1
|
Bhosale A, Paul G, Mazahir F, Yadav A. Theoretical and applied concepts of nanocarriers for the treatment of Parkinson's diseases. OPENNANO 2023. [DOI: 10.1016/j.onano.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
3
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russia
| |
Collapse
|
4
|
Mousa AH, Mohammad SA. Potential role of chitosan, PLGA and iron oxide nanoparticles in Parkinson’s disease therapy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parkinson's disease (PD) is a debilitating disease that alters an individual's functionality. Parkinsonism is a complex symptom consisting of numerous motor and non-motor features, and although several disorders are responsible, PD remains the most important. Several theories have been proposed for the characteristic pathological changes, the most important of which is the loss of dopaminergic neurons associated with a reduced ability to perform voluntary movements. Many drugs have been developed over the years to treat the condition and prevent its progression, but drug delivery is still a challenge due to the blood–brain barrier, which prevents the passage of drugs into the central nervous system. However, with the advances in nanotechnology in the medical field, there is growing hope of overcoming this challenge.
Summary
Our review highlights the potential role of three commonly studied nanoparticles in laboratory-induced animal models of PD: chitosan, PLGA, and iron oxide nanoparticles as potential PD therapy in humans.
Collapse
|
5
|
Nguyen TT, Nguyen TTD, Tran NMA, Van Vo G. Lipid-Based Nanocarriers via Nose-to-Brain Pathway for Central Nervous System Disorders. Neurochem Res 2022; 47:552-573. [PMID: 34800247 DOI: 10.1007/s11064-021-03488-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders are distinguished by the gradual deterioration of the nervous system's structure and function due to oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation. Among these NDs, Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis characterized an increasing dysfunction and loss of neuronal structure leading to neuronal cell death. Although there is currently no drug to totally reverse the effects of NDs, such novel formulations and administration routes are developed for better management and nose-to-brain delivery is one of delivery for treating NDs. This review aimed to highlight advances in research on various lipid based nanocarriers such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and cubosomes which are reported to treat and alleviate the symptoms of NDs via nose-to-brain route. The challenges during clinical translation of lipid nanocarriers from bench to bed side is also discussed.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, 700000, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
6
|
Saha P, Pandey MM. A new fluorescence-based method for rapid and specific quantification of rotigotine in chitosan nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120555. [PMID: 34749255 DOI: 10.1016/j.saa.2021.120555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
A new, simple, rapid and sensitive fluorescence-based method has been developed and validated for the estimation of rotigotine (RTG) in bulk and nanoformulations. RTG is a dopamine agonist approved by both the United States Food and Drug Administration and the European Medicines Agency for the treatment of Parkinson's disease and restless leg syndrome. To date, no fluorescence-based analytical method has been reported for the estimation of RTG in any pharmaceutical dosage forms. The developed method is validated as per the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use guidelines. A solution of the pure drug in phosphate buffer pH 6.4 exhibited strong fluorescence emission (λem) at a wavelength of 298 nm when excited (λex) at a wavelength of 277 nm. The developed method demonstrated good linearity over a range of 250-2500 ng/mL. Limit of detection and limit of quantitation values were found to be 36.25 ng/mL and 109.85 ng/mL respectively. The developed method was found to be accurate, precise, specific and robust. The validated method was successfully applied for the estimation of entrapment efficiency and drug loading of in-house intranasal RTG-loaded chitosan nanoparticles.
Collapse
Affiliation(s)
- Paramita Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India
| | - Murali Monohar Pandey
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
7
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
8
|
|
9
|
Dual cancer targeting using estrogen functionalized chitosan nanoparticles loaded with doxorubicin-estrone conjugate: A quality by design approach. Int J Biol Macromol 2020; 164:2881-2894. [DOI: 10.1016/j.ijbiomac.2020.08.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
|
10
|
Particulate systems for improving therapeutic efficacy of pharmaceuticals against central nervous system-related diseases. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Alexander A, Agrawal M, Uddin A, Siddique S, Shehata AM, Shaker MA, Ata Ur Rahman S, Abdul MIM, Shaker MA. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine 2019; 14:5895-5909. [PMID: 31440051 PMCID: PMC6679699 DOI: 10.2147/ijn.s210876] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022] Open
Abstract
The treatment of central nervous system (CNS) disorders always remains a challenge for the researchers. The presence of various physiological barriers, primarily the blood-brain barrier (BBB) limits the accessibility of the brain and hinders the efficacy of various drug therapies. Hence, drug targeting to the brain, particularly to the diseased cells by circumventing the physiological barriers is essential to develop a promising therapy for the treatment of brain disorders. Presently, the investigations emphasize the role of different nanocarrier systems or surface modified target specific novel carrier system to improve the efficiency and reduce the side effects of the brain therapeutics. Such approaches supposed to circumvent the BBB or have the ability to cross the barrier function and thus increases the drug concentration in the brain. Although the efficacy of novel carrier system depends upon various physiological factors like active efflux transport, protein corona of the brain, stability, and toxicity of the nanocarrier, physicochemical properties, patient-related factors and many more. Hence, to develop a promising carrier system, it is essential to understand the physiology of the brain and BBB and also the other associated factors. Along with this, some alternative route like direct nose-to-brain drug delivery can also offer a better means to access the brain without exposure of the BBB. In this review, we have discussed the role of various physiological barriers including the BBB and blood-cerebrospinal fluid barrier (BCSFB) on the drug therapy and the mechanism of drug transport across the BBB. Further, we discussed different novel strategies for brain targeting of drug including, polymeric nanoparticles, lipidic nanoparticles, inorganic nanoparticles, liposomes, nanogels, nanoemulsions, dendrimers, quantum dots, etc. along with the intranasal drug delivery to the brain. We have also illustrated various factors affecting the drug targeting efficiency of the developed novel carrier system.
Collapse
Affiliation(s)
- Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Ajaz Uddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Sabahuddin Siddique
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal, Madhya Pradesh, India
| | - Ahmed M Shehata
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud A Shaker
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Kingdom of Saudi Arabia
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Syed Ata Ur Rahman
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| | - Mohi Iqbal M Abdul
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| | - Mohamed A Shaker
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Rukmangathen R, Yallamalli IM, Yalavarthi PR. Formulation and biopharmaceutical evaluation of risperidone-loaded chitosan nanoparticles for intranasal delivery. Drug Dev Ind Pharm 2019; 45:1342-1350. [DOI: 10.1080/03639045.2019.1619759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rajalakshmi Rukmangathen
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women’s University), Tirupati, India
| | - Indira Muzib Yallamalli
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women’s University), Tirupati, India
| | | |
Collapse
|
13
|
Dong H, Qin Y, Huang Y, Ji D, Wu F. Poloxamer 188 rescues MPTP-induced lysosomal membrane integrity impairment in cellular and mouse models of Parkinson's disease. Neurochem Int 2019; 126:178-186. [PMID: 30904670 DOI: 10.1016/j.neuint.2019.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Rupture of lysosome is a major cellular stress condition leading to cell death in PD. We have previously shown that environmental oxidative toxins could impair autophagic flux and lysosomal functions in PD. Poloxamer 188 (P188) is an amphipathic polymer which has cytoprotective effect in traumatic brain injury and stroke. But whether Dyrk1A could rescue lysosome malfunction-mediated DA neuron death and α-synuclein aggregation in PD is still unknown. In the present study, MPTP mice models and MPP+-treated SH-SY5Y cells were used for study, and we found that P188 rescued MPP+-induced lysosomal dysfunction and impaired autophagy flux in mild MPP+-treated SH-SY5Y cells. P188 administration significantly restored lysosomal membrane integrity and prevented cathepsins leakage from the lysosomes into the cytoplasm, which triggered caspase-dependent apoptotic cell death in sub-acute MPTP mouse model and MPP+-treated SH-SY5Y cells. Furthermore, P188 ameliorated α-synuclein accumulation and behavioral impairment in chronic MPTP mouse model with MPTP and probenecid treatment. P188 could alleviate MPTP-induced DA neurons damage by restoring lysosome function.
Collapse
Affiliation(s)
- Hongli Dong
- Encephalopathy Department, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Yuanyuan Qin
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Yuyu Huang
- Department of Pharmacy, Suzhou Hospital of Traditional Chinese Medicine (The Hospital in Suzhou Affiliated to Nanjing University of Chinese Medicine), 18 Yangsu Road, Suzhou, 215009, China
| | - Dongliang Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|