1
|
Joshi D, Patel J, Munshi M, Mistry Z, Prajapati A, Mukherjee A, Ramachandran AV, Parashar NC, Parashar G, Haque S, Tuli HS. Hormones as a double-edged sword: the role of hormones in cancer progression and the potential of targeted hormone therapies. Med Oncol 2024; 41:283. [PMID: 39400627 DOI: 10.1007/s12032-024-02517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant cause of mortality in the world, with increasing prevalence worldwide. There are numerous treatments ranging from surgery to chemotherapy and radiotherapy, but since cancer is a heterogeneous disease, only few patients possibly respond to treatments. However, it opens a huge space for the advent of targeted therapies such as hormone therapy, immunotherapy, and target-specific drugs. Hormonal therapy using hormone agonists/antagonists or hormone receptor inhibitors-called the next-generation hormonal agents-hits distinct hormonal pathways that are involved in breast, prostate and ovarian cancer. Preliminary results show that through combination of drugs, it is possible that the synergistic effects may actually lead to better survival than with the use of single drugs. With manageable adverse effects, hormonal therapy offers much hope for treatment of this rather challenging malignancy of the hormone-sensitive cancers, especially in combination with other treatments.
Collapse
Affiliation(s)
- Dixita Joshi
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Janaki Patel
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Muskaan Munshi
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Zeel Mistry
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Alok Prajapati
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Asmi Mukherjee
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - A V Ramachandran
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India
| | - Nidarshana Chaturvedi Parashar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India.
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, 391410, India.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
2
|
Shiyao L, Yao K, Jun L, Yichen L, Tingxiao Z, Longtao Y, Hong Z, Kai Z. Unraveling the role of bisphenol A in osteosarcoma biology: insights into prognosis and immune microenvironment modulation. Discov Oncol 2024; 15:404. [PMID: 39230832 PMCID: PMC11374946 DOI: 10.1007/s12672-024-01280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is a common environmental pollutant, and its specific mechanisms in cancer development and its impact on the tumor immune microenvironment are not yet fully understood. METHODS Transcriptome data from osteosarcoma (OS) patients were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. BPA-related genes were identified through the Comparative Toxicogenomics Database (CTD), yielding 177 genes. Differentially expressed genes were analyzed using the GSE162454 dataset from the Tumor Immune Single Cell Hub 2 (TISCH2). We constructed the prognostic model using univariate Cox regression and LASSO analysis. The model was validated using the GSE16091 dataset. GO, KEGG, and GSEA analyses were performed to investigate the mechanisms of BPA-related genes. RESULTS A total of 15 BPA-related genes were identified as differentially expressed in OS. Univariate Cox regression and LASSO analysis identified four key prognostic genes (FOLR1, MYC, ESRRA, VEGFA). The prognostic model exhibited strong predictive performance with area under the curve (AUC) values of 0.89, 0.6, and 0.79 for predicting 1-, 2-, and 3-year survival, respectively. External validation using the GSE16091 dataset confirmed the model's high accuracy with AUC values exceeding 0.88. Our results indicated that the prognosis of the high-risk population is generally poorer, which may be associated with alterations in the tumor immune microenvironment. In the high-risk group, immune cells showed predominantly low expression levels, while immune checkpoint genes were significantly overexpressed, along with markedly elevated tumor purity. These findings revealed a correlation between upregulation of BPA-related genes and formation of an immunosuppressive microenvironment, leading to unfavorable patient outcomes. CONCLUSION Our study highlighted the significant association of BPA with OS biology, particularly in its potential role in modulating the tumor immune microenvironment. We offered a fresh insight into the influence of BPA on cancer development, thus providing valuable insights for future clinical interventions and treatment strategies.
Collapse
Affiliation(s)
- Liao Shiyao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kang Yao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lv Jun
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lin Yichen
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhao Tingxiao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yao Longtao
- Cancer Center, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Sports Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Zhou Hong
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhou Kai
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
3
|
Almeida SFF, Santos L, Sampaio-Ribeiro G, Ferreira HRS, Lima N, Caetano R, Abreu M, Zuzarte M, Ribeiro AS, Paiva A, Martins-Marques T, Teixeira P, Almeida R, Casanova JM, Girão H, Abrunhosa AJ, Gomes CM. Unveiling the role of osteosarcoma-derived secretome in premetastatic lung remodelling. J Exp Clin Cancer Res 2023; 42:328. [PMID: 38031171 PMCID: PMC10688015 DOI: 10.1186/s13046-023-02886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Lung metastasis is the most adverse clinical factor and remains the leading cause of osteosarcoma-related death. Deciphering the mechanisms driving metastatic spread is crucial for finding open therapeutic windows for successful organ-specific interventions that may halt or prevent lung metastasis. METHODS We employed a mouse premetastatic lung-based multi-omics integrative approach combined with clinical features to uncover the specific changes that precede lung metastasis formation and identify novel molecular targets and biomarker of clinical utility that enable the design of novel therapeutic strategies. RESULTS We found that osteosarcoma-bearing mice or those preconditioned with the osteosarcoma cell secretome harbour profound lung structural alterations with airway damage, inflammation, neutrophil infiltration, and extracellular matrix remodelling with increased deposition of fibronectin and collagens by resident stromal activated fibroblasts, favouring the adhesion of disseminated tumour cells. Systemic-induced microenvironmental changes, supported by transcriptomic and histological data, promoted and accelerated lung metastasis formation. Comparative proteome profiling of the cell secretome and mouse plasma identified a large number of proteins involved in extracellular-matrix organization, cell-matrix adhesion, neutrophil degranulation, and cytokine-mediated signalling, consistent with the observed lung microenvironmental changes. Moreover, we identified EFEMP1, an extracellular matrix glycoprotein exclusively secreted by metastatic cells, in the plasma of mice bearing a primary tumour and in biopsy specimens from osteosarcoma patients with poorer overall survival. Depletion of EFEMP1 from the secretome prevents the formation of lung metastasis. CONCLUSIONS Integration of our data uncovers neutrophil infiltration and the functional contribution of stromal-activated fibroblasts in ECM remodelling for tumour cell attachment as early pro-metastatic events, which may hold therapeutic potential in preventing or slowing the metastatic spread. Moreover, we identified EFEMP1, a secreted glycoprotein, as a metastatic driver and a potential candidate prognostic biomarker for lung metastasis in osteosarcoma patients. Osteosarcoma-derived secreted factors systemically reprogrammed the lung microenvironment and fostered a growth-permissive niche for incoming disseminated cells to survive and outgrow into overt metastasis. Daily administration of osteosarcoma cell secretome mimics the systemic release of tumour-secreted factors of a growing tumour in mice during PMN formation; Transcriptomic and histological analysis of premetastatic lungs revealed inflammatory-induced stromal fibroblast activation, neutrophil infiltration, and ECM remodelling as early onset pro-metastatic events; Proteome profiling identified EFEMP1, an extracellular secreted glycoprotein, as a potential predictive biomarker for lung metastasis and poor prognosis in osteosarcoma patients. Osteosarcoma patients with EFEMP1 expressing biopsies have a poorer overall survival.
Collapse
Affiliation(s)
- Sara F F Almeida
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Liliana Santos
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Gabriela Sampaio-Ribeiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Hugo R S Ferreira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Nuno Lima
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Rui Caetano
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Mónica Zuzarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, 4200-135, Portugal
| | - Artur Paiva
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Tânia Martins-Marques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Paulo Teixeira
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - Rui Almeida
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, 3004-561, Portugal
| | - José Manuel Casanova
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
- Tumor Unit of the Locomotor Apparatus (UTAL), Orthopedics Service, Coimbra Hospital and University Center (CHUC), University Clinic of Orthopedics, Coimbra, 3000-075, Portugal
| | - Henrique Girão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, 3000-548, Portugal
| | - Célia M Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, 3000-548, Portugal.
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, Coimbra, 3000-548, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3000-075, Portugal.
| |
Collapse
|
4
|
Shao Z, Li J, Liu Z, Bi S. Establishment and validation of systematic prognostic nomograms in patients over 60 years of age with osteosarcoma: A multicenter external verification study. Cancer Med 2023; 12:9589-9603. [PMID: 36992547 PMCID: PMC10166929 DOI: 10.1002/cam4.5736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The aim of this study was to develop and validate systematic nomograms to predict cancer specific survival (CSS) and overall survival (OS) in osteosarcoma patients aged over 60 years. METHODS We used data from the Surveillance, Epidemiology, and End Results (SEER) database and identified 982 patients with osteosarcoma over 60 years of age diagnosed between 2004 and 2015. Overall, 306 patients met the requirements for the training group. Next, we enrolled 56 patients who met the study requirements from multiple medical centers as the external validation group to validate and analyze our model. We collected all available variables and finally selected eight that were statistically associated with CSS and OS through Cox regression analysis. Integrating the identified variables, we constructed 3- and 5-year OS and CSS nomograms, respectively, which were further evaluated by calculating the C-index. A calibration curve was used to evaluate the accuracy of the model. Receiver operating characteristic (ROC) curves measured the predictive capacity of the nomograms. The Kaplan-Meier analysis was used for all patient-based variables to explore the influence of various factors on patient survival. Finally, a decision curve analysis (DCA) curve was used to analyze whether our model would be suitable for application in clinical practice. RESULTS Cox regression analysis of clinical variables identified age, sex, marital status, tumor grade, tumor laterality, tumor size, M-stage, and surgical treatment as prognostic factors. Nomograms showed good predictive capacity for OS and CSS. We calculated that the C-index of the OS nomogram of the training population was 0.827 (95% CI 0.778-0.876), while that of the CSS nomogram was 0.722 (95% CI 0.665-0.779). The C-index of the OS nomogram evaluated on the external validation population was 0.716 (95% CI 0.575-0.857), while that of the CSS nomogram was 0.642 (95% CI 0.50-0.788). Furthermore, the calibration curve of our prediction models indicated the nomograms could accurately predict patient outcome. CONCLUSIONS The constructed nomogram is a useful tool for accurately predicting OS and CSS at 3 and 5 years for patients over 60 years of age with osteosarcoma and can assist clinicians in making appropriate decisions in practice.
Collapse
Affiliation(s)
- Zhuce Shao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - JiaChen Li
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ze Liu
- Shanxi Province Cancer Hospital, Taiyuan, China
| | - Shuxiong Bi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
5
|
Genetic Alterations and Deregulation of Hippo Pathway as a Pathogenetic Mechanism in Bone and Soft Tissue Sarcoma. Cancers (Basel) 2022; 14:cancers14246211. [PMID: 36551696 PMCID: PMC9776600 DOI: 10.3390/cancers14246211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is an evolutionarily conserved modulator of developmental biology with a key role in tissue and organ size regulation under homeostatic conditions. Like other signaling pathways with a significant role in embryonic development, the deregulation of Hippo signaling contributes to oncogenesis. Central to the Hippo pathway is a conserved cascade of adaptor proteins and inhibitory kinases that converge and regulate the activity of the oncoproteins YAP and TAZ, the final transducers of the pathway. Elevated levels and aberrant activation of YAP and TAZ have been described in many cancers. Though most of the studies describe their pervasive activation in epithelial neoplasms, there is increasing evidence pointing out its relevance in mesenchymal malignancies as well. Interestingly, somatic or germline mutations in genes of the Hippo pathway are scarce compared to other signaling pathways that are frequently disrupted in cancer. However, in the case of sarcomas, several examples of genetic alteration of Hippo members, including gene fusions, have been described during the last few years. Here, we review the current knowledge of Hippo pathway implication in sarcoma, describing mechanistic hints recently reported in specific histological entities and how these alterations represent an opportunity for targeted therapy in this heterogeneous group of neoplasm.
Collapse
|
6
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
7
|
Synergistic Antitumor Interaction of Risedronate Sodium and Standard Anticancer Agents in Canine (D-17) and Human Osteosarcoma (U-2 OS) Cell Lines. Animals (Basel) 2022; 12:ani12070866. [PMID: 35405855 PMCID: PMC8996979 DOI: 10.3390/ani12070866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
The study discusses in vitro cytotoxicity of a combination of cytostatic drugs (doxorubicin, cisplatin, carboplatin, etoposide) and risedronate sodium against canine and human osteosarcoma (D-17 and U-2 OS). Standard protocols were used for the preparation of cell cultures and evaluation of their viability and apoptosis. MTT assay assessed the culture viability and EC50, while the apoptotic effect of the drugs was checked with a TUNEL assay. Doxorubicin alone showed the strongest cytotoxicity against D-17 (0.056 ± 0.019 µg/mL) and U-2 OS (0.051 ± 0.003 µg/mL), while the lowest cytotoxicity was observed for carboplatin (D-17, 6.45 ± 0.2 µg/mL and U2-OS, 27.5 ± 2.3 µg/mL). Risedronate sodium at 100, 10 and 1 µg/mL lowered viability in OS cell lines by 53.38 ± 1.46 and 49.56 ± 0.7%, 97.08 ± 3.32 and 74.92 ± 4.01%, and 102.67 ± 3.56 and 94.56 ± 3.52%, respectively. In all analyzed drug combinations, risedronate sodium significantly (* p < 0.05) increased the cytotoxicity against tested osteosarcoma cell lines. The decrease in cell viability caused by the studied compound combinations was weaker in canine than in human cell cultures. A combination of doxorubicin (all concentrations), cisplatin (1 µg/mL) and etoposide (1 µg/mL) with 100 µg/mL of risedronate sodium significantly improved the cytotoxicity of the drugs against canine and human osteosarcoma. Administration of carboplatin (1 µg/mL) and risedronate sodium (100 µg/mL), compared to carboplatin per se, produced no significant differences in cytotoxicity against the D-17 cell culture but significantly enhanced cytotoxicity in the U-2 OS line. The strongest apoptosis in both lines was detected for 0.01 µg/mL doxorubicin combined with 100 µg/mL risedronate sodium or 1 µg/mL cisplatin and 100 µg/mL risedronate sodium. In all combinations, the tested compounds revealed a synergistic mechanism of action.
Collapse
|
8
|
De Luca A, Bellavia D, Raimondi L, Carina V, Costa V, Fini M, Giavaresi G. Multiple Effects of Resveratrol on Osteosarcoma Cell Lines. Pharmaceuticals (Basel) 2022; 15:342. [PMID: 35337142 PMCID: PMC8956103 DOI: 10.3390/ph15030342] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone sarcoma affecting the life of pediatric patients. The clinical treatment faces numerous difficulties, including the adverse effects of chemotherapies, chemoresistance, and recurrences. In this study, the effects of resveratrol (RSV), a natural polyphenol, on OS cell lines were investigated to evaluate its action as an adjuvant therapy to the current chemotherapy regimens. RSV exhibited multiple tumor-suppressing activities on OS cell lines, inducing a series of critical events. We found (1) a cell growth inhibition due to an increase in cell distress, which was, in part, due to the involvement of the AKT and caspase-3 pathways, (2) an increase in cellular differentiation due to major gene expression levels of the osteoblastic differentiation genes, (3) an inhibition of IL-6 secretion due to an epigenetic effect on the IL-6 promoter, and (4) an inhibition of OS cells migration related to the decrease in IL-8 secretion levels due to an epigenetic effect on its promoter. Finally, the cotreatment of RSV with doxorubicin and cisplatin increased their cytotoxic effect on OS cells. Although further investigations are mandatory, it seems RSV might be a promising therapeutic adjuvant agent for OS cell treatment, exerting an antitumor effect when combined with chemotherapy.
Collapse
Affiliation(s)
- Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, CS Surgical Sciences and Technologies—SS Omics Science Platform for Personalized Orthopedics, 40136 Bologna, Italy; (D.B.); (L.R.); (V.C.); (V.C.); (M.F.); (G.G.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Liao Z, Zhang C, Yang T, Liu H, Yang S, Li T, Xing R, Teng S, Yang Y, Zhao J, Zhao G, Bai X, Zhu L, Yang J. Chemotherapy Combined With Recombinant Human Endostatin (Endostar) Significantly Improves the Progression-Free Survival of Stage IV Soft Tissue Sarcomas. Front Oncol 2022; 11:778774. [PMID: 35047396 PMCID: PMC8761904 DOI: 10.3389/fonc.2021.778774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Our previously study showed that recombinant human endostatin (Endostar) combined with chemotherapy had significant activity to increase the mPFS in patients with advanced sarcomas with tolerable side effects. However, the small cohort size and short follow-up time made it difficult to screen sensitive sarcoma subtypes and determine whether there is an overall survival benefit. With the largest sarcoma cohort to our knowledge, we try to confirm the efficacy and safety of chemotherapy combined with Endostar in stage IV sarcomas, with the specific purpose of finding out the sensitive sarcoma types for this combined treatment. Methods After the exclusion of ineligible patients, 156 patients with stage IV bone and soft tissue sarcomas were included in this study according to the inclusion criteria. Results By the end of follow-up, the ORR was 10.7% (9/84) vs 1.4% (1/72) (p=0.041), the DCR was 26.2% (22/84) vs 5.6% (4/72) (p=0.001) in the combined group and chemotherapy group, respectively. The mPFS of combined group was significantly longer than the chemotherapy group (10.42 vs 6.87 months, p=0.003). The mOS were 26.84 months and 23.56 months, without significant difference (p= 0.481). In osteogenic sarcoma, there was no statistically significant difference in the mPFS between the two groups (p=0.59), while in the soft tissue sarcoma, the mPFS in the combined group was significantly higher than that of the chemotherapy group (11.27 vs 8.05 months, p=0.004). Specifically, undifferentiated polymorphic sarcoma (UPS) was the possible sarcoma subtypes that benefited from the combined therapy. For the 38 UPS patients (28 patients in the combined group and 10 patients in the chemotherapy group), the mPFS in the combined group was up to 14.88 months, while it was only 7.1 months in the chemotherapy group, with a significant difference (p=0.006). The most common adverse events in the combined group were myelosuppression, gastrointestinal reactions and abnormal liver function, without significant difference in two groups. Conclusion Chemotherapy plus Endostar could prolong mPFS and improve ORR and DCR in patients with stage IV soft tissue sarcoma, suggesting that the combined therapy could improve the patient prognosis in soft tissue sarcomas, especially the UPS patients.
Collapse
Affiliation(s)
- Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tielong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haotian Liu
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songwei Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Departments of Bone and Soft Tissue Tumor, Chongqing University Cancer Hospital, Chongqing, China
| | - Ting Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ruwei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Sheng Teng
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yun Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Gang Zhao
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xu Bai
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lei Zhu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
10
|
Sokołowska P, Siatkowska M, Białkowska K, Rosowski M, Komorowski P, Walkowiak B. Osteosarcoma cells in early and late stages as cancer in vitro progression model for assessing the responsiveness of cells to silver nanoparticles. J Biomed Mater Res B Appl Biomater 2021; 110:1319-1334. [PMID: 34953019 DOI: 10.1002/jbm.b.35002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Understanding of biology of osteosarcoma malignant progression is indispensable for enhancement of conventional chemotherapy by the use of silver nanoparticles (AgNPs). We presented an in vitro model of cancer progression closely resembling processes occurring in vivo in terms of protein profile. A comparison of cytotoxic and genotoxic potential of AgNPs in Saos-2 cells in early stages of cancerous progression (early passages) with the cells in advanced stages (late passages) demonstrated significantly reduced responsiveness of the late passage cells to nanoparticles toxicity. It was also confirmed by proteome analysis as we identified considerably higher number of differentially expressed proteins in Saos-2 cells in early passages compared to the late passage cells. Our studies showed that the ability of AgNPs as potential drug carriers to deliver a medication and/or to evoke toxic effects might be significantly diminished in advanced stages of cancer progression.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | | | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Rosowski
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Department of Chemical Textiles Technologies, Lukasiewicz Research Network, Textile Research Institute, Lodz, Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Division of Biophysics, Institute of Materials Science, Lodz University of Technology, Lodz, Poland
| | - Bogdan Walkowiak
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Division of Biophysics, Institute of Materials Science, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
11
|
Tsogtbaatar K, Sousa DA, Ferreira D, Tevlek A, Aydın HM, Çelik E, Rodrigues L. In vitro selection of DNA aptamers against human osteosarcoma. Invest New Drugs 2021; 40:172-181. [PMID: 34383183 DOI: 10.1007/s10637-021-01161-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Osteosarcoma is a highly malignant bone tumor, most frequently occurring in the rapid bone growth phase. Effective treatment of this disease is hindered by the lack of specific probes for early diagnosis and the fast cancer widespread. METHODS To find such probes, the cell-Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) methodology was implemented against the human osteosarcoma MG-63 cell line towards the selection of new specific aptamers. After 10 rounds of selection, the aptamer DNA pool was Sanger sequenced and the sequences were subjected to a bioinformatic analysis that included sequence alignment, phylogenetic relationship, and secondary structure prediction. RESULTS A DNA aptamer (OS-7.9), with a dissociation constant (Kd) value in the nanomolar range (12.8 ± 0.9 nM), revealed high affinity against the target cells at the physiological temperature. Furthermore, the selected aptamer also recognized lung carcinoma and colon colorectal adenocarcinoma cell lines, which are reported as common metastasis sites of osteosarcoma. CONCLUSIONS These results suggest that OS-7.9 could recognize a common protein expressed in these cancer cells, possibly becoming a potential molecular probe for early diagnosis and targeted therapies for metastatic disease. Moreover, to the best of our knowledge, this was the first attempt to generate a DNA aptamer (OS-7.9 aptamer) against the MG-63-cell line by cell-SELEX.
Collapse
Affiliation(s)
- Khaliunsarnai Tsogtbaatar
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Diana A Sousa
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Debora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Atakan Tevlek
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
| | - Halil Murat Aydın
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
- Centre for Bioengineering, Hacettepe University, 06800, Ankara, Turkey
| | - Eda Çelik
- Institute of Science, Hacettepe University, Bioengineering Division, 06800, Ankara, Turkey
- Department of Chemical Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Ligia Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
12
|
Saltsman JA, Danzer E, Hammond WJ, Rhee D, Berhe S, Monteagudo J, Price AP, Heaton TE, Jones DR, LaQuaglia MP. Survival and Scoliosis Following Resection of Chest Wall Tumors in Children and Adolescents: A Single-center Retrospective Analysis. Ann Surg 2021; 274:e167-e173. [PMID: 31356260 PMCID: PMC7147950 DOI: 10.1097/sla.0000000000003495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We reviewed our experience with pediatric chest wall tumors (CWTs) to identify variables associated with survival, scoliosis development, and need for corrective scoliosis surgery. BACKGROUND Chest wall neoplasms in children or adolescents are rare. Consequently, there are few large series that detail survival or quality of life indicators, like scoliosis. METHODS Medical records were reviewed for all chest wall resections for primary and metastatic CWT performed from October 1, 1986 to September 30, 2016 on patients 21 years or younger at diagnosis. Kaplan-Meier distributions were compared using the log-rank test. Variables correlated with survival, scoliosis development, or need for corrective surgeries were analyzed using competing-risk analysis. RESULTS Seventy-six cases [57 (75%) primary, 19 (25%) metastatic] were identified. Median age at diagnosis was 15.6 years (range: 0.5-21 years). Tumor types were Ewing sarcoma family tumors (54%), other soft tissue sarcomas (21%), osteosarcoma (11%), rhabdomyosarcoma (7%), and other (8%). A median of 3 (range: 1-5) contiguous ribs were resected. Surgical reconstruction included composite Marlex mesh and methyl-methacrylate, Gore-Tex, or primary closure in 57%, 28%, and 14% of procedures, respectively. Overall 5-year survival was 61% (95% confidence interval: 50%-75%). Scoliosis developed in 19 (25%) patients; 6 patients required corrective surgery. Variables associated with overall survival were the presence of metastatic disease at diagnosis, and whether the chest tumor itself was a primary or metastatic lesion. Younger age at chest wall resection was associated with the need for corrective surgery in patients who developed scoliosis. CONCLUSIONS Among pediatric and adolescent patients with CWTs, survival depends primarily on the presence of metastases. Age, type of chest wall reconstruction, and tumor size are not associated with scoliosis development. Among patients who develop scoliosis, younger patients are more likely to require corrective surgery.
Collapse
Affiliation(s)
- James A. Saltsman
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Enrico Danzer
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William J. Hammond
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Rhee
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Simon Berhe
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Julie Monteagudo
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anita P. Price
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, NY
| | - Todd E. Heaton
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael P. LaQuaglia
- Pediatric Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
13
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Kõks S. Upregulation of 15 Antisense Long Non-Coding RNAs in Osteosarcoma. Genes (Basel) 2021; 12:genes12081132. [PMID: 34440306 PMCID: PMC8394133 DOI: 10.3390/genes12081132] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
The human genome encodes thousands of natural antisense long noncoding RNAs (lncRNAs); they play the essential role in regulation of gene expression at multiple levels, including replication, transcription and translation. Dysregulation of antisense lncRNAs plays indispensable roles in numerous biological progress, such as tumour progression, metastasis and resistance to therapeutic agents. To date, there have been several studies analysing antisense lncRNAs expression profiles in cancer, but not enough to highlight the complexity of the disease. In this study, we investigated the expression patterns of antisense lncRNAs from osteosarcoma and healthy bone samples (24 tumour-16 bone samples) using RNA sequencing. We identified 15 antisense lncRNAs (RUSC1-AS1, TBX2-AS1, PTOV1-AS1, UBE2D3-AS1, ERCC8-AS1, ZMIZ1-AS1, RNF144A-AS1, RDH10-AS1, TRG-AS1, GSN-AS1, HMGA2-AS1, ZNF528-AS1, OTUD6B-AS1, COX10-AS1 and SLC16A1-AS1) that were upregulated in tumour samples compared to bone sample controls. Further, we performed real-time polymerase chain reaction (RT-qPCR) to validate the expressions of the antisense lncRNAs in 8 different osteosarcoma cell lines (SaOS-2, G-292, HOS, U2-OS, 143B, SJSA-1, MG-63, and MNNG/HOS) compared to hFOB (human osteoblast cell line). These differentially expressed IncRNAs can be considered biomarkers and potential therapeutic targets for osteosarcoma.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan Dung Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam;
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia; (E.R.); (J.X.); (D.W.)
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, 50411 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: ; Tel.: +61-(0)-8-6457-0313
| |
Collapse
|
14
|
Sugiu K, Tazawa H, Hasei J, Yamakawa Y, Omori T, Komatsubara T, Mochizuki Y, Kondo H, Osaki S, Fujiwara T, Yoshida A, Kunisada T, Ueda K, Urata Y, Kagawa S, Ozaki T, Fujiwara T. Oncolytic virotherapy reverses chemoresistance in osteosarcoma by suppressing MDR1 expression. Cancer Chemother Pharmacol 2021; 88:513-524. [PMID: 34114067 DOI: 10.1007/s00280-021-04310-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is a malignant bone tumor primarily affecting children and adolescents. The prognosis of chemotherapy-refractory OS patients is poor. We developed a tumor suppressor p53-expressing oncolytic adenovirus (OBP-702) that exhibits antitumor effects against human OS cells. Here, we demonstrate the chemosensitizing effect of OBP-702 in human OS cells. MATERIALS AND METHODS The in vitro and in vivo antitumor activities of doxorubicin (DOX) and OBP-702 were assessed using parental and DOX-resistant OS cells (U2OS, MNNG/HOS) and a DOX-resistant MNNG/HOS xenograft tumor model. RESULTS DOX-resistant OS cells exhibited high multidrug resistant 1 (MDR1) expression, which was suppressed by OBP-702 or MDR1 siRNA, resulting in enhanced DOX-induced apoptosis. Compared to monotherapy, OBP-702 and DOX combination therapy significantly suppressed tumor growth in the DOX-resistant MNNG/HOS xenograft tumor model. CONCLUSION Our results suggest that MDR1 is an attractive therapeutic target for chemoresistant OS. Tumor-specific virotherapy is thus a promising strategy for reversing chemoresistance in OS patients via suppression of MDR1 expression.
Collapse
Affiliation(s)
- Kazuhisa Sugiu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Joe Hasei
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuaki Yamakawa
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshinori Omori
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tadashi Komatsubara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yusuke Mochizuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroya Kondo
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Shuhei Osaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Koji Ueda
- Project for Personalized Cancer Medicine, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo, 105-0001, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
15
|
Kasiram MZ, Hapidin H, Abdullah H, Ahmad A, Sulong S. Combination Therapy of Cisplatin and other Agents for Osteosarcoma: A Review. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716999201016160946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background:
Osteosarcoma is the most common type of primary bone tumor in children
and adolescents, which is associated with rapid progression and poor prognosis. Multimodal
therapy is the most common approach utilized for osteosarcoma management, such as the application
of chemotherapy in combination with surgery or radiation therapy. Cisplatin is one of the predominantly
used chemotherapeutic agents for osteosarcoma. Optimally, it is employed in combination
with other chemotherapeutic drugs along with surgery or radiation therapy. Despite the availability
of numerous treatment approaches, the patient survival rate has not definitively improved
over the past three decades.
Methods:
We have summarized all findings regarding the combination of cisplatin with other chemotherapeutic
agents as well as with phytochemical compounds.
Results:
A combination of cisplatin with a phytochemical compound synergistically enhances the
killing effect of cisplatin on osteosarcoma cells with fewer side effects compared to combination
with other chemotherapeutic agents.
Conclusion:
Conclusively, a combination of cisplatin with selected chemotherapeutic drugs has
been shown to be effective. However, the unchanged survival rate has posed an urge to search for a
new combination regimen. As a collaborative effort to substantiate the therapeutic efficacy, the
combination with phytochemical compounds shows a promising response both in vitro as well as
in the preclinical study.
Collapse
Affiliation(s)
- Mohamad Z. Kasiram
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hermizi Hapidin
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Azlina Ahmad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
16
|
Samal S, Dash P, Dash M. Drug Delivery to the Bone Microenvironment Mediated by Exosomes: An Axiom or Enigma. Int J Nanomedicine 2021; 16:3509-3540. [PMID: 34045855 PMCID: PMC8149288 DOI: 10.2147/ijn.s307843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of bone-related disorders is causing a burden on the clinical scenario. Even though bone is one of the tissues that possess tremendous regenerative potential, certain bone anomalies need therapeutic intervention through appropriate delivery of a drug. Among several nanosystems and biologics that offer the potential to contribute towards bone healing, the exosomes from the class of extracellular vesicles are outstanding. Exosomes are extracellular nanovesicles that, apart from the various advantages, are standing out of the crowd for their ability to conduct cellular communication. The internal cargo of the exosomes is leading to its potential use in therapeutics. Exosomes are being unraveled in terms of the mechanism as well as application in targeting various diseases and tissues. Through this review, we have tried to understand and review all that is already established and the gap areas that still exist in utilizing them as drug delivery vehicles targeting the bone. The review highlights the potential of the exosomes towards their contribution to the drug delivery scenario in the bone microenvironment. A comparison of the pros and cons of exosomes with other prevalent drug delivery systems is also done. A section on the patents that have been generated so far from this field is included.
Collapse
Affiliation(s)
- Sasmita Samal
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Pratigyan Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha, 751024, India
| | - Mamoni Dash
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
17
|
TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy. Cell Death Dis 2021; 12:21. [PMID: 33414451 PMCID: PMC7790825 DOI: 10.1038/s41419-020-03364-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/25/2022]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, which is characterized by dysfunctional autophagy and poor differentiation. Our recent studies have suggested that the tripartite motif containing-21 (TRIM21) plays a crucial role in regulating OS cell senescence and proliferation via interactions with several proteins. Yet, its implication in autophagy and differentiation in OS is largely unknown. In the present study, we first showed that TRIM21 could promote OS cell autophagy, as determined by the accumulation of LC3-II, and the degradation of cargo receptor p62. Further, we were able to identify that Annexin A2 (ANXA2), as a novel interacting partner of TRIM21, was critical for TIRM21-induced OS cell autophagy. Although TRIM21 had a negligible effect on the mRNA and protein expressions of ANXA2, we did find that TRIM21 facilitated the translocation of ANXA2 toward plasma membrane (PM) in OS cells through a manner relying on TRIM21-mediated cell autophagy. This functional link has been confirmed by observing a nice co-expression of TRIM21 and ANXA2 (at the PM) in the OS tissues. Mechanistically, we demonstrated that TRIM21, via facilitating the ANXA2 trafficking at the PM, enabled to release the transcription factor EB (TFEB, a master regulator of autophagy) from the ANXA2-TFEB complex, which in turn entered into the nucleus for the regulation of OS cell autophagy. In accord with previous findings that autophagy plays a critical role in the control of differentiation, we also demonstrated that autophagy inhibited OS cell differentiation, and that the TRIM21/ANXA2/TFEB axis is implicated in OS cell differentiation through the coordination with autophagy. Taken together, our results suggest that the TRIM21/ANXA2/TFEB axis is involved in OS cell autophagy and subsequent differentiation, indicating that targeting this signaling axis might lead to a new clue for OS treatment.
Collapse
|
18
|
Ando T, Ichikawa J, Fujimaki T, Taniguchi N, Takayama Y, Haro H. Gemcitabine and Rapamycin Exhibit Additive Effect against Osteosarcoma by Targeting Autophagy and Apoptosis. Cancers (Basel) 2020; 12:cancers12113097. [PMID: 33114161 PMCID: PMC7690839 DOI: 10.3390/cancers12113097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
The overall prognosis for sarcoma-based cancer patients has remained largely unchanged over the past 10 years. Because there is no effective anticancer drug for patients with chemoresistant osteosarcoma (OS), novel approaches are needed to improve the prognosis. Here, we investigated whether rapamycin (Rapa) could enhance the anti-tumor effects of gemcitabine (Gem) in OS. Gem dose-dependently killed the OS cells, but exhibited much lower cytotoxicity on osteoblasts. Treatment with a combination Gem and Rapa was much more effective than that of either single agent with respect to reducing cell viability, cell invasion, cell migration, and vascular endothelial growth factor production in vitro. Moreover, the combination of these agents suppressed tumor growth, angiogenesis, and lung metastasis in allograft and xenograft murine models of OS with minimal adverse effects. Overall, the combination therapy prolonged the overall survival of tumor-bearing mice. Mechanistically, Gem induced apoptosis and increased the levels of cleaved caspases, while Rapa induced autophagy and microtubule-associated protein light chain 3 (LC3)-I/LC3-II expression both in vitro and in vivo. Our findings suggest that chemotherapy using Gem combined with Rapa may be a novel and promising therapeutic approach for the treatment of OS.
Collapse
|
19
|
Targeting Mechanotransduction in Osteosarcoma: A Comparative Oncology Perspective. Int J Mol Sci 2020; 21:ijms21207595. [PMID: 33066583 PMCID: PMC7589883 DOI: 10.3390/ijms21207595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanotransduction is the process in which cells can convert extracellular mechanical stimuli into biochemical changes within a cell. While this a normal process for physiological development and function in many organ systems, tumour cells can exploit this process to promote tumour progression. Here we summarise the current state of knowledge of mechanotransduction in osteosarcoma (OSA), the most common primary bone tumour, referencing both human and canine models and other similar mesenchymal malignancies (e.g., Ewing sarcoma). Specifically, we discuss the mechanical properties of OSA cells, the pathways that these cells utilise to respond to external mechanical cues, and mechanotransduction-targeting strategies tested in OSA so far. We point out gaps in the literature and propose avenues to address them. Understanding how the physical microenvironment influences cell signalling and behaviour will lead to the improved design of strategies to target the mechanical vulnerabilities of OSA cells.
Collapse
|
20
|
Cao D, Lei Y, Ye Z, Zhao L, Wang H, Zhang J, He F, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Wagstaff W, Zhao X, Fu K, Tucker AB, Chen C, Reid RR, Haydon RC, Luu HH, He TC, Liao Z. Blockade of IGF/IGF-1R signaling axis with soluble IGF-1R mutants suppresses the cell proliferation and tumor growth of human osteosarcoma. Am J Cancer Res 2020; 10:3248-3266. [PMID: 33163268 PMCID: PMC7642656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023] Open
Abstract
Primary bone tumor, also known as osteosarcoma (OS), is the most common primary malignancy of bone in children and young adults. Current treatment protocols yield a 5-year survival rate of near 70% although approximately 80% of patients have metastatic disease at the time of diagnosis. However, long-term survival rates have remained virtually unchanged for nearly four decades, largely due to our limited understanding of the disease process. One major signaling pathway that has been implicated in human OS tumorigenesis is the insulin-like growth factor (IGF)/insulin-like growth factor-1 receptor (IGF1R) signaling axis. IGF1R is a heterotetrameric α2β2 receptor, in which the α subunits comprise the ligand binding site, whereas the β subunits are transmembrane proteins containing intracellular tyrosine kinase domains. Although numerous strategies have been devised to target IGF/IGF1R axis, most of them have failed in clinical trials due to the lack of specificity and/or limited efficacy. Here, we investigated whether a more effective and specific blockade of IGF1R activity in human OS cells can be accomplished by employing dominant-negative IGF1R (dnIGF1R) mutants. We engineered the recombinant adenoviruses expressing two IGF1R mutants derived from the α (aa 1-524) and β (aa 741-936) subunits, and found that either dnIGF1Rα and/or dnIGF1Rβ effectively inhibited cell migration, colony formation, and cell cycle progression of human OS cells, which could be reversed by exogenous IGF1. Furthermore, dnIGF1Rα and/or dnIGF1Rβ inhibited OS xenograft tumor growth in vivo, with the greatest inhibition of tumor growth shown by dnIGF1Rα. Mechanistically, the dnIGF1R mutants down-regulated the expression of PI3K/AKT and RAS/RAF/MAPK, BCL2, Cyclin D1 and most EMT regulators, while up-regulating pro-apoptotic genes in human OS cells. Collectively, these findings strongly suggest that the dnIGF1R mutants, especially dnIGF1Rα, may be further developed as novel anticancer agents that target IGF signaling axis with high specificity and efficacy.
Collapse
Affiliation(s)
- Daigui Cao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Chongqing General Hospital Affiliated with The University of Chinese Academy of SciencesChongqing, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of General Surgery, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Andrew B Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery Section of Plastic and Reconstructive Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Xiangya Hospital of Central South UniversityChangsha, China
| |
Collapse
|
21
|
Oh JY, Lee YJ, Kim EH. Tumor-Treating Fields Inhibit the Metastatic Potential of Osteosarcoma Cells. Technol Cancer Res Treat 2020; 19:1533033820947481. [PMID: 32938326 PMCID: PMC7502799 DOI: 10.1177/1533033820947481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The prognosis of metastatic osteosarcoma (OS) remains poor with a <20% survival rate, particularly in cases of distant (non-lung) metastases. Tumor-treating field (TTF) therapy is a novel electric field-based treatment that causes metaphase arrest and tumor cell death, with the advantage of reduced side effects compared to radiation and chemotherapy. TTF shows promise in glioblastoma and other solid tumors; however, few studies have examined its potential in the treatment of osteosarcoma. Therefore, we explored the mechanism of TTF-induced metastasis inhibition and cell death using in vitro models. TTF (1.5 V/cm, 150 kHz) was applied to U2OS and KHOS/NP OS cell lines. In addition, a 3-dimensional culture system was established using these OS cell lines. Cell migration and invasion (i.e., metastatic potential) were examined using a wound-healing scratch assay and transwell assay, respectively. Western blotting of metastasis- and angiogenesis-related proteins was performed. TTF suppressed the migration of and invasion by OS cells and inhibited the expression of epithelial markers, thereby preventing epithelial-mesenchymal transition (EMT), a hallmark of metastasis. Moreover, TTF prevented angiogenesis in human tumor endothelial cells and downregulated matrix metalloproteinase-2 (MMP2) and vascular endothelial growth factor (VEGF) expression. Therefore, TTF shows potential as an improved treatment for osteosarcoma, warranting further preclinical studies in animal models to support clinical trials.
Collapse
Affiliation(s)
- Ju Yeon Oh
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Yeon-Joo Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Duryugongwon-ro, Nam-gu, Daegu, Korea
| |
Collapse
|
22
|
Cao F, Nguyen P, Hong B, DeRenzo C, Rainusso NC, Rodriguez Cruz T, Wu MF, Liu H, Song XT, Suzuki M, Wang LL, Yustein JT, Gottschalk S. Engineering Oncolytic Vaccinia Virus to redirect Macrophages to Tumor Cells. ACTA ACUST UNITED AC 2020; 4. [PMID: 33829146 DOI: 10.1002/acg2.99] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oncolytic virotherapy has been tested in numerous early phase clinical studies. However, the antitumor activity of oncolytic viruses thus far has been limited. Numerous strategies are being explored to enhance their antitumor activity by activating the adaptive arm of the immune system. We reasoned that it might also be possible to engineer oncolytic viruses to redirect tumor-associated macrophages to tumor cells for therapeutic benefit. We engineered an oncolytic vaccinia virus (VV) to disrupt the CD47/SIRPα interaction by expressing a chimeric molecule that consists of the ectodomain of SIRPα and the Fc domain of IgG4 (SIRPα-Fc-VV). SIRPα-Fc-VV readily replicated in tumor cells and redirected M1 as well as M2 macrophages to tumor cells in vitro. In contrast, control VVs that either encoded YFP (YFP-VV) or SIRPα (SIRPα-VV) did not. In vivo, SIRPα-Fc-VV had greater antitumor activity than YFP-VV and SIRPα-VV in an immune competent osteosarcoma model resulting in a significant survival advantage. Pretreatment with cytoxan further augmented the antitumor activity of SIRPα-Fc-VV. Thus, arming oncolytic viruses with SIRPα-Fc may present a promising strategy to enhance their antitumor activity for the virotherapy of solid tumors.
Collapse
Affiliation(s)
- Felicia Cao
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Phuong Nguyen
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bangxing Hong
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christopher DeRenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Nino C Rainusso
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Tania Rodriguez Cruz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Meng-Fen Wu
- Biostatistics Shared Resource, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hao Liu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lisa L Wang
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
23
|
Pennington Z, Ahmed AK, Cottrill E, Westbroek EM, Goodwin ML, Sciubba DM. Systematic review on the utility of magnetic resonance imaging for operative management and follow-up for primary sarcoma-lessons from extremity sarcomas. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:225. [PMID: 31297390 DOI: 10.21037/atm.2019.01.59] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Primary sarcomas of the vertebral column affect roughly 5 in every million persons annually, of which half to one-third are malignant. Treatment of these lesions requires multimodal management, often employing attempts at en bloc resection of the lesion with negative margins. This may be facilitated using magnetic resonance imaging for preoperative margin planning, but current literature is lacking regarding the use of such imaging to accurately predict planned surgical margins. Here we review prior studies describing the use of magnetic resonance imaging for en bloc resection of sarcomas of the extremities to identify learning points for application to the treatment of spinal neoplasms. We conducted a systematic review of the PubMed and EMBASE literature. Included studies described the accuracy of MRI for preoperative evaluation of tumor margins, intraoperative guidance for en bloc resection, or post-operative evaluation of residual or recurrent disease. All included studies described patients treated for osseous or soft tissue sarcoma of the limbs. We found 1,705 unique references of which 27 met criteria for inclusion. Seven studies reported MR had an overall diagnostic accuracy of 93.6-96% for preoperative margin evaluation with non-contrast T1 most accurately reflecting true margins. In the nine articles reporting results of MR-guided resection, negative margins were achieved in 88.8-100% of cases with a closest margin of 2-4 mm. Eleven articles combined reported the accuracy of MR for residual disease or local recurrence, with a mean sensitivity and specificity of 71.7% and 79.3%, respectively for residual disease and 87.9% and 85.9%, respectively for local recurrence. The current literature for appendicular musculoskeletal sarcoma suggests that MR is highly accurate for defining tumor margins preoperatively, guiding osteotomy cuts intraoperatively, and documenting recurrence or residual disease. Further evidence is necessary to evaluate the degree to which it can accurately guide osteotomy planning for en bloc resection of vertebral primaries.
Collapse
Affiliation(s)
- Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erick M Westbroek
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew L Goodwin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Phase II trial of VEGFR2 inhibitor apatinib for metastatic sarcoma: focus on efficacy and safety. Exp Mol Med 2019; 51:1-11. [PMID: 30816108 PMCID: PMC6395676 DOI: 10.1038/s12276-019-0221-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Apatinib (YN968D1) is a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor 2 (VEGFR-2). We conducted a single-arm, nonrandomized phase II study (NCT03121846) to assess the efficacy and safety of apatinib in patients with stage IV sarcoma. We recruited 64 patients with stage IV sarcoma who had failed chemotherapy. The primary endpoint was progression-free survival (PFS), and the secondary endpoints were progression-free survival rate (PFR), objective response rate (ORR), and disease control rate (DCR) at week 12. Treatment-related adverse effects (AEs) were evaluated. Fifty-nine patients were assessed for efficacy and 64 patients for AEs. The median PFS was 7.93 months. At 12 weeks, the PFR was 74%, the ORR was 16.95% (10/59), and the DCR was 86.44% (51/59). The final ORR was 15.25% (9/59) and the DCR was 57.63% (34/59). Notably, 22 patients (34.38%) who developed hypertension, hand-foot-skin reaction, or proteinuria had significantly longer OS than those without these AEs (18.20 vs. 10.73 months; P = 0.002). We conclude that apatinib is effective and well tolerated in patients with advanced sarcoma. The development of hypertension, hand-foot-skin reaction, or proteinuria may indicate a favorable prognosis, representing a novel finding in sarcoma patients. A drug that inhibits blood vessel growth offers a potentially promising treatment for a class of tumors with a poor prognosis. Sarcomas form in bone and connective tissue, and patients with advanced disease have a five-year survival rate of less than 10%. Researchers led by Jilong Yang of the Tainjin Medical University Cancer Institute & Hospital in China tested apatanib, a drug that starves tumors by preventing blood vessel development, in late-stage sarcoma patients. Strikingly, 15% of the patients experienced tumor reduction after treatment, and more than half overall achieved at least partial disease control. Adverse events were generally mild, but Yang and colleagues observed that patients who experienced certain side-effects achieved a greater survival benefit from treatment. These results support further investigation of this drug, and offer hints of possible biomarkers to predict response.
Collapse
|
25
|
Bone transport using the Ilizarov method for osteosarcoma patients with tumor resection and neoadjuvant chemotherapy. J Bone Oncol 2019; 16:100224. [PMID: 30989037 PMCID: PMC6447741 DOI: 10.1016/j.jbo.2019.100224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Background Studies on the applications of bone transport using the Ilizarov method for osteosarcoma (OS) patients with surgical resection and neoadjuvant chemotherapy are rare. Methods A retrospective analysis was conducted in 10 patients with limb OS receiving limb-salvage treatment by Ilizarov method from 2007 to 2012 in our hospital. The general information, treatment outcomes and follow-up data of the patients were collected. Results The mean length of the transported fragment and the mean transport distance of the affected limb were both 14 cm. The mean time in the external fixator was 34.2 ± 11.2 months (16-47 months) and the mean external fixation index (EFI) was 75 days/cm. The mean follow-up time was 68.6 ± 26.6 months (37-103 months). Seven patients underwent additional operations to treat the postoperative complications, and the mean number of operation was 1.7 times. Only one patient underwent amputation due to tumor relapse and all patients survived without tumor. The limb-salvage rate was 90%. At the time of external fixator removal, the ASAMI-bone score was good in 66.7% of patients and the ASAMI-function score was fair in 66.7% of cases. The mean MSTS score was 18.6 ± 3.2 (n = 9). At 10 months after fixator removal, both the ASAMI-bone score and ASAMI-function score were both excellent in 80% and good in 20% cases, and the mean MSTS score was further improved to 27.2 ± 1.11 (n = 5). Conclusion Bone transport using the Ilizarov method can achieve good therapeutic effectiveness in the limb-salvage treatment for OS patients with neoadjuvant chemotherapy as long as the complications can be timely recognized and well managed.
Collapse
|
26
|
Liu J, Wu Q, Wang Y, Wei Y, Wu H, Duan L, Zhang Q, Wu Y. Ovol2 induces mesenchymal-epithelial transition via targeting ZEB1 in osteosarcoma. Onco Targets Ther 2018; 11:2963-2973. [PMID: 29872308 PMCID: PMC5973319 DOI: 10.2147/ott.s157119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Osteosarcoma (OS) is the most common type of primary solid bone tumor. Ovo-like zinc finger 2 (Ovol2), a zinc finger transcription factor, is a mesenchymal–epithelial transition (MET) driver that induces miR-200 expression in prostate cancer, breast cancer, and hepatocellular carcinoma. However, little is known about the expression and function of MET in sarcomas, including OS. This study investigated the expression and clinicopathological significance of Ovol2 and its effect on MET in OS. Patients and methods The Ovol2 expression in the tumor samples from patients with OS was examined using immunohistochemistry (IHC). We then upregulated the Ovol2 expression in MG-63 and SW1353 cells, detected the expression of MET-associated proteins, and observed the effects of Ovol2 on OS cell proliferation, migration, and cytoskeleton reorganization using Cell Counting Kit-8, transwell invasion, and phalloidin dyeing assays, respectively. The correlation between zinc finger E-box-binding homeobox 1 (ZEB1) and Ovol2 was assessed using the luciferase gene reporter assay in the MG-63 and SW1353 cells and IHC in the human OS tissue samples. Results The Ovol2 protein overexpression was related to the clinical grade (P=0.02) and the recurrence and metastasis (P=0.02) of OS. Results of the in vitro experiments showed that Ovol2 overexpression can suppress cell migration and invasion and can regulate the expression levels of MET-associated proteins. Ovol2 suppresses ZEB1 expression by binding to the ZEB1 promoter. Ovol2 is concomitant with a reduced IHC expression of ZEB1 in human OS tissues. Conclusion Ovol2 expression is associated with MET in OS cells and suppresses ZEB1 expression and OS progression.
Collapse
Affiliation(s)
| | - Qi Wu
- Department of Orthopedics
| | | | | | - Hong Wu
- Department of Ultrasound, Bayannaoer City Hospital, Bayannaoer, Inner Mongolia, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Huang J, Liang Y, Xu M, Xiong J, Wang D, Ding Q. MicroRNA-124 acts as a tumor-suppressive miRNA by inhibiting the expression of Snail2 in osteosarcoma. Oncol Lett 2018; 15:4979-4987. [PMID: 29552134 PMCID: PMC5840501 DOI: 10.3892/ol.2018.7994] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the clinical significance of hsa-microRNA-124-3p (miR-124) in osteosarcoma (OS), and examine its role in cell growth and invasion. Using a microRNA chip array, the expression of miR-124 was detected in samples of surgically resected OS and matched against the levels of expression in tumor-adjacent normal tissues. The levels of miR-124 were upregulated in the OS cells through the transfection of miR-124 mimics. Cell proliferation and Transwell assays were performed to determine cell proliferation and invasion; Reverse transcription-quantitative polymerase chain reaction, western blot and luciferase assays were then used to detect the expression of the target gene snail family zinc finger 2 (Snail2). The expression of miR-124 was significantly lower in the OS tissues, compared with that in the tumor-adjacent normal tissues; and the expression of miR-124 in the tumor tissues was significantly associated with tumor size. miR-124 directly repressed the expression of Snail2, and resulted in a significant inhibition of cell proliferation and invasion. In a mouse model, the overexpression of miR-124 significantly inhibited U2OS cell proliferation and invasion. Taken together, miR-124 was associated with the adverse clinical and pathological features observed in OS. It acted as a tumor suppressor to regulate the proliferation and invasion of OS cells by targeting Snail2, suggesting that miR-124 may be key in the progression of OS.
Collapse
Affiliation(s)
- Jianghong Huang
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yujie Liang
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental Health, Faculty of Mental Health, Shenzhen University, Shenzhen, Guangdong 518003, P.R. China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Meiquan Xu
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Daping Wang
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Qiang Ding
- Department of Orthopedics, Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
28
|
Xing P, Zhang J, Yan Z, Zhao G, Li X, Wang G, Yang Y, Zhao J, Xing R, Teng S, Ma Y, Liao Z, Ren Z, Zhang C, Han X, Zhang W, Chen K, Wang P, Yang J. Recombined humanized endostatin (Endostar) combined with chemotherapy for advanced bone and soft tissue sarcomas in stage IV. Oncotarget 2018; 8:36716-36727. [PMID: 27888623 PMCID: PMC5482691 DOI: 10.18632/oncotarget.13545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This retrospective case-series study evaluated efficacy and safety of Endostar combined with chemotherapy in the treatment of advanced bone and soft tissue sarcomas in stage IV. MATERIALS AND METHODS Forty-seven patients diagnosed with stage IV bone and soft tissue sarcomas and treated with chemotherapy in Tianjin Medical University Cancer Institute & Hospital were reviewed. Of these patients, 23 patients were treated with Endostar plus chemotherapy (designated as combined group), and 24 patients received only chemotherapy (designated as control group). Progression-free survival (PFS), overall survival (OS), objective response rate (ORR) and clinical benefit response (CBR) were analyzed to find the difference between these two groups with the purpose to investigate the role of Endostar in metastatic sarcomas. RESULTS Endostar combined with chemotherapy had significantly increased PFS. In the combined group and control groups, the median PFS (8.6 months versus 4.4 months) and the CBR (47.8% versus 16.7%) showed significant difference (P = 0.032), while the median overall survival (11.7 months versus 10.6 months, P = 0.658) and the ORR (17.4% versus 8.3%, P = 0.167) showed no significant difference. The common grade 3-4 side effects for both groups were myelosuppression and transient elevation of transaminases. CONCLUSION Endostar combined with chemotherapy had significant activity to increase the PFS and improve CBR in patients with advanced sarcomas, with tolerable side effects.
Collapse
Affiliation(s)
- Peipei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Zhao Yan
- National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,Pharmacological Research Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Xubin Li
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Yun Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Jun Zhao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Ruwei Xing
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Sheng Teng
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Yulin Ma
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Zhiwu Ren
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Wei Zhang
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina 27157, USA
| | - Kexin Chen
- National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Ping Wang
- National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, People's Republic of China
| |
Collapse
|
29
|
Association between expression of nuclear receptor co-activator 5 protein and prognosis in postoperative patients with osteosarcoma. Oncol Lett 2017; 15:1888-1892. [PMID: 29434886 DOI: 10.3892/ol.2017.7513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the association between the expression of nuclear receptor co-activator 5 protein (NCOA5) and the prognosis of postoperative patients with osteosarcoma. Human osteosarcoma samples were collected from 145 patients and normal bone tissues were collected from 100 individuals as controls. Immunohistochemistry (IHC) and reverse transcription-polymerase chain reaction (RT-PCR) were employed to measure the levels of NCOA5 protein in cases of human osteosarcoma. The results from the RT-PCR analysis demonstrated that the positive rate of NCOA5 mRNA expression in human osteosarcoma was 17.24% (25/145). The positive rate in normal bone tissues was 84.00% (84/100), which was significantly higher compared with that of human osteosarcoma tissues (χ2=33.166; P<0.001). IHC staining indicated that the positive rate of NCOA5 protein in the osteosarcoma samples was 26.21% (38/145). The positive rate in normal bone tissues was 82.00% (82/100), which was significantly increased compared with that of human osteosarcoma tissues (χ2=28.166; P<0.001). NCOA5 mRNA and protein expression levels were consistent in human osteosarcoma tissues, and were lower than in control tissues. The expression of NCOA5 was low in human osteosarcoma tissues, while it was high in normal bone tissues. These low NCOA5 expression levels were associated with postoperative survival of human osteosarcoma.
Collapse
|
30
|
Li F, Liao Z, Zhao J, Zhao G, Li X, Du X, Yang Y, Yang J. Efficacy and safety of Apatinib in stage IV sarcomas: experience of a major sarcoma center in China. Oncotarget 2017; 8:64471-64480. [PMID: 28969086 PMCID: PMC5610018 DOI: 10.18632/oncotarget.16293] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/01/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose This study was conducted to review the efficacy and safety of Apatinib in stage IV sarcoma patients who failed previous chemotherapy. Materials and Methods The clinical information on 16 patients with stage IV sarcomas who failed in prior chemotherapy and subsequently received Apatinib treatment was collected. Apatinib was given 500mg/daily and 4 weeks as a cycle. All patients had at least one measurable extracranial tumor according to Response Evaluation Criteria In Solid Tumors 1.0 criteria. Progression free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR) and treatment-related adverse effects (AEs) were reviewed and evaluated. Results Patients was administered Apatinib for 0 to 9 cycles with the median of 3.2 cycles. Median follow-up time was 8.4 months (1 to 12 months). Ten of 16 patients received at least 1 complete cycle of Apatinib treatment were eligible for the efficacy analysis. The median PFS was 8.84 months. Two patients achieved partial response (PR) and 6 patients achieved stable disease (SD). Two patients were evaluated as progression disease (PD) and one patient died of disease progression. The ORR was 20.0% (2/10) and the DCR was 80.0% (8/10). The most common grade 3/4 treatment-related AEs were hypertension (18.7%), hand-foot syndrome (12.5%) and proteinuria (6.3%). No drug-related severe AEs occurred. Conclusion CApatinib treatment in this exploratory study exhibited objective efficacy and manageable toxicity in stage IV sarcoma patients who failed in chemotherapy. This result supports future random controlled trial to further define Apatinib activity in stage IV sarcomas.
Collapse
Affiliation(s)
- Feng Li
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Zhichao Liao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Jun Zhao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Gang Zhao
- National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China.,Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Xubin Li
- National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China.,Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Xiaoling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yun Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, People's Republic of China
| |
Collapse
|
31
|
Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: A new hope. J Bone Oncol 2016; 9:41-47. [PMID: 29226089 PMCID: PMC5715440 DOI: 10.1016/j.jbo.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023] Open
Abstract
Osteosarcoma is the most common bone cancer among those with non-hematological origin and affects mainly pediatric patients. In the last 50 years, refinements in surgical procedures, as well as the introduction of aggressive neoadjuvant and adjuvant chemotherapeutic cocktails, have increased to nearly 70% the survival rate of these patients. Despite the initial therapeutic progress the fight against osteosarcoma has not substantially improved during the last three decades, and almost 30% of the patients do not respond or recur after the standard treatment. For this group there is an urgent need to implement new therapeutic approaches. Oncolytic adenoviruses are conditionally replicative viruses engineered to selectively replicate in and kill tumor cells, while remaining quiescent in healthy cells. In the last years there have been multiple preclinical and clinical studies using these viruses as therapeutic agents in the treatment of a broad range of cancers, including osteosarcoma. In this review, we summarize some of the most relevant published literature about the use of oncolytic adenoviruses to treat human osteosarcoma tumors in subcutaneous, orthotopic and metastatic mouse models. In conclusion, up to date the preclinical studies with oncolytic adenoviruses have demonstrated that are safe and efficacious against local and metastatic osteosarcoma. Knowledge arising from phase I/II clinical trials with oncolytic adenoviruses in other tumors have shown the potential of viruses to awake the patient´s own immune system generating a response against the tumor. Generating osteosarcoma immune-competent adenoviruses friendly models will allow to better understand this potential. Future clinical trials with oncolytic adenoviruses for osteosarcoma tumors are warranted.
Collapse
|
32
|
Abstract
Osteosarcoma is the most common primary malignancy of bone in children and young adults. This tumor has a very heterogeneous genetic profile and lacks any consistent unifying event that leads to the pathogenesis of osteosarcoma. In this review, some of the important genetic events involved in osteosarcoma will be highlighted. Additionally, the clinical diagnosis of osteosarcoma will be discussed, as well as contemporary chemotherapeutic and surgical management of this tumor. Finally, the review will discuss some of the novel approaches to treating this disease.
Collapse
Affiliation(s)
- Ryan A Durfee
- Department of Orthopaedic Surgery and Rehabilitation, University of Chicago, Chicago, IL, USA
| | - Maryam Mohammed
- Department of Orthopaedic Surgery and Rehabilitation, University of Chicago, Chicago, IL, USA
| | - Hue H Luu
- Department of Orthopaedic Surgery and Rehabilitation, University of Chicago, Chicago, IL, USA.
| |
Collapse
|