1
|
Shin HC, Rosenfeld C, Guttendorf RJ, Wade SB, Park YJ, Kim JH, Kim SH, Lee BH, Hwang HJ. A Pharmacokinetic and Bioavailability Study of Ecklonia cava Phlorotannins Following Intravenous and Oral Administration in Sprague-Dawley Rats. Mar Drugs 2024; 22:500. [PMID: 39590780 PMCID: PMC11595589 DOI: 10.3390/md22110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study examines the pharmacokinetics and bioavailability of phlorotannins from Ecklonia cava in rats following intravenous and oral administration. Known for their potent antioxidant, anti-inflammatory and many other bioactivities, these phlorotannins, particularly dieckol, 8,8'-bieckol, and phlorofucofuroeckol-A (PFF-A), were analyzed using high-performance liquid chromatography coupled with tandem mass spectrometry. Intravenous administration at 10 mg/kg allowed detectability in plasma for up to 36 h for dieckol and 8,8'-bieckol, but only 2 h for PFF-A. Oral administration at doses of 100 mg/kg and 1000 mg/kg showed limited detectability, indicating low bioavailability and rapid clearance, particularly for PFF-A. The pharmacokinetic data suggest non-linear increases in the maximum plasma concentration (Cmax) and area under the curve (AUC) with increasing doses, pointing to significant challenges in achieving systemic availability of these eckols through oral administration. This study underscores the necessity for advanced formulation strategies and alternative routes of administration to enhance systemic bioavailability. At the same time, this result also suggests their effects may be through non-systemic pathways such as gut microbiome modulation or lipid-rich tissue targeting. The findings lay a crucial foundation for the further development of Ecklonia cava phlorotannins as therapeutic agents, offering insights into their pharmacokinetic behavior and informing enhancements in future clinical utility.
Collapse
Affiliation(s)
- Hyeon-Cheol Shin
- Phloronol Inc., 490 Post Street, Suite 1700, San Francisco, CA 94102, USA;
- Center for Molecular Intelligence, The State University of New York Korea, Incheon 21985, Republic of Korea
| | - Clint Rosenfeld
- MPI Research Inc., 54943 North Main Street, Mattawan, MI 49071, USA;
- Charles River, 54943 North Main Street, Mattawan, MI 49071, USA
| | | | - Susan B. Wade
- Phloronol Inc., 490 Post Street, Suite 1700, San Francisco, CA 94102, USA;
| | - Yong Ju Park
- Botamedi Inc., Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea; (Y.J.P.); (J.H.K.); (S.H.K.)
- DA-JUNG Research & Development Center, 371, Jangsu-ro, Jincheon-gun 27819, Republic of Korea
| | - Ju Hee Kim
- Botamedi Inc., Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea; (Y.J.P.); (J.H.K.); (S.H.K.)
- Hepatall Inc., 96, Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea
| | - Seong Ho Kim
- Botamedi Inc., Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea; (Y.J.P.); (J.H.K.); (S.H.K.)
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea;
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, The State University of New York Korea, Incheon 21985, Republic of Korea
| |
Collapse
|
2
|
Javed A, Alam MB, Naznin M, Ahmad R, Lee CH, Kim S, Lee SH. RSM- and ANN-Based Multifrequency Ultrasonic Extraction of Polyphenol-Rich Sargassum horneri Extracts Exerting Antioxidative Activity via the Regulation of MAPK/Nrf2/HO-1 Machinery. Antioxidants (Basel) 2024; 13:690. [PMID: 38929129 PMCID: PMC11200430 DOI: 10.3390/antiox13060690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Sargassum horneri (SH) is widely consumed as a healthy seaweed food in the Asia-Pacific region. However, the bioactive components contributing to its biological activity remain unknown. Herein, we optimized multifrequency ultrasonic-assisted extraction conditions to achieve higher antioxidant activity using a response surface methodology and an artificial neural network. High-resolution mass spectrometry (HRMS; negative mode) was used to tentatively identify the secondary metabolites in the optimized SH extract, which were further tested against oxidative stress in RAW264.7 cells. Additionally, the identified compounds were analyzed in silico to determine their binding energies with the Keap1 protein (4L7B). We identified 89 compounds using HRMS, among which 19 metabolites (8 polyphenolics, 2 flavonoids, 2 lignans, 2 terpenes, 2 tannins, 2 sulfolipids, and 1 phospholipid) were putatively reported for the first time in SH. The in vitro results revealed that optimized SH extract inhibited oxidative stress via the Nrf2/MAPKs/HO-1 pathway in a dose-dependent manner. This result was validated by performing in silico simulation, indicating that sargaquinoic acid and glycitein-7-O-glucuronide had the highest binding energies (-9.20 and -9.52 Kcal/mol, respectively) toward Keap1 (4L7B). This study offers a unique approach for the scientific community to identify potential bioactive compounds by optimizing the multivariant extraction processing conditions, which could be used to develop functional and nutraceutical foods.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Raees Ahmad
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea;
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea; (M.N.); (R.A.)
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (A.J.); (M.B.A.)
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Javed A, Naznin M, Alam MB, Fanar A, Song BR, Kim S, Lee SH. Metabolite Profiling of Microwave-Assisted Sargassum fusiforme Extracts with Improved Antioxidant Activity Using Hybrid Response Surface Methodology and Artificial Neural Networking-Genetic Algorithm. Antioxidants (Basel) 2022; 11:2246. [PMID: 36421430 PMCID: PMC9687032 DOI: 10.3390/antiox11112246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2023] Open
Abstract
Sargassum fusiforme (SF) is a popular edible brown macroalga found in Korea, Japan, and China and is known for its health-promoting properties. In this study, we used two sophisticated models to obtain optimized conditions for high antioxidant activity and metabolite profiling using high-resolution mass spectrometry. A four-factor central composite design was used to optimize the microwave-assisted extraction and achieve the maximum antioxidant activities of DPPH (Y1: 28.01 % inhibition), ABTS (Y2: 36.07 % inhibition), TPC (Y3: 43.65 mg GAE/g), and TFC (Y4: 17.67 mg CAE/g), which were achieved under the optimized extraction conditions of X1: 47.67 %, X2: 2.96 min, X3: 139.54 °C, and X4: 600.00 W. Moreover, over 79 secondary metabolites were tentatively identified, of which 12 compounds were reported for the first time in SF, including five phenolic (isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, 3,4-dihydroxyphenylglycol, scopoletin, caffeic acid 4-sulfate, and cinnamoyl glucose), two flavonoids (4',7-dihydroxyisoflavone and naringenin), three phlorotannins (diphlorethohydroxycarmalol, dibenzodioxin-1,3,6,8-tetraol, and fucophlorethol), and two other compounds (dihydroxyphenylalanine and 5-hydroxybenzofuran-2(3H)-one) being identified for the first time in optimized SF extract. These compounds may also be involved in improving the antioxidant potential of the extract. Therefore, optimized models can provide better estimates and predictive capabilities that would assist in finding new bioactive compounds with improved biological activities that can be further applied at a commercial level.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Alshammari Fanar
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
- Mass Spectroscopy Converging Research Center, Green Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Xue Q, Xiang Z, Wang S, Cong Z, Gao P, Liu X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front Nutr 2022; 9:1002147. [PMID: 36313111 PMCID: PMC9614275 DOI: 10.3389/fnut.2022.1002147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced to tropical regions worldwide. As an ingredient in perfumes, lotions, and food preservation, it is widely used in the food and cosmetic industries. Also, it is used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum. In addition to eugenol, isoeugenol, eugenol acetate, β-caryophyllene and α-humulene are the main chemical constituents. The chemical constituents of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant, antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective, anti-obesity, antiulcer, etc. This review aims to comprehend the information on its taxonomy and botany, nutritional composition, chemical composition, bioactivities and their mechanisms, toxicity, and potential applications. This review will be a comprehensive scientific resource for those interested in pursuing further research to explore its value in food.
Collapse
Affiliation(s)
- Qing Xue
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zedong Xiang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengguang Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhufeng Cong
- Shandong Provincial Institute of Cancer Prevention and Treatmen, Jinan, Shandong, China
| | - Peng Gao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,Peng Gao,
| | - Xiaonan Liu
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Xiaonan Liu,
| |
Collapse
|
5
|
Huang X, Yang J, Zhang R, Ye L, Li M, Chen W. Phloroglucinol Derivative Carbomer Hydrogel Accelerates MRSA-Infected Wounds’ Healing. Int J Mol Sci 2022; 23:ijms23158682. [PMID: 35955816 PMCID: PMC9369305 DOI: 10.3390/ijms23158682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, wound infection is considered to be one of the major healthcare problems, with bacterial infections being the most critical threat, leading to poor and delayed wound healing, and even death. As a superbug, methicillin-resistant Staphylococcus aureus (MRSA) causes a profound hazard to public health safety, prompting us to search for alternative treatment approaches. Herein, the MTT test and Hoechst/propidium iodide (PI) staining demonstrated that PD was slightly less toxic to human fibroblasts including Human keratinocytes (HaCaT) cell line than Silver sulfadiazine (SSD), and Vancomycin (Van). In the MRSA-infected wound model, PD hydrogel (1%, 2.5%) was applied with for 14 days. The wound healing of PD hydrogel groups was superior to the SSD, Van, and control groups. Remarkably, the experimental results showed that PD reduced the number of skin bacteria, reduced inflammation, and upregulated the expression of PCNA (keratinocyte proliferation marker) and CD31 (angiogenesis manufacturer) at the wound site by histology (including hematoxylin–eosin (HE) staining, Masson staining) and immunohistochemistry. Additionally, no toxicity, hemocompatibility or histopathological changes to organs were observed. Altogether, these results suggested the potential of PD hydrogel as a safe, effective, and low toxicity hydrogel for the future clinical treatment of MRSA-infected wounds.
Collapse
Affiliation(s)
- Xiaosu Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- Department of Anatomy, School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Renyue Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (M.L.); (W.C.); Tel.: +86-020-34055529 (W.C.)
| | - Weiqiang Chen
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (M.L.); (W.C.); Tel.: +86-020-34055529 (W.C.)
| |
Collapse
|
6
|
Abstract
Marine-derived natural products are rich source of secondary metabolites with huge potentials including novel therapeutic agents. Marine algae are considered to be a good source of secondary metabolites with versatile bioactivities. During the last few decades, researches related to natural products obtained from brown algae have remarkably escalated as they contain active compounds with varied biologically activities like antimicrobial, anticancer, antioxidant, anti-inflammatory, antidiabetic, and antiparasitic properties. The main bioactive components such as phlorotannin, fucoxanthin, alginic acid, fucoidan, and laminarin have been briefly discussed here, together with their composition and biological activities. In this review, the biological function of extracts and the metabolites of brown algae as well as their pharmacological impacts with the description of the possible mechanism of their action are described and discussed. Also, this study is expected to examine the multifunctional properties of brown algae that facilitate natural algal products, including the ability to integrate these functional properties in a variety of applications.
Collapse
|
7
|
Rajan DK, Mohan K, Zhang S, Ganesan AR. Dieckol: a brown algal phlorotannin with biological potential. Biomed Pharmacother 2021; 142:111988. [PMID: 34371307 DOI: 10.1016/j.biopha.2021.111988] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dieckol [C36H22O18], is a naturally occurring phlorotannin found in some brown algal species. Dieckol is gaining more attention in the scientific community for its potential biological activities. It has been exhibited a broad spectrum of therapeutic functions including anti-bacterial, anti-cancer, anti-oxidant, anti-aging, anti-diabetic, neuroprotective, and other medicinal applications. Distinct emphasis has been given to extraction, purification, and biomedical applications of dieckol. This critical review comprises of in vitro, in vivo, and in silico biological properties of dieckol. An attempt has been made to evaluate the effectiveness, therapeutical application, and mechanism of dieckol against various diseases. The pharmacological significance, current status and the dosage of multifunctional dieckol and its mechanisms have been discussed in this review. Dieckol plays an important role in apoptosis induction via inhibiting the PI3K, AKT, mTOR and FAK signaling molecules. Dieckol remarkably inhibited the lipid accumulation in high fat diet induced animal models. Dieckol, a multifaceted compound will be beneficial in attenuating the action of various diseases and it could be a potential pharmaceutical and nutraceutical compound. Therefore, the combined effects of dieckol with existing drugs and natural compounds will be studied in future to optimize its benefits. Besides limited information on the toxicological action and dosage administration of dieckol on the human was reported to date. Overall, dieckol is a prospective health-promoting compound for the development of a novel drug against numerous diseases.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode 638316, Tamil Nadu, India.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Laimburg 6, I-39040 Post Auer, BZ, Italy
| |
Collapse
|
8
|
Almeida B, Barroso S, Ferreira ASD, Adão P, Mendes S, Gil MM. Seasonal Evaluation of Phlorotannin-Enriched Extracts from Brown Macroalgae Fucus spiralis. Molecules 2021; 26:4287. [PMID: 34299561 PMCID: PMC8304218 DOI: 10.3390/molecules26144287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Fucus spiralis that was collected in the four seasons was submitted to an extraction with ethanol:water (crude extracts Et80), followed by a liquid-liquid fractionation with organic solvents (fraction He from n-hexane; aqueous fractions AQ1, AQ2, AQ3 and AQ4; ethyl acetate fraction EA), with the aim of obtaining phlorotannin-enriched extracts. All the extracts (Et80, He, AQ1, AQ2, AQ3, AQ4 and EA) that were obtained for the F. spiralis of the four seasons were evaluated for their antioxidant capacity and total phenolic compounds. The summer extracts presented the highest contents in polyphenols (TPC), as well as the highest ferric reducing antioxidant power (FRAP), when compared to the samples from the other seasons. The reductive percentage of the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) compound was similar between the seasons. For all the seasons, the EA extract showed the highest polyphenol content (TPC), and the highest antioxidant capacity (highest ferric reducing power (FRAP) and lowest concentration needed to reduce 50% of the DPPH compound), which is in agreement with a phlorotannin-enriched fraction. This study revealed that the polyphenol content and antioxidant power of the F. spiralis extracts are influenced by the time of harvest, as well as by the solvents used for their extraction.
Collapse
Affiliation(s)
- Belén Almeida
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal; (B.A.); (P.A.)
| | - Sónia Barroso
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal; (B.A.); (P.A.)
| | - Ana S. D. Ferreira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro Adão
- MARE—Marine and Environmental Sciences Centre, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal; (B.A.); (P.A.)
| | - Susana Mendes
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal; (S.M.); (M.M.G.)
| | - Maria M. Gil
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Cetemares, 2520-620 Peniche, Portugal; (S.M.); (M.M.G.)
| |
Collapse
|
9
|
Tang J, Wang W, Chu W. Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins From Seaweed ( Hizikia fusiforme). Front Cell Infect Microbiol 2020; 10:586750. [PMID: 33194827 PMCID: PMC7662131 DOI: 10.3389/fcimb.2020.586750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant bacteria (MDR) are becoming a global health problem, and scientists are continuously investigating new strategies to fight against MDR. Seaweeds are an important source of biological compounds and can serve as natural sources for bacterial infection control. This study evaluated the antimicrobial and anti-quorum sensing (QS) activities of phlorotannins from Hizikia fusiforme. The phlorotannins exhibited antimicrobial activity against selected bacterial pathogens and inhibited QS activity of the reporter strain Chromobacterium violaceum 12472 by inhibiting purple pigment production. Phlorotannins can decrease the bacterial motility, reduce the production of extracellular protease, hemolysin, and pyocyanin and inhibit biofilm formation of Pseudomonas aeruginosa. In vivo studies showed that phlorotannins can reduce P. aeruginosa inflicted mortality in Caenorhabditis elegans. This study shows that phlorotannins from H. fusiforme have certain antimicrobial and anti-quorum sensing activities and have the potential to control bacterial infection for pharmaceutical usage.
Collapse
Affiliation(s)
- Jiali Tang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenqian Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Yang K, Kim SY, Park JH, Ahn WG, Jung SH, Oh D, Park HC, Choi C. Topical Application of Phlorotannins from Brown Seaweed Mitigates Radiation Dermatitis in a Mouse Model. Mar Drugs 2020; 18:md18080377. [PMID: 32707897 PMCID: PMC7460453 DOI: 10.3390/md18080377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Radiation dermatitis (RD) is one of the most common side effects of radiotherapy; its symptoms progress from erythema to dry and moist desquamation, leading to the deterioration of the patients’ quality of life. Active metabolites in brown seaweed, including phlorotannins (PTNs), show anti-inflammatory activities; however, their medical use is limited. Here, we investigated the effects of PTNs in a mouse model of RD in vivo. X-rays (36 Gy) were delivered in three fractions to the hind legs of BALB/c mice. Macroscopic RD scoring revealed that PTNs significantly mitigated RD compared with the vehicle control. Histopathological analyses of skin tissues revealed that PTNs decreased epidermal and dermal thickness compared with the vehicle control. Western blotting indicated that PTNs augmented nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) pathway activation but attenuated radiation-induced NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, suggesting the mitigation of acute inflammation in irradiated mouse skin. PTNs also facilitated fast recovery, as indicated by increased aquaporin 3 expression and decreased γH2AX (histone family member X) expression. Our results indicate that topical PTN application may alleviate RD symptoms by suppressing oxidative stress and inflammatory signaling and by promoting the healing process. Therefore, PTNs may show great potential as cosmeceuticals for patients with cancer suffering from radiation-induced inflammatory side effects such as RD.
Collapse
Affiliation(s)
- Kyungmi Yang
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Shin-Yeong Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
| | - Ji-Hye Park
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
- Department of Dermatology, Samsung Medical Center, Seoul 06351, Korea
| | - Won-Gyun Ahn
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
| | - Sang Hoon Jung
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
| | - Dongruyl Oh
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- School of Medicine, Sungkyunkwan University, Seoul 06351, Korea;
- Correspondence: (H.C.P.); (C.C.); Tel.: +82-2-3110-2605 (H.C.P.); +82-6190-5331 (C.C.)
| | - Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (K.Y.); (S.-Y.K.); (W.-G.A.); (S.H.J.); (D.O.)
- Correspondence: (H.C.P.); (C.C.); Tel.: +82-2-3110-2605 (H.C.P.); +82-6190-5331 (C.C.)
| |
Collapse
|
11
|
Malyarenko OS, Imbs TI, Ermakova SP. In Vitro Anticancer and Radiosensitizing Activities of Phlorethols from the Brown Alga Costaria costata. Molecules 2020; 25:E3208. [PMID: 32674415 PMCID: PMC7396992 DOI: 10.3390/molecules25143208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 01/21/2023] Open
Abstract
The anticancer and radiosensitizing effects of high-molecular-weight phlorethols CcPh (Mw = 2520 Da) isolated from the brown algae of Costaria costata on human colorectal carcinoma HCT 116 and HT-29 cells were investigated. Phlorethols CcPh possessed cytotoxic activity against HT-29 (IC50 = 92 μg/mL) and HCT 116 (IC50 = 94 μg/mL) cells. CcPh at non-toxic concentrations inhibited the colony formation in colon cancer cells and significantly enhanced their sensitivity to low non-toxic X-ray irradiation. The combinatory effect of radiation and CcPh was synergistic (Combination index < 0.7). Algal phlorethols might be prospective candidates as radiosensitizers to improve the scheme of radiotherapy.
Collapse
|