10.1101/2024.08.30.610517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing towards inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells from people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo. We also detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout suggesting that INTS12 prevents full-length HIV RNA production in primary T cells.
Collapse
Affiliation(s)
- Carley N. Gray
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Manickam Ashokkumar
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jennifer Kirchherr
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brigitte Allard
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Terry L. Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nancie M. Archin
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward P. Browne
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
2
|
Chong SCS, Lim G, Machon K, Mugwagwa H, Johnson J, Le Gautier R, Power J. Missing voices: building women living with HIV's meaningful engagement in HIV clinical and cure research. CULTURE, HEALTH & SEXUALITY 2024:1-17. [PMID: 39340190 DOI: 10.1080/13691058.2024.2408353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Women living with HIV are consistently under-represented in HIV clinical trials, including cure trials. Little is known about how cisgender women living with HIV in Australia perceive HIV cure research, their level of trust in research institutions/staff, and factors salient to participation in HIV cure trials. Semi-structured interviews were conducted with women living with HIV and clinicians working with women living with HIV to investigate motivations and barriers to gender-equitable representation in HIV clinical research. Participant motivations for participation included altruistic desires to benefit younger women, and to optimise resulting interventions. Women living with HIV expressed optimism that a cure would dispel HIV-related stigma and brings about substantial material improvement to their lives. Reluctance to participate related to concerns regarding potential side-effects, antiretroviral treatment interruption, and impacts on fertility. Unfamiliarity with trials, confidentiality concerns and logistical difficulties were also cited. Lastly, onerous eligibility criteria, clinicians' assumptions about women's willingness and ability to meaningfully provide consent to participation were cited as barriers which could be addressed. Bolstering women's participation in HIV cure research requires consideration of factors relating to reproductive health, analytical treatment interruption, and recruitment. Engaging women living with HIV in trial design and promotion may help overcome these issues.
Collapse
Affiliation(s)
- Susan C S Chong
- Australian Research Centre in Sex, Health and Society, La Trobe University, Melbourne, Australia
- Department of Public Health, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Gene Lim
- Australian Research Centre in Sex, Health and Society, La Trobe University, Melbourne, Australia
| | | | | | - Jennifer Johnson
- Australian Research Centre in Sex, Health and Society, La Trobe University, Melbourne, Australia
| | - Roslyn Le Gautier
- Australian Research Centre in Sex, Health and Society, La Trobe University, Melbourne, Australia
| | - Jennifer Power
- Australian Research Centre in Sex, Health and Society, La Trobe University, Melbourne, Australia
| |
Collapse
|
3
|
Vasconcelos Komninakis S, Domingues W, Saeed Sanabani S, Angelo Folgosi V, Neves Barbosa I, Casseb J. CRISPR/CAS as a Powerful Tool for Human Immunodeficiency Virus Cure: A Review. AIDS Res Hum Retroviruses 2024; 40:363-375. [PMID: 38164106 DOI: 10.1089/aid.2022.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Despite care and the availability of effective antiretroviral treatment, some human immunodeficiency virus (HIV)-infected individuals suffer from neurocognitive disorders associated with HIV (HAND) that significantly affect their quality of life. The different types of HAND can be divided into asymptomatic neurocognitive impairment, mild neurocognitive disorder, and the most severe form known as HIV-associated dementia. Little is known about the mechanisms of HAND, but it is thought to be related to infection of astrocytes, microglial cells, and macrophages in the human brain. The formation of a viral reservoir that lies dormant as a provirus in resting CD4+ T lymphocytes and in refuge tissues such as the brain contributes significantly to HIV eradication. In recent years, a new set of tools have emerged: the gene editing based on the clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system, which can alter genome segments by insertion, deletion, and replacement and has great therapeutic potential. This technology has been used in research to treat HIV and appears to offer hope for a possible cure for HIV infection and perhaps prevention of HAND. This approach has the potential to directly impact the quality of life of HIV-infected individuals, which is a very important topic to be known and discussed.
Collapse
Affiliation(s)
- Shirley Vasconcelos Komninakis
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Wilson Domingues
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Victor Angelo Folgosi
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| | - Igor Neves Barbosa
- Institute of Genetic Biology at the Biological Institute of São Paulo University, São Paulo, São Paulo, Brazil
| | - Jorge Casseb
- Laboratory of Medical Investigation (LIM56) of the School of Medicine/Institute de Tropical Medicine, Department of Dermatology, São Paulo University, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Yin L, Wang Q, Liu S, Chen J, Zhang Y, Lu L, Lu H, Song Z, Zhang L. iTRAQ-based proteomic study on monocyte cell model discovered an association of LAMP2 downregulation with HIV-1 latency. Proteome Sci 2024; 22:6. [PMID: 38750478 PMCID: PMC11095035 DOI: 10.1186/s12953-024-00230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Patients with immunodeficiency virus-1 (HIV-1) infection are challenging to be cured completely due to the existence of HIV-1 latency reservoirs. However, the knowledge of the mechanisms and biomarkers associated with HIV-1 latency is limited. Therefore, identifying proteins related to HIV-1 latency could provide new insights into the underlying mechanisms of HIV-1 latency, and ultimately contribute to the eradication of HIV reservoirs. METHODS An Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-labeled subcellular proteomic study was performed on an HIV-1 latently infected cell model (U1, a HIV-1-integrated U937 cell line) and its control (U937). Differentially expressed proteins (DEPs) were analyzed using STRING-DB. Selected DEPs were further evaluated by western blotting and multiple reaction monitoring technology in both cell model and patient-derived cluster of differentiation 4 (CD4)+ T cells. Finally, we investigated the relationship between a specific DEP lysosome-associated membrane glycoprotein 2 (LAMP2) and HIV-1 reactivation by panobinostat or lysosome regulation by a lysosomotropic agent hydroxychloroquine in U1 and U937 cells. RESULTS In total, 110 DEPs were identified in U1 cells comparing to U937 control cells. Bioinformatics analysis suggested associations of the altered proteins with the immune response and endosomal/lysosomal pathway. LAMP2, leukocyte surface antigen CD47, CD55, and ITGA6 were downregulated in HIV-1 latent cells. Downregulated LAMP2 was further confirmed in resting CD4+ T cells from patients with latent HIV-1 infection. Furthermore, both HIV-1 reactivation by panobinostat and stimulation with hydroxychloroquine upregulated LAMP2 expression. CONCLUSIONS Our results indicated the involvement of the endosomal/lysosomal pathway in HIV-1 latency in macrophage cell model. The down-modulation of LAMP2 was associated with HIV latency, and the restoration of LAMP2 expression accompanied the transition of viral latency to active infection. This study provides new insights into the mechanism of HIV-1 latency and potential strategies for eradicating HIV-1 reservoirs by targeting LAMP2 expression.
Collapse
Affiliation(s)
- Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qimin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Siyuan Liu
- Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Jun Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lingqing Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Shenzhen, 518112, China
| | - Zhigang Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
5
|
Pathak R, Eliscovich C, Singer RH, Kalpana GV. Single-Cell Single-Molecule RNA-FISH Combined with Immunofluorescence and High-Speed and High-Resolution Scanning Analysis to Visualize the Reactivation of Latent HIV-1. Methods Mol Biol 2024; 2807:45-59. [PMID: 38743220 DOI: 10.1007/978-1-0716-3862-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Latent HIV-1 reservoirs are a major obstacle to the eradication of HIV-1. Several cure strategies have been proposed to eliminate latent reservoirs. One of the key strategies involves the reactivation of latent HIV-1 from cells using latency-reversing agents. However, currently it is unclear whether any of the latency-reversing agents are able to completely reactivate HIV-1 provirus transcription in all latent cells. An understanding of the reactivation of HIV-1 provirus at single-cell single-molecule level is necessary to fully comprehend the reactivation of HIV-1 in the reservoirs. Furthermore, since reactivable viruses in the pool of latent reservoirs are rare, combining single-cell imaging techniques with the ability to visualize a large number of reactivated single cells that express both viral RNA and proteins in a pool of uninfected and non-reactivated cells will provide unprecedented information about cell-to-cell variability in reactivation. Here, we describe the single-cell single-molecule RNA-FISH (smRNA-FISH) method to visualize HIV-1 gag RNA combined with the immunofluorescence (IF) method to detect Gag protein to characterize the reactivated cells. This method allows the visualization of subcellular localization of RNA and proteins before and after reactivation and facilitates absolute quantitation of the number of transcripts per cell using FISH-quant. In addition, we describe a high-speed and high-resolution scanning (HSHRS) fluorescence microscopy imaging method to visualize rare and reactivated cells in a pool of non-reactivated cells with high efficiency.
Collapse
Affiliation(s)
- Rajiv Pathak
- Department of Genetics and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carolina Eliscovich
- Department of Medicine (Hepatology), and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H Singer
- Department of Cell Biology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ganjam V Kalpana
- Department of Genetics and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Promsote W, Xu L, Hataye J, Fabozzi G, March K, Almasri CG, DeMouth ME, Lovelace SE, Talana CA, Doria-Rose NA, McKee K, Hait SH, Casazza JP, Ambrozak D, Beninga J, Rao E, Furtmann N, Birkenfeld J, McCarthy E, Todd JP, Petrovas C, Connors M, Hebert AT, Beck J, Shen J, Zhang B, Levit M, Wei RR, Yang ZY, Pegu A, Mascola JR, Nabel GJ, Koup RA. Trispecific antibody targeting HIV-1 and T cells activates and eliminates latently-infected cells in HIV/SHIV infections. Nat Commun 2023; 14:3719. [PMID: 37349337 PMCID: PMC10287722 DOI: 10.1038/s41467-023-39265-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4+ and CD8+ T cells. Co-culturing CD4+ with autologous CD8+ T cells from ART-suppressed HIV+ donors with N6/αCD3-αCD28, results in activation of latently-infected cells and their elimination by activated CD8+ T cells. This trispecific antibody mediates CD4+ and CD8+ T-cell activation in non-human primates and is well tolerated in vivo. This HIV-directed antibody therefore merits further development as a potential intervention for the eradication of latent HIV infection.
Collapse
Affiliation(s)
- Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ling Xu
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Jason Hataye
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylie March
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassandra G Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah E Lovelace
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Helmold Hait
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph P Casazza
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Ercole Rao
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | | | - Joerg Birkenfeld
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- Perspix Biotech GmbH, FiZ Frankfurt Innovation Center Biotechnology, Altenhoeferallee 3, 60438, Frankfurt, Germany
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (chuv) and University of Lausanne, Lausanne, Switzerland
| | | | | | - Jeremy Beck
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | - Junqing Shen
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | - Bailin Zhang
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
| | | | - Ronnie R Wei
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Zhi-Yong Yang
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA
| | - Gary J Nabel
- Sanofi, 640 Memorial Dr., Cambridge, MA, 02139, USA.
- ModeX Therapeutics Inc., 22 Strathmore Road, Natick, MA, 01760, USA.
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Mataramvura H, Bunders MJ, Duri K. Human immunodeficiency virus and antiretroviral therapy-mediated immune cell metabolic dysregulation in children born to HIV-infected women: potential clinical implications. Front Immunol 2023; 14:1182217. [PMID: 37350953 PMCID: PMC10282157 DOI: 10.3389/fimmu.2023.1182217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Commencing lifelong antiretroviral therapy (ART) immediately following HIV diagnosis (Option B+) has dramatically improved the health of HIV-infected women and their children, with the majority being of HIV-exposed children born uninfected (HEU). This success has led to an increasing population of HIV-infected women receiving ART during pregnancy and children exposed to ART in utero. Nonetheless, a small proportion of children are still infected with HIV (HEI) each year. HEI children suffer from reduced immunocompetence and host-defence, due to CD4+ T lymphocyte depletion, but also dysregulation of other immune cells including CD8+ T lymphocytes, natural killer (NK) cells, macrophages including B lymphocytes. Furthermore, although HEU children are uninfected, altered immune responses are observed and associated with increased vulnerability to infections. The mechanisms underlying immune dysregulation in HEU children remain poorly described. Building on early studies, emerging data suggests that HIV/ART exposure early in life affects cell metabolic function of HEU children. Prenatal HIV/ART exposure has been associated with dysregulation of mitochondria, including impaired DNA polymerase activity. Furthermore, dysregulation of oxidative phosphorylation (OXPHOS) causes a decreased generation of adenosine triphosphate (ATP) and increased production of reactive oxygen species (ROS), resulting in oxidative stress. These altered metabolic processes can affect immune cell viability and immune responses. Recent studies have indicated that immune-metabolic dysregulation may contribute to HIV-associated pathogenesis and clinical observations associated with HIV and ART exposure in HEU/HEI children. Given the critical role metabolic processes in immune cell functioning, immune-metabolic dysregulation in HEU and HEI children may have implications in effective host-defence responses against pathogens, as well as efficacy of standard ART regimens and future novel HIV cure approaches in HEI children. At the same time, targeting metabolic pathways of immune cells may provide safer and novel approaches for HIV cure strategies. Here, we review the current literature investigating immune-metabolic dysregulation in paediatric HIV pathogenesis.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Madeleine J. Bunders
- III. Medical Department, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
8
|
Kurdekar A, Verma S, Venkataramaniah K. HIV and COVID-19: A Tale of Two Pandemics. Curr HIV Res 2022; 20:CHR-EPUB-125792. [PMID: 36017832 DOI: 10.2174/1570162x20666220823110435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
In the last 5 decades, we have witnessed two major pandemics, AIDS caused by the Human Immunodeficiency Virus (HIV) and the CoronaVirus Disease-19 (COVID-19) caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). The emergence of COVID-19 has raised many concerns for researchers, doctors, patients, and other institutions associated with HIV. A lot of debate has persisted on clinical outcomes, the use of antiretrovirals, and vaccines on HIV patients infected with COVID-19. This note attempts to present different aspects of HIV and SARS-CoV-2 across themes like SARS-CoV-2 coinfections in people living with HIV, the psychological impact, treatments, vaccination, etc. We highlight how learnings from the COVID-19 pandemic can help us in tackling the HIV pandemic.
Collapse
Affiliation(s)
- Aditya Kurdekar
- Optics and Microfluidics Instrumentation, Department of Instrumentation and Applied Physics, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka 560012, India
| | - Shruti Verma
- Optics and Microfluidics Instrumentation, Department of Instrumentation and Applied Physics, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka 560012, India
| | - Kamisetti Venkataramaniah
- Optics and Microfluidics Instrumentation, Department of Instrumentation and Applied Physics, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka 560012, India
| |
Collapse
|
9
|
Chen J, Zhou T, Zhang Y, Luo S, Chen H, Chen D, Li C, Li W. The reservoir of latent HIV. Front Cell Infect Microbiol 2022; 12:945956. [PMID: 35967854 PMCID: PMC9368196 DOI: 10.3389/fcimb.2022.945956] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment.
Collapse
Affiliation(s)
- Jing Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuan Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shumin Luo
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huan Chen
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanyun Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| | - Weihua Li
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Chuanyun Li, ; Weihua Li,
| |
Collapse
|
10
|
Lau CY, Adan MA, Maldarelli F. Why the HIV Reservoir Never Runs Dry: Clonal Expansion and the Characteristics of HIV-Infected Cells Challenge Strategies to Cure and Control HIV Infection. Viruses 2021; 13:2512. [PMID: 34960781 PMCID: PMC8708047 DOI: 10.3390/v13122512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Antiretroviral therapy (ART) effectively reduces cycles of viral replication but does not target proviral populations in cells that persist for prolonged periods and that can undergo clonal expansion. Consequently, chronic human immunodeficiency virus (HIV) infection is sustained during ART by a reservoir of long-lived latently infected cells and their progeny. This proviral landscape undergoes change over time on ART. One of the forces driving change in the landscape is the clonal expansion of infected CD4 T cells, which presents a key obstacle to HIV eradication. Potential mechanisms of clonal expansion include general immune activation, antigenic stimulation, homeostatic proliferation, and provirus-driven clonal expansion, each of which likely contributes in varying, and largely unmeasured, amounts to maintaining the reservoir. The role of clinical events, such as infections or neoplasms, in driving these mechanisms remains uncertain, but characterizing these forces may shed light on approaches to effectively eradicate HIV. A limited number of individuals have been cured of HIV infection in the setting of bone marrow transplant; information from these and other studies may identify the means to eradicate or control the virus without ART. In this review, we describe the mechanisms of HIV-1 persistence and clonal expansion, along with the attempts to modify these factors as part of reservoir reduction and cure strategies.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| | - Matthew A. Adan
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
- Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Bethesda, MD 20892, USA; (C.-Y.L.); (M.A.A.)
| |
Collapse
|
11
|
Haque M, Lei F, Xiong X, Ren Y, Peng HY, Wang L, Kumar A, Das JK, Song J. Stem Cell-Derived Viral Antigen-Specific T Cells Suppress HIV Replication and PD-1 Expression on CD4+ T Cells. Viruses 2021; 13:753. [PMID: 33923025 PMCID: PMC8146941 DOI: 10.3390/v13050753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/18/2023] Open
Abstract
The viral antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) derived from pluripotent stem cells (PSCs), i.e., PSC-CTLs, have the ability to suppress the human immunodeficiency virus (HIV) infection. After adoptive transfer, PSC-CTLs can infiltrate into the local tissues to suppress HIV replication. Nevertheless, the mechanisms by which the viral Ag-specific PSC-CTLs elicit the antiviral response remain to be fully elucidated. In this study, we generated the functional HIV-1 Gag epitope SL9-specific CTLs from the induced PSC (iPSCs), i.e., iPSC-CTLs, and investigated the suppression of SL9-specific iPSC-CTLs on viral replication and the protection of CD4+ T cells. A chimeric HIV-1, i.e., EcoHIV, was used to produce HIV replication in mice. We show that adoptive transfer of SL9-specific iPSC-CTLs greatly suppressed EcoHIV replication in the peritoneal macrophages and spleen in the animal model. Furthermore, we demonstrate that the adoptive transfer significantly reduced expression of PD-1 on CD4+ T cells in the spleen and generated persistent anti-HIV memory T cells. These results indicate that stem cell-derived viral Ag-specific CTLs can robustly accumulate in the local tissues to suppress HIV replication and prevent CD4+ T cell exhaustion through reduction of PD-1 expression.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| | - Fengyang Lei
- Department of Ophthalmology, Harvard University School of Medicine, Boston, MA 02215, USA;
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA; (M.H.); (X.X.); (Y.R.); (H.-Y.P.); (L.W.); (A.K.); (J.K.D.)
| |
Collapse
|